Обследование почвы на тяжелые металлы

Перед осуществлением полевой программы наблюдений за уровнем загрязнения почв тяжелыми металлами в природных и сельскохозяйственных ландшафтах необходимо провести планирование работ, т.е.:

  • q определить примерное количество точек отбора почв, которые дадут основной физический материал;
  • q составить схему их территориального размещения;
  • q наметить полевые маршруты пли последовательность обработки площадей;
  • q установить календарные сроки исполнения задания.

Помимо этого следует проверить наличие и качество топографического материала, а также тематических карт (почвенных, геоботанических, геологических, геохимических и др.).

  1. Необходимо собрать следующие сведения об источниках загрязнения почв:
  2. q расположение;
  3. q используемое сырье;
  4. q объем производства;
  5. q отходы),
  6. а также установить связь с учреждениями, которые заинтересованы в предполагаемых обследованиях.

Наблюдения за уровнем загрязнения почв тяжелыми металлами в городах и на окружающей территории носят характер экспедиционных работ и поэтому включают в себя все мероприятия по подготовке к ним. Время проведения экспедиционных работ и отбора почв не имеет значения.

Однако удобнее сбор материалов проводить в сухое время года, в период уборки урожая основных сельскохозяйственных культур, т.е. летом и в начале осени. При развернутых стационарных наблюдениях отбор проб производится независимо от времени экспедиционных работ.

Повторные наблюдения за уровнем загрязнения почв тяжелыми металлами ранее обследованных территорий осуществляются через 5 – 10 лет.

При выборе участков наблюдения на территориях, используемых сельским хозяйством, исходным рабочим документом служит топографическая основа определенного масштаба (обычно 1:10 000).

Контуры (схема) города (рабочего поселка) или промышленного комплекса размещаются, как правило, в центре плана местности, который переснимается с топографической основы. Из геометрического центра (города, промышленного комплекса, завода и т.д.

) с помощью циркуля наносятся окружности на следующих расстояниях: 0,2; 0,5; 1,0; 1,5; 2; 3; 4; 5, 8; 10, 20; 30; 50 км, т.е. обозначается зона возможного загрязнения почв тяжелыми металлами.

Протяженность зоны загрязнения почв определяется скоростью и частотой ветров данного румба (розой ветров), характером выбросов в атмосферу (плотностью вещества, дисперсностью частиц), высотой труб, рельефом территории, растительностью и т.д.

На подготовленный таким образом план местности наносятся контуры многолетней розы ветров по 8 – 16 румбам. Самый большой вектор, соответствующий наибольшей повторяемости ветров, откладывается в подветренную сторону; его длина составляет 25 – 30 см, т.е. 25 – 30 км.

Таким образом, в контур, образованный розой ветров, схематически включается  территория  наибольшей загрязненности тяжелыми металлами (рис. 13.1).

В направлении радиусов строятся секторы шириной 200 – 300 м вблизи источников загрязнения с постепенным расширением до 1 – 3 км; в местах пересечения осей секторов с окружностями располагаются ключевые участки, на них располагают сеть опорных разрезов, пункты и площадки взятия проб /1/.

Под ключевым участком понимается участок (1 – 10 га и более), характеризующий типичные, постоянно повторяющиеся в данном районе сочетания почвенных условий и условий рельефа, растительности и других компонентов физико-географической среды. Основную долю ключевых участков следует располагать в направлении двух экстремальных лучей (румбов) розы ветров.

Чтобы лучше понять взаимосвязь между качеством почв, природными и хозяйственными условиями района, проводится предварительное рекогносцировочное обследование местности.

Во время рекогносцировки проверяются и закрепляются почерпнутые из литературы или других источников сведения, формируются личные воззрения и закрепляются в памяти многие важные особенности объекта предстоящих обследований.

Рекогносцировочные обследования проводятся маршрутным путем более или менее подробно в зависимости от природной сложности территории, степени ее изученности, площади и масштаба обследований.

При детальных обследованиях загрязнения почв вокруг единичного источника загрязнения достаточно один – два раза пересечь участок (рис. 13.2, а).

При больших площадях (обследование сельскохозяйственных полей, местности вокруг городов и т.д.) рекогносцировочное обследование требует значительных усилий и времени.

Чтобы охватить маршрутами местность, ее пересекают по главным орографическим элементам (рис. 13.2, б) /1/.

  • q основные ландшафтные особенности территории;
  • q общие закономерности пространственных изменений почвенного покрова;
  • q главные формы почвообразования и др.
  • Параллельно идет ознакомление с:
  • q местным фондовым материалом;
  • q сведениями о климате и микроклимате;
  • q погодными условиями последних лет;
  • q заболеваниями людей, причина которых – повышенное содержание тяжелых металлов в экосистеме.
  • Некоторая затрата рабочего времени на рекогносцировочное обследование территории до начала основных работ, как правило, окупается экономией сил и времени в последующем проведении полевых работ.

При оценке степени загрязнения территории тяжелыми металлами ввиду чрезвычайно большой трудоемкости и стоимости не всегда применяется сплошная съемка загрязненных почв.

Обследование почвы на тяжелые металлы

Целесообразнее и экономичнее прослеживать пути воздушного и водного загрязнения почв, анализируя объединенные образцы из верхних слоев почв с площадок. Более детальное исследование нужно проводить на ключевых участках, расположенных в секторах-радиусах вдоль преобладающих воздушных потоков.

Изучение процессов загрязнения почв на ключевых участках проводится более детально, чем на остальной территории; оно довольно трудоемко и требует много времени.

Ключевые участки размещают на обследуемой территории так, чтобы они характеризовали все возможные ландшафтно-геохимические условия, разнообразие генезиса, состава и сочетания почв, типичные биоценозы и, конечно, фоновые и техногенные участки.

При наблюдениях за уровнем загрязнения почв тяжелыми металлами большое значение имеет сравнение изменений, происходящих по мере увеличения или уменьшения влияния того или иного фактора, и вызванных этими изменениями закономерных смен степени загрязнения почв различными ингредиентами в пространстве. Наиболее четко эти закономерности можно выявить на почвенно-геоморфологических профилях, секущих всю территорию вдоль преобладающих направлений ветра, что является исключительно ценным методом познания сопряженных связей между распределением загрязняющих веществ в почвах и средой.

Под почвенно-геоморфологическим профилем следует понимать заранее выбранную узкую, стремящуюся к линии полосу земной поверхности, на которой установлена корреляция степени загрязнения почв с одним или несколькими экологическими факторами (рис. 13.3).

Почвенно-геоморфологические профили закладываются по векторам розы ветров.

Профили не могут полностью заменить ключевые участки, особенно в тех случаях, когда изменение степени загрязнения почв обусловлено характером микрорельефа, связь которого с загрязнением почв наиболее наглядно проявляется на большой территории. Следовательно, почвенно-геоморфологические профили и ключевые участки должны дополнять друг друга.

Достоверно установлено, что техногенные выбросы, загрязняющие почвенный покров через атмосферу, сосредоточиваются в поверхностных слоях почвы. Тяжелые металлы сорбируются, как правило, в первых 2 – 5 см от поверхности.

Загрязнение нижних горизонтов происходит в результате обработки почвы (вспашки, культивации, боронования), а также вследствие диффузионного и конвективного переноса через трещины, ходы почвенных животных и растений.

Поэтому наиболее четкая картина загрязненности почвенного покрова тяжелыми металлами может быть получена при отборе проб почв с глубины 0 – 10 и 0 – 20 см на пашне и с глубины 0 – 2,5; 2,5 – 5,0; 5 – 10; 10 – 20; 20 – 40 см на целине или старой залежи.

Объединенная проба составляется, как правило, методом конверта. Все дальнейшие операции с первичной обработкой почв аналогичны операциям, осуществляемым при контроле за загрязнением почв пестицидами.

После отбора проба почвы направляется на анализ в лабораторию. К каждой пробе прилагается талон, содержащий основные необходимые сведения о самой почве и условиях ее отбора.

  1. В сопроводительном талоне указывается:
  2. q порядковый номер образца;
  3. q число;
  4. q месяц и год отбора;
  5. q либо фактическое название, либо номер или условное обозначение пункта наблюдения, расшифрованное в рабочем журнале.
  6. При наблюдениях за уровнем загрязнения почв тяжелыми металлами в сопроводительном талоне указываются:

q расстояние от источника загрязнения или внешней границы города, а также направление от источника загрязнения – азимуты по 16 направлениям (север, северо-северо-восток, северо-восток и т.д.);

  • q показатели рельефа местности:
  • ü крутизна склонов;
  • ü их экспозиция (северная, восточная, южная и западная);
  • ü часть склона (верхняя, средняя или нижняя треть);
  • ü основные точки и линии рельефа территории, на которой закладывается площадка;
  • ü вершины, котловины, водоразделы, поймы;
  • q глубина залегания грунтовых вод, определяемая по глубине колодцев (открытых и артезианских);
  • q сельскохозяйственная культура (настоящая и предшествующая) или естественная растительность и их состояние (удовлетворительное, хорошее, неудовлетворительное);
  • q состояние поверхности почвы:
  • ü наличие или отсутствие микроповышений или микропонижений, борозд, кочек;
  • ü отмечается качество обработки почвы.
  • Пробы почв и сопроводительные талоны к ним сохраняются в лаборатории в течение полутора – двух лет.

В целях установления интенсивности поступления тяжелых металлов в почву ежегодно проводится отбор проб снега. Объединенный образец снега с площади 1 га составляется из 20 – 40 точечных проб. Пробы снега следует брать ранней весной до начала подснежного стока талой воды.

В городах естественная почва, как правило, заменена насыпными сильно перекопанными грунтами. Насыпной слой может представлять собой вынутую при строительстве пустую породу и привезенный грунт или дерн, который укладывают на газоны.

  1. Программа наблюдений за уровнем загрязнения почв тяжелыми металлами в городах должна учитывать:
  2. q планировку населенного пункта;
  3. q гипсометрию местности;
  4. q высоту построек;
  5. q густоту расположения построек;
  6. q влияние всего этого на направление потоков воздуха;
  7. q распределение атмосферных осадков и ливневого стока;
  8. q долю участия в загрязнении территории города автотранспорта и местных промышленных предприятий и предприятий энергетики.
  9. Помимо этого, в городах неизбежно бытовое (локальное) загрязнение и наличие неорганизованных старых и современных свалок, сжигание мусора. В этих условиях отбор почв приходится производить:
  10. q на газонах;
  11. q в садах;
  12. q в парках;
  13. q в скверах;
  14. q во дворах.
  15. Содержание тяжелых металлов в отобранных пробах, как правило, имеет высокую дисперсию.
Читайте также:  Как выбрать запорную арматуру для трубопроводов

В связи с этим отбор проб почв в городских условиях следует производить по сетке квадратов такого масштаба, который обеспечил бы частоту отбора проб почв не менее 5 – 6 образцов на 100 га. Такая частота проб почв обеспечивает получение данных для составления карт загрязненности почв на территории городов. Отбор проб осуществляется методом конверта со стороной 5 –  10 м с глубины 20 см.

Обследование почвы на тяжелые металлы

Оценка загрязнения почвы тяжелыми металлами

Обследование почвы на тяжелые металлы

Тяжелые металлы относятся к распространенным загрязняющим веществам, наблюдение за содержанием которых обязательно в почвах и грунтах. В качестве критериев принадлежности к тяжелым металлам используются разные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (висмут) или даже к металлоидам (мышьяк).

В одних работах, посвященных проблемам загрязнения окружающей природной среды, на сегодняшний день к тяжелым относят более 40 металлов с атомной массой свыше 50 атомных единиц, а в других считают металлы с плотностью более 8 г/см3 (Pb, Cu, Ni, Cd, Co, Sb, Sn, Bi, Hg).

Тяжелые металлы являются не только токсикантами, но и природными микрокомпонентами почв, содержание которых обусловлено механическим и химическим составом почвообразующих пород и характером почвообразовательных процессов.

Фоновое содержание химических соединений и элементов в почвах — содержание, соответствующее их естественным концентрациям в почвах различных почвенно-климатических зон, не испытывающих заметного антропогенного воздействия.

  Наша лаборатория проводит анализ cостава почв на загрязнение металлами и другими элементами.

Основным источником загрязнения почв тяжелыми металлами является сжигание ископаемого топлива. Ежегодно сгорает 5 млрд. тонн горючих ископаемых (за всю историю человечества, по оценкам специалистов, сожжено 130 млрд.

т угля и 40 млрд. тонн нефти). В золе угля и нефти содержатся практически все металлы в суммарной концентрации до 500 г. на тонну топлива.

В этом сущность аэрально-техногенного характера поступления тяжелых элементов в почву.

Заметную роль в загрязнении почв и грунтов играют и другие пути попадания тяжелых металлов в почву. Например, ежегодно от выхлопных газов автомобильных двигателей, работающих на этилированном бензине, выбрасывается на поверхность почв более 250 тыс. тонн свинца в год.

Выбросы в атмосферу только от ремонтных предприятий железных дорог в виде пыли, оседающей на почву (в основном это оксиды металлов), составляет свыше 380 тыс. тонн в год. Тормозные колодки поездов, истираясь, также вносят в почвы вблизи железных дорог еще 200 тыс. тонн металлов в год. Таким образом, происходит неуклонное увеличение масштабов загрязнения почвы тяжелыми металлами.

При этом наиболее опасно накопление в почве металлов с выраженным токсическим характером — ртути, свинца, кадмия.

Пагубное воздействие содержащихся в промышленных газовых выбросах тяжелых металлов может значительно усиливаться за счет влияния других вредных компонентов выбросов. Весьма опасными в этом отношении являются дымовые выбросы алюминиевых, керамических и некоторых других предприятий, содержащие значительные количества фторидов водорода и кремния, а также некоторых других соединений фтора.

Подробная информация об услуге в разделеАнализ почвы

Поступающие из атмосферы металлы в той или иной степени фиксируются почвой. Процесс фиксации включает адсорбцию, осаждение, коагуляцию, межпакетное поглощение глинистыми минералами.

Поступающие в почвы соединения тяжелых металлов разрушаются почвенными органическими кислотами либо сорбируются компонентами ППК, либо — в зависимости от почвенных условий — осаждаются в виде нерастворимых солей.

Но перед этим они проходят фазу раствора и в данном состоянии наиболее подвижны.

Основную роль в закреплении металлов в почве играют органическое вещество, глинистые минералы и гидрооксиды железа и марганца. Вначале металлы сорбируются в основном не специфически.

Со временем происходит упрочение связи тяжелых металлов с почвенным поглощающим комплексом (ППК), что выражается в уменьшении содержания водорастворимых и непрочно связанных форм; в природных условиях этому способствует частая смена режимов увлажнения и высушивания почвы.

В процессе сорбции тяжелых металлов почвой они иммобилизуются и переводятся в нетоксичные формы, некоторые входят в кристаллическую решетку алюмосиликатов. Например, техногенные свинец и медь трансформируются в почве в менее подвижные, a Zn и Cd — в более подвижные соединения.

При взаимодействии тяжелых металлов с глинистыми минералами возникают обменные и необменные формы. Техногенный цинк проявляет наибольшее, чем медь, свинец и кадмий, сродство к минеральным компонентам ППК. В связи с этим илистая фракция почв обогащена цинком и обеднена медью и свинцом по сравнению со всей почвенной массой.

В нижних почвенных горизонтах основная роль в закреплении тяжелых металлов принадлежит оксидам и гидроксидам Fe, Mn и А1. Наиболее прочно закрепляются и активно сорбируются медь, цинк, свинец. В почвах, богатых железом, многие тяжелые металлы становятся малоподвижными из-за процессов окклюзии.

Ртуть, свинец, кадмий и некоторые другие тяжелые металлы хорошо сорбируются в верхних слоях (толщиной несколько сантиметров) перегнойно-аккумулятивного (гумусового) горизонта различных типов почв суглинистого состава.

Миграция их по профилю и вынос за пределы почвенного профиля незначительны. Однако в почвах легкого состава, кислых и обедненных гумусом, процессы миграции этих элементов усиливаются.

Цинк и медь менее токсичны, но более подвижны, чем свинец и кадмий.

Поведение тяжелых металлов в почве зависит от ее окислительно-восстановительных условий и кислотности. Миграционная способность Сu, Ni, Со, Zn в восстановительной среде снижается на 1-2 порядка по сравнению с окислительной. В кислой среде большинство металлов более подвижно.

Наиболее неблагополучные условия в этой связи складываются в подзолистых и дерново-подзолистых почвах, имеющих неблагоприятные физические и химические свойства из-за повышенной кислотности и содержания в ППК ионов алюминия.

Указанные условия способствуют переходу металлов в биологические ткани, повышенной миграции тяжелых элементов, ухудшению жизнедеятельности нитрифицирующих и азотфиксирующих бактерий, часто вызывают снижение плодородия почв.

В летний период миграция тяжелых металлов в поверхностные воды связана с процессами эрозии и деятельностью почвенно-грунтовых вод. Даже в гумидных условиях почва является эффективным фильтром на пути атмотехногенного потока тяжелых металлов в природные воды.

Минимальная интенсивность водной миграции тяжелых металлов отмечается в степных и лесостепных регионах.

Если атмосферная влага, просачивающаяся за пределы почвенной толщи, не достигает грунтовых вод, техногенные вещества накапливаются ниже корнеобитаемого горизонта и исключаются из биокруговорота и дальнейшей водной миграции; происходит их естественное захоронение.

В процессе водной эрозии, например, при осадках ливневого характера, из почвы вымываются в основном илистая фракция и органика — наиболее обогащенные тяжелыми металлами почвенные компоненты, что является одной из причин более низкого содержания тяжелых металлов в почвах сельхозугодий по сравнению с нераспаханными почвами в условиях атмотехногенного загрязнения. В городских почвах накопление загрязняющих веществ происходит в большинстве случаев двадцатисантиметровом слое.

Глобальные, зональные и региональные оценки фона тяжелых металлов и металлоидов в почвах, мг/кг (Сает Ю.Е. и др., 1990)

Элемент Глобальные оценки Зональные оценки Московская обл.
дерново-подзолистые
Кларк в земной коре Почвы мира Подзолистые Серые лесные Чернозёмы Каштано-вые серозёмы Солончаки и солонцы
Суглинистые и глинистые Песчаные и супесчаные
Хром 83,0 90,0 180,0 250,0 286,0 328,0 467,0 46,0 2,0-40,0
Марганец 1000,0 850,0 715,0 1025,0 885,0 722,0 725,0 670,0 590,0 29-300
Кобальт 18,0 10,0 8,4 12,4 13,2 11,7 6,9 9,6 10,0 3,0
Никель 58,0 40,0 23,2 30,3 72,1 46,0 19,0 29,5 20,0 6,0
Медь 47,0 20,0 15,3 23,5 28,9 15,8 24,0 20,2 15,0-27,0 8,0
Цинк 83,0 50,0 41,3 60,0 62,0 52,3 50,0 54,6 45,0 28
Мышьяк 1,7 5,0 3,0 4,7 5,9 5,2 2,5 2,2 1,5
Молибден 1,1 2,0 1,7 3,2 4,2 3,2 3,0 2,4 1,0 0,2-0,8
Кадмий 0,13 0,5 0,7 0,7 0,5 0,4 0,12 0,05
Ртуть 0,08 0,01 0,1 0,05
Свинец 16,0 10,0 11,5 12,5 13,2 10,0 6,3 7,2 15,0-25,0 6,0

Обследование почвы на тяжелые металлы Атомно-абсорбционные спектрометры с пламенной и электротермической атомизацией Agilent Обследование почвы на тяжелые металлы Приборная хроматография Обследование почвы на тяжелые металлы Измерение содержания мышьяка

Читайте также:  Азотная кислота при взаимодействии с металлами выделяющийся водород

Анализ почвы на тяжёлые металлы

  • Содержание тяжелых металлов в почве, негативно сказывается на ее состоянии и плодородие.
  • Сегодня основной причиной загрязнения грунта тяжелыми металлами  вблизи крупных городов, являются выхлопные газы  транспорта, промышленные предприятия и бытовые отходы, но также металлы тяжелые металлы можно завести с не сертифицированной землёй для посадки газона, и других растений.
  • Не стоит забывать, что почва должна содержать допустимое количество металлов, необходимое для правильного протекания физиологических процессов в растениях.

Но необходимо контролировать уровень загрязнения почвы металлами, т.к. повышенная концентрация оказывает токсическое воздействие на растения и организм человека.

Позвоните в нашу Лабораторию, и мы поможем узнать состав почвы возле Вашего дома или на участке и предотвратить негативные последствия!

  1. Влияние некоторых тяжелых металлов на здоровье человека:
  2. Ртуть (Hg) — Нервные расстройства, нарушение функций желудочно-кишечного тракта, почек, изменение в хромосомах
  3. Мышьяк (As) — Заболевания кожи, интоксикация, периферические невриты
  4. Свинец (Рb) — Разрушение костных тканей, задержка синтеза протеина в крови
  5. Медь (Сu) — Органические изменения в тканях, распад костной ткани

Бор (B) —  Пропадает аппетит, возникают кожные высыпания, рвота, диарея, головные боли, тревожное состояние. Более длительные и неконтролируемые передозировки способны вызывать заболевания органов пищеварения, болезни почек, печени и центральной нервной системы.

Кадмий (Cd) – Вызывает невыносимую боль в мышцах, деформации скелета из-за истощение костей, нарушения функций внутренних органов, способствует развитию злокачественных опухолей.

Позвоните в нашу Лабораторию, и мы поможем узнать состав почвы возле Вашего дома или на участке и предотвратить негативные последствия!

В нашей лаборатории Вы можете проверить почву на содержание следующих металлов:

  • Бор
  • Кадмий
  • Кобальт
  • Марганец
  • Медь
  • Молибден
  • Мышьяк
  • Никель
  • Ртуть
  • Свинец
  • Хром
  • Цинк

Микробиология Химия Плодородие Радиология Металлы Загрязнители

Анализ содержания тяжелых металлов в почве

Тяжелые металлы относятся к самым токсичным и опасным веществам, оказывающим крайне негативное воздействие на здоровье людей и окружающую среду. Загрязнение почвы тяжелыми металлами ведет к ухудшению ее качества, сужению возможностей хозяйственного использования.

Каждая организация или предприниматель, использующие или планирующие использовать почву в экономической или иной деятельности, должны исследовать ее на предмет содержания вредных веществ.

Анализ почвы на содержание тяжелых металлов позволяет оценить степень ее безопасности, подтвердить соблюдение хозяйствующим субъектом требований экологического законодательства, помогает принять верные управленческие решения.

Тяжелые металлы поступают в окружающую среду в основном в результате деятельности человека. Источниками загрязнения становятся:

  • выбросы предприятий – преимущественно тяжелой промышленности;
  • сжигание топлива и горючих ископаемых;
  • гидрогенное загрязнение от поступления промышленных сточных вод в водоемы;
  • внесение комплексных удобрений, мелиорантов, средств защиты растений;
  • отвалы золы, шлака, руд, шламов;
  • разливы нефти и нефтепродуктов;
  • свалки ТБО.

Распространение тяжелых металлов зависит от источника, метеорологических условий, направления ветра, рельефа местности, особенностей вещества. ПДК металлов в почве устанавливаются с учетом фоновых концентраций. В некоторых случаях за предельно допустимую концентрацию принимают самое высокое содержание тяжелых металлов, наблюдаемое в незагрязненных почвах.

Оценка степени загрязнения почв тяжелыми металлами необходима:

  • для определения пригодности почвы для того или иного вида деятельности, городского озеленения, рекультивации;
  • оценки воздействия предприятия на природные объекты;
  • установления стоимости земельного участка;
  • разработки мероприятий по оздоровлению почвы;
  • перевода земель из одной категории в другую при изменении их целевого назначения.

Лабораторные анализы позволяют оценить состояние почвенного покрова, его экологическую безопасность, уровень загрязнения. Результаты используются для принятия решений по использованию земельного участка, восстановлению почвы.

К тяжелым металлам относят 58 элементов с атомной массой более 50. По степени опасности они подразделяются на 4 класса:

  1. Высокоопасные – мышьяк, кадмий, ртуть, селен, свинец, цинк, фтор.
  2. Умеренноопасные – бор, кобальт, никель, молибден, медь, хром, сурьма.
  3. Малоопасные – барий, ванадий, вольфрам, марганец, стронций.

Стандартный анализ почвы на содержание тяжелых металлов определяет концентрацию свинца, кадмия, ртути, меди, никеля, цинка, мышьяка (мг/кг). Перечень веществ может быть расширен в зависимости от цели исследования и специфики предприятия.

Исследование почвы на содержание тяжелых металлов проводят не реже 1 раза в 3 года, на территориях дошкольных учреждений, школ, лечебных учреждений, рекреационных зон – дважды в год: в теплый и холодный сезон.

Образцы почв отбирают в районах воздействия источников загрязнения согласно требованиям ГОСТ 17.4.4.02-2017г. Места пробоотбора намечают с применением системы концентрических окружностей и «метода конверта».

Инструменты, используемые при отборе проб, должны быть изготовлены из инертных к действию образцов и реагентов материалов, иметь гладкую, легко очищаемую поверхность.

Не допускается использование оцинкованных и эмалированных емкостей, окрашенных инструментов. Образцы для анализа содержания тяжелых металлов отбираются почвенным буром или лопатой, запаковываются в мешочки из натуральной ткани. После транспортировки в лабораторию пробы немедленно просушивают.

Выделяют 3 основных группы аналитических методов определения тяжелых металлов в почве:

  • Электрохимические – потенциометрия, кондуктометрия, вольтамперометрия.
  • Экстракционно-фотометрические – спектрофотометрия, атомно-абсорбционная спектроскопия, колориметрия.
  • Тонкослойная хроматография – физико-химический метод, позволяющий обнаружить искомое вещество в ничтожно малых количествах.

Для анализа почв на тяжелые металлы используют оборудование с высокой абсолютной чувствительностью и возможностью идентификации и количественного определения токсичных форм веществ. Средства измерения подготавливают к работе согласно руководству по эксплуатации и аттестованной методике измерений. По окончанию исследования составляют протокол.

Наши преимущества

Группа компаний «Лаборатория» проводит лабораторные анализы на содержание тяжелых металлов в почве с использованием высокоточного оборудования и аттестованных методик.

Мы располагаем всеми необходимыми ресурсами для выполнения задач любой сложности. Наша команда работает быстро, качественно, подтверждением чему служит постоянное увеличение числа постоянных клиентов. Нам доверяют крупнейшие компании страны.

Чтобы сделать заказ, оставьте заявку на сайте или позвоните по номеру 8(800) 700-50-24.

Методы определения тяжелых металлов в почве

Прежде всего, надо понимать, что состав почвы неоднородный, поэтому даже на одном и том же земельном участке почвенные показатели могут сильно различаться в различных его частях. Поэтому нужно брать несколько проб и либо исследовать каждую в отдельности, либо смешивать их в единую массу и брать образец для исследования оттуда.

  • Количество методов определения металлов в почве достаточно велико, например, некоторые из них:
  • · метод определения подвижных форм.
  • · метод определения обменных форм.
  • · метод выявления растворимых в кислотах (техногенных) форм.
  • · метод валового содержания.
  • С помощью данных методик производится процесс вытяжки металлов из почвы. Впоследствии нужно определить процент содержания тех или иных металлов в самой вытяжке, для чего применяются три основных технологии:
  • 1) Атомно-абсорбционная спектрометрия.
  • 2) Масс-спектрометрия с индуктивно-связанной плазмой.
  • 3) Электрохимические методы.
  • Прибор для соответствующей технологии выбирается в зависимости от того, какой элемент исследуется, и какая его концентрация предполагается в почвенной вытяжке.
  • Спектрометрические методы исследования тяжелых металлов в почве
  • 1) Атомно-абсорбционная спектрометрия.

Проба грунта растворяется в специальном растворителе, после чего реагент связывается с определенным металлом, выпадает в осадок, высушивается и прокаливается, чтобы вес стал постоянным. Затем производится взвешивание с использованием аналитических весов.

К недостаткам этого метода относится значительное количество времени, требуемое на анализ, и высокий уровень квалификации исследователя.

2) Атомно-абсорбционная спектрометрия с плазменной атомизацией.

Это более распространенный метод, позволяющий определить сразу несколько различных металлов за один прием. Также отличается точностью. Суть метода заключается в следующем: пробу нужно перевести в газообразное атомное состояние, затем анализируется степень поглощения атомами газов излучения — ультрафиолетового или видимого.

  1. Электрохимические методы исследования тяжелых металлов в почве
  2. Подготовительный этап заключается в растворении образца почвы в водном растворе. В дальнейшем применяются такие технологии определения в нем тяжелых металлов:
  3. · Вольтамперометрический анализ — основан на измерении тока как функции приложенной известной разности потенциалов и концентрации раствора;
  4. · Кондуктометрический анализ — основан на измерении электрической проводимости растворов как функции их концентрации;
  5. · Кулонометрический анализ- основан на измерении количества электричества, прошедшего через раствор, как функции его концентрации;
  6. Фотометрический метод

Определение основано на извлечение ртути из почвы с использованием трубки Пемфильда с последующим фотометрическим анализом соединения ртути с дитизоном. Нижний предел обнаружения 1 мг/кг почвы, точность измерения +- 25% измеряемые концентрации 1-20 мг/кг почвы. Метод специфичен.

Ход анализа: почву высушивают до воздушно-сухого состояния. смешивают 1 г почвы с 0,25 г диоксида свинца и через воронку с оттянутым концом вносят в нижний шарик трубки Пемфильда. Пробу нагревают сначала в коптящем, а затем в окислительном пламени до красного каления. Трубка находится под углом 10-15 градусов. Продолжительность отгонки ртути 5-6 мин.

Затем шарик оплавляют и в запаяный конец трубки наливают 1 мл азотной кислоты пл. 1,4 г/см3. Оставляют на несколько минут, затем сливают раствор в делительную воронку. Ополаскивают несколько раз трубку 18 мл воды. К раствору добавляют по каплям 0,1 н. раствор перманганата калия до появления розовой окраски, которую устраняют, добавляя 1каплю 3%-ного раствора пероксида водорода.

Читайте также:  Средство защиты от тяжелых металлов

Смесь перемешивают и добавляют 1мл

1%-ного раствора ЭДТА и 4 мл 20%-ного раствора сульфита натрия. После перемешивания к раствору добавляют 4 мл 0,0005%-ного раствора дитизона в хлороформе. Смесь встряхивают 1 мин.

Хлороформный экстракт переносят в пробирку и измеряют оптическую плотность при λ=490 нм. Содержание ртути в пробе находят по градировочному графику.

Одновременно с определением ртути определяется влажность, которая учитывается при пересчете результатов на сухую почву.

  • Определения содержания ртути методом беспламенной атомно­ абсорбционной спектрофотометрии (метод «холодного пара»).
  • Диапазон измерений содержания ртути: от 0,1 мкг/г до 5,0 мкг/г при навеске 0,2 — 0,3 г и разведении конечного раствора до 100 см3 (диапазон со­ держания ртути для растворов 0,2 — 10 мкг/дм3).
  • Если определяемые концентрации превышают верхний предел, указанный в МВИ, следует уменьшить величину навески или увеличить разбавление конечного раствора.

Противоречия в законодательстве и оценка категорий загрязнения почв тяжелыми металлами на стадии инженерно-экологических изысканий

Российскую нормативную базу сегодня отличает ряд противоречий в регулировании методических подходов к выполнению инженерно-экологических изысканий, что приводит к отсутствию единых критериев оценки состояния компонентов окружающей среды и неопределенности при принятии проектных решений. В частности, отсутствует единый методический подход к оценке загрязнения почв и грунтов, которая проводится в рамках инженерно-экологических изысканий.

В ходе проведения государственной экспертизы результатов инженерно-экологических изысканий эксперты нередко сталкиваются с ситуацией, когда некорректно определенная категория загрязнения почв и грунтов приводит к принятию необоснованных проектных решений в части рекультивации земель.

Проблема оценки загрязнения почв особенно актуальна при разработке проектной документации объектов капитального строительства на территории городов, промышленных предприятий, участков геохимических аномалий на нетронутых территориях, сельскохозяйственных угодьях. Степень загрязненности почв напрямую влияет на их последующее использование.

Так, например, загрязненный плодородный слой не подлежит снятию, почвы и грунты с чрезвычайно опасной категорией загрязнения подлежат утилизации или захоронению.

В ходе проведения государственной экспертизы результатов инженерно-экологических изысканий эксперты нередко сталкиваются с ситуацией, когда некорректно определенная категория загрязнения почв и грунтов приводит к принятию необоснованных проектных решений в части рекультивации земель.

Типичным примером такой ситуации является отнесение почв к допустимой категории загрязнения вместо умеренно опасной, в результате в проектной документации не предусматривается перекрытие данных грунтов слоем чистого грунта. Либо, наоборот, загрязненный слой ошибочно считается незагрязненным, а в объемах работ предусматривается его снятие и складирование в качестве плодородного.

Противоречия, выявленные в нормативной базе, затрагивают такие вопросы, как применение гигиенических нормативов при определении категории загрязнения почв тяжелыми металлами и определение суммарного показателя загрязнения почв (Zc).

Основными нормативными документами, регламентирующими методические подходы к выполнению инженерно-экологических изысканий, в том числе к определению загрязнения почвенного покрова, являются:

  • СП 47.13330.2012 «Инженерные изыскания для строительства. Основные положения»,
  • СанПиН 2.1.7.1287-03 «Санитарно-эпидемиологические требования к качеству почвы»,

Химический анализ почвы: методы, отбор проб, как и где сделать

Информационные материалы по данной статье для сайта ekspertizy.org предоставил администратор сайта – Александр Шпилёв. Задать вопрос автору.

Почва является наиболее важным элементом экосистемы. Это специфическая основа для сельскохозяйственных культур в качестве субстрата для растений, хранилища воды, воздуха и питательных веществ.

Только здоровая почва, то есть та, которая имеет правильную структуру и состав, может давать здоровые культуры.

 Чтобы надежно оценить ее богатство, определить план удобрения для растений, следует сделать анализ почвы.

Зачем делать химический анализ почвы?

Делать анализ почвы нужно, как минимум, раз в 4 года.

Устойчивое сельское хозяйство – это производственная система, которая гармонично использует технический и биологический прогресс в выращивании, удобрении и защите растений. В устойчивом сельском хозяйстве промышленные средства производства используются в умеренных, необходимых количествах, стремясь к их наиболее эффективному использованию.

Когда все урожаи собраны, и еще ничего не посеяно, рекомендуется провести химический анализ почвы. Делать это нужно, как минимум, раз в 4 года. Садовники используют различные органические и искусственные удобрения, потому что они выращивают различные растения с различными требованиями почвы – от кислых до щелочных. 

Основной целью удобрения в устойчивом сельском хозяйстве является удовлетворение потребностей растений в питательных веществах на уровне, позволяющем получать прибыльные высококачественные культуры и снижающем риски для окружающей среды и человека. 

Понимание этих значений дает фермеру возможность поддерживать и увеличивать производственные мощности. Отсюда возникает необходимость применять вещества, изменяющие реакцию среды. 

Благодаря такой обработке растения некоторое время становятся красивыми, урожайность повышается. Но бывает так, что они внезапно перестают расти и цвести. И тогда проведение анализа почвы становится необходимостью.

Как используются результаты анализа почвы?

Полученные результаты анализов почв позволяет эффективно осуществлять:

  1. Регулирование рН почвы в случае подкисления;
  2. Правильное определение потребностей в удобрениях;
  3. Точное определение доз удобрений с использованием соответствующих программ;
  4. Выбор правильного типа удобрения. На рынке представлено несколько сотен однокомпонентных и многокомпонентных удобрений, их правильный выбор и правильная доза позволяют добиться экономии средств и повысить рентабельность производства;
  5. Улучшение качества сельскохозяйственной продукции;
  6. Применение методов точного земледелия;
  7. Предотвращение опасности для окружающей среды, связанной с избытком некоторых компонентов, например, эвтрофикацией вод, вызванной соединениями фосфора;
  8. Внедрение агроэкологических программ, например, устойчивого сельского хозяйства;
  9. Правильный выбор культивируемых видов растений и сортов;
  10. Оценку уровня плодородия, возможно деградация почвы;
  11. Точное азотное оплодотворения после тестирования на содержание N-min;
  12. Составление планов удобрений в условиях, предусмотренных правовыми нормами.

Химический анализ почвы и физический состав

Чтобы проверить физический состав почвы, ее небольшой фрагмент просто берется в руку и сжимается. В зависимости от типа, он может вести себя по-разному:

  1. Глина создаст компактный шарик и испачкает руку;
  2. Песчаная – крошится;
  3. Идеальная почва будет состоять из различных фракций – как глины, так и песка, и большой дозы органического вещества. Это почва, которая слегка испачкает наши пальцы, разваливаясь на большие комочки. 

Однако, если нужно узнать химический состав субстрата, потребуются лабораторные условия.

 Благодаря им можно установить, сколько азота, фосфора или серы содержится в почве и соответствует ли рН планируемому урожаю.

 Результат выдается в виде списка и содержания химического состава почвы, а также ряда другой информации, которая поможет в планировании сельскохозяйственных обработок на ближайшие годы.

Отбор пробы почвы для анализа

Отбор пробы почвы для анализа проводится из различных мест в поле. При этом не учитываются пограничные участки – места, где ранее были расположены курганы, стога сена или навозные сваи. Также избегают борозд, дорог, ям и кротовин. 

Отбор проб обычно проводится один раз в 4 года, осенью после сбора основного растения. Важно делать это до или после вегетации, а также перед началом любых обработок на поле. 

Важно знать! Не проводится анализ во время засухи и в периоды чрезмерной влажности почвы.

Анализ собранных таким образом образцов почвы даст результаты, которые позволят рационально планировать удобрения и другие агротехнические мероприятия. Результаты дадут ответы на вопросы о плодородии почвы, какие дозы удобрений следует использовать, какова реакция почвы и как выбрать виды растений.

Как правильно получить образец?

Существует несколько методов сбора образцов для анализа, но рекомендуются образцы смешанной среды. Прежде чем загружать их, следует:

  1. Составить карту местности, из которой будет анализироваться земля, и отметить места, из которых берется материал;
  2. Собирается около 15-20 образцов с одного поля 1-4 Га с глубины до 20 см, используя палку Эгнера, лопату или обычный садовый шпатель;
  3. Смешиваются все образцы вместе, чтобы сформировать так называемый «Тест смешанной среды». Из него выливается 0,5-1 кг почвы, которую затем закрывают в коробку и точно описывают;
  4. Описанный тестовый образец отправляется в районную химико-сельскохозяйственную станцию, где будут проводиться тесты. 

В лаборатории используют комплексные методы химического анализа почвы. Они позволяют получить наиболее точный результат. Основные включают определение реакции почвы, указывают на необходимость известкования, дают содержание доступных фосфора, калия и магния. 

Можно дополнительно определить содержание серы. Если есть подозрение, что субстрату не хватает питательных микроэлементов, стоит также проверить содержание бора (B), меди (Cu), цинка (Zn), железа (Fe) и марганца (Mn). В итоге анализ покажет результат, который позволяет определить и применить соответствующую профилактику.

Для пользователей сайта Ekspertizy.org нами был собран (и постоянно пополняется) перечень организаций, которые проводят химический анализ почвы:

Химический анализ почвы: недостаток питательных веществ и карты внесение удобрений.

Понравилась статья? Поделиться с друзьями:
Станок