- Текучесть металла
- Величина предела текучести материала
- Расчет величины предела текучести
- Физический предел текучести
- Условный предел текучести
- Влияние содержание углерода на свойства сталей
- Азот и кислород в сплаве
- Добавки марганца и кремния
- Примеси серы и фосфора
- Легирующие добавки в составе сплавов
- Текучесть расплава металла
- Испытание образца для определения предела текучести
- Определение предела текучести стали, чугуна: измерение напряжений
- Виды деформации стали
- Предел текучести стали
- Предел упругости
- Предел прочности
- Взаимосвязь напряжения текучести с твердостью и пределом прочности
- Зависимость между напряжением текучести и твердостью
- Предел текучести стали
- Текучесть металла
- Величина предела текучести металла
- Физический предел текучести
- Условный предел текучести
- Влияние содержания углерода на свойства сталей
- Предел текучести
- Условный предел текучести
- Предел текучести металла
- Предел текучести стали
- Текучесть расплава
Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры — такая деформация называется упругой.
Упругость, вязкость, прочность и твердость являются основными механическими характеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае — разрушении.
Предел текучести материала — это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация.
Поведение сталей при высоких температурах
Текучесть металла
Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе.
Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена.
Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.
Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.
Текучесть металла
На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы.
На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций.
Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.
Величина предела текучести материала
С развитием атомной физики в XX веке появилась возможность рассчитать значение параметра теоретическим путем. Эту работы первым проделал Яков Френкель в 1924 году.
Исходя из прочности межатомных связей, он путем сложных для того времени вычислений определил величину напряжения, достаточного для начала пластической деформации тел простой формы.
Величина предела текучести материала будет равна
ττ=G/2π. , где G — модуль сдвига, как раз и определяющий устойчивость связей между атомами.
Расчет величины предела текучести
Гениальное допущение, сделанное Френкелем при расчетах, заключалось в том, что процесс изменения формы материала рассматривался как приводимый в действие напряжениями сдвига. Для начала пластической деформации полагалось достаточным, чтобы одна половина тела сдвинулась относительно другой до такой степени, чтобы не смогла вернуться в начальное положение под действием сил упругости.
График физического предела текучести
Френкель предположил, что испытываемый в мысленном эксперименте материал имеет кристаллическое или поликристаллическое строение, свойственно для большей части металлов, керамики и многих полимеров.
Такое строение предполагает наличие пространственной решетки, в узлах которой в строго определенном порядке расположены атомы. Конфигурация этой решетки строго индивидуальны для каждого вещества, индивидуальны и межатомные расстояния и связывающие эти атомы силы.
Таким образом, чтобы вызвать пластическую деформацию сдвига, потребуется разорвать все межатомные связи, проходящие через условную плоскость, разделяющую половины тела.
При некотором значении напряжения, равному пределу текучести, связи между атомами из разных половин тела разорвутся, и рады атомов сместятся друг относительно друга на одно межатомное расстояние без возможности вернуться в исходное положение. При продолжении воздействия такой микросдвиг будет продолжаться, пока все атомы одной половины тела не потеряют контакт с атомами другой половины
В макромире это вызовет пластическую деформацию, изменит форму тела и при продолжении воздействия приведет к его разрушению. На практике линия начала разрушений проходит не посередине физического тела, а находится в местах расположения неоднородностей материала.
Физический предел текучести
В теории прочности для каждого материала существует несколько значений этой важной характеристики.
Физический предел текучести соответствует значению напряжения, при котором, не смотря на деформацию, удельная нагрузка не меняется вовсе или меняется несущественно.
Иными словами, это значение напряжения, при котором физическое тело деформируется, «течет», без увеличения прилагаемого к образцу усилия
Условный предел текучести
Большое число металлов и сплавов при испытаниях на разрыв демонстрируют диаграмму текучести с отсутствующей или слабо выраженной «площадкой текучести». Для таких материалов говорят о условном пределе текучести. Его трактуют как напряжение, при котором происходит деформация в переделах 0,2%.
Условный предел текучести
К таким материалам относятся легированные и высокоуглеродистые стальные сплавы, бронза, дюралюминий и многие другие. Чем более пластичным является материал, тем выше для него показатель остаточных деформаций. Примером пластичных материалов могут служить медь, латунь, чистый алюминий и большинство низкоуглеродистых стальных сплавов.
Сталь, как самый популярный массовый конструкционный материал, находится под особо пристальным вниманием специалистов по расчету прочности конструкций и предельно допустимых нагрузок на них.
Стальные сооружения в ходе их эксплуатации подвергаются большим по величине и сложным по форме комбинированным нагрузкам на растяжение, сжатие, изгиб и сдвиг. Нагрузки могут быть динамическими, статическими и периодическими.
Несмотря на сложнейшие условия использования, конструктор должен обеспечить у проектируемых им конструкций и механизмов долговечность, безотказность и высокую степень безопасности как для персонала, таки для окружающего населения.
Предел текучести стали
Поэтому к стали и предъявляются повышенные требования по механическим свойствам.
С точки зрения экономической эффективности, предприятие стремится снизить сечение и другие размеры производимой им продукции, чтобы снизить материалоемкость и вес и повысить, таким образом, эксплуатационные характеристики.
На практике это требование должно быть сбалансировано с требования ми по безопасности и надежности, зафиксированными в стандартах и технических условиях.
Предел текучести для стали является ключевым параметрам в этих расчетах, поскольку он характеризует способность конструкции выдерживать напряжения без необратимых деформаций и разрушения.
Влияние содержание углерода на свойства сталей
Согласно физико-химическому принципу аддитивности, изменение физических свойств материалов определяется процентным содержанием углерода.
Повышение его доли до 1,2% дает возможности увеличить прочность, твердость, предел текучести и пороговую хладоемкость сплава.
Дальнейшее повышение доли углерода приводит к заметному снижению таких технических показателей, как способность к свариваемости и предельная деформация при штамповочных работах. Стали с низким содержанием углерода демонстрируют наилучшую свариваемость.
Азот и кислород в сплаве
Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические характеристики стали, такие, например, как порог вязкости, пластичность и хрупкость.
Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала.
С другой стороны, содержание азота повышает прочность, снижая предел текучести.
Микроструктура сплава, в составе которого присутствуют азот и кислород
Добавки марганца и кремния
Легирующая добавка в виде марганца применяется для раскисления сплава и компенсации отрицательного влияния вредных серосодержащих примесей. Ввиду своей близости по свойствам к железу существенного самостоятельного влияния на свойства сплава марганец не оказывает. Типовое содержание марганца – около 0,8%.
Кремний оказывает похожее воздействие, его добавляют в процессе раскисления в объемной доле, не превышающей 0,4%. Поскольку кремний существенно ухудшает такой технический показатель, как свариваемость стали. Для конструкционных сталей, предназначенных для соединения сваркой, его доля не должна превышать 0,25%. На свойства стальных сплавов кремний влияния не оказывает.
Примеси серы и фосфора
- Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики.
- Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06%
- Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов.
Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%. Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.
Легирующие добавки в составе сплавов
Легирующими добавками называют вещества, намеренно введенные в состав сплав для целенаправленного изменения его свойств до нужных показателей. Такие сплавы называют легированными сталями. Лучших показателей можно добиться, добавляя одновременно несколько присадок в определенных пропорциях.
Влияние легирующих элементов на свойства стали
Распространенными присадками являются никель, ванадий, хром, молибден и другие. С помощью легирующих присадок улучшают значение предела текучести, прочности, вязкости, коррозионной стойкости и многих других физико-механических и химических параметров и свойств.
Текучесть расплава металла
Текучестью расплава металла называют его свойство полностью заполнять литейную форму, проникая в малейшие полости и детали рельефа. От этого зависит точность отливки и качество ее поверхности.
Жидкий металл для процессоров
Свойство можно усилить, если поместить расплав под избыточное давление. Это физическое явление используется в установках литья под давлением. Такой метод позволяет существенно повысить производительность процесса литья, улучшить качество поверхности и однородность отливок.
Испытание образца для определения предела текучести
Чтобы провести стандартные испытания, используют цилиндрический образец диаметром 20 мм и высотой 10 мм, закрепляют его в испытательной установке и подвергают растягиванию. Расстояние между нанесенными на боковой поверхности образца метками называют расчетной длиной. В ходе измерений фиксируют зависимость относительного удлинения образца от величины растягивающего усилия.
Зависимость отображают в виде диаграммы условного растяжения. На первом этапе эксперимента рост силы вызывает пропорциональное увеличение длины образца.
По достижении предела пропорциональности диаграмма из линейной превращается в криволинейную, теряется линейная зависимость между силой и удлинением.
На этом участке диаграммы образец при снятии усилия еще может вернуться к исходным форме и габаритам.
Для большинства материалов значения предела пропорциональности и предела текучести настолько близки, что в практических применениях разницу между ними не учитывают.
Определение предела текучести стали, чугуна: измерение напряжений
Прокатное производство включает изготовление различных марок конструкционных сталей, каждая из которых обладает индивидуальными механическими характеристиками.
В процессе эксплуатации стальные сооружения подвергаются в разной степени нагрузкам на изгиб и сжатие, растяжение и удары и только от механических свойств металлов зависит степень их прочность и стойкость.
Чтобы сделать правильные расчеты, применяется специальная расчетная формула.
Виды деформации стали
Тяжелым конструкциям необходимо придать дополнительную прочность и надежность, в связи с чем к свойствам используемых для изготовления металлов предъявляются особые требования.
При расчете размеров конструкции важную роль играет снижение массы сооружения без потери его несущих способностей. Используемые для изготовления металлических сооружений конструкционные металлы должны иметь достаточно высокие показатели прочности и хорошую пластичность.
Сопротивляемость деформации и разрушению под воздействием внешней нагрузки во многом зависит от того, какими свойствами наделен металл. В производстве стали деформация встречается в двух видах: упругой и пластической.
Описываются они разными характеристиками. Сегодня для испытания образцов металлов применяют несколько методик, которые определяют значения пропорциональности, упругости, текучести и других важных характеристик.
Современное определение стали звучит как твердый сплав железа с углеродом, процентным содержанием которого и обусловлены основные свойства стали.
Чем выше содержание углерода, тем металл прочнее и тверже, но ниже вязкость и пластичность.
Поэтому так важно правильно рассчитать соотношение этих показателей для производства тех или иных изделий из стали. Маркировать стали принято каждую группу по-разному.
Конструкционная углеродистая сталь маркируется буквами Ст и цифровыми обозначениями от 1 до 9, а также двумя буквами в зависимости от способа раскисления металла (ст.3кп):
- кп — кипящая;
- пс — полуспокойная;
- сп — спокойная.
- Качественная — цифрами двузначными: 05,08,10,… 45…, что указывает на среднее количество углерода в составе стали.
Предел текучести стали
Граничный предел пропорциональности стали определяет напряжение, при котором действует закон Гука, согласно с которым деформация, возникшая в упругом теле, пропорциональна приложенной к нему силе. Если напряжение меняется, этот закон теряет актуальность.
Немаловажной физической величиной, участвующей в формуле при расчете прочности конструкции, является предел текучести металла.
Когда металлом достигается физический предел, даже самое малое поднятие напряжения способно удлинить образец, который начинает как бы течь, откуда и произошло его обозначение.
В связи с этим граница текучести стали показывает критическое напряжение, когда материал деформируется уже без увеличения нагрузки.
Единица, в которой производится измерение предела текучести будет называться Паскаль (Па) либо МегаПаскаль (МПа). Преодолевший этот предел образец получает необратимые изменения — разные степени деформации, нарушение структурного строения кристаллической решетки, различные пластические преобразования.
Если при увеличении растягивающего значения силы пройдена площадка текучести, деформация металла усиливается. На диаграмме это представляется в виде горизонтально расположенной прямой, на которой может измеряться напряжение, максимально получаемое после остановки усиления нагрузки. Так называемый предел текучести Ст 3 составляет 2450 кг/кв.см.
Этот показатель отличается у различных марок стали и может меняться от применения разных температурных режимов и типов термообработки. Чтобы иметь возможность точно определить предел текучести стали таблица используется, где в зависимости от марок сталей приведены величины пределов текучести. Как пример, по данным таблицы сталь 20 предел текучести имеет 250 МПа, а сталь 45 — 360.
- При проведении испытаний некоторые металлы на диаграмме имеют слабо выраженную площадку тягучести либо она вовсе отсутствует, поэтому к ним применяется условный предел тягучести.
- Материалы, на которые распространяется применение условного предела текучести, это в основном представители высокоуглеродистых и легированных сталей, дюралюминий, чугун, бронза и многие другие.
Предел упругости
Весьма важной составляющей механического состояния металлов является предел упругости стали. С его помощью устанавливается предельно допустимый уровень нагрузок при эксплуатации металла, когда им испытываются незначительные деформации в допустимых значениях.
Конструкционные материалы в себе должны сочетать высокие пределы тягучести, при которых они смогут выдерживать серьезные нагрузки, и иметь достаточную упругость, которая обеспечит необходимую жесткость изготовляемой конструкции. Сам модуль упругости обладает одинаковой величиной при растяжении и сжатии, но иметь совершенно отличные пределы упругости — так что одинаково жесткие конструкции диапазоны упругости могут иметь абсолютно разные.
При этом металл в упругом состоянии макропластических деформаций не получает, хотя в его отдельных микроскопических объемах локальные деформации вполне могут иметь место. Благодаря им происходят неупругие явления, серьезно воздействующие на поведение отдельных металлов в состоянии упругости.
При этом нагрузки статические приводят к возникновению гистерезисных явлений, релаксации и упругого последействия, в то время как нагрузки динамические провоцируют появление внутреннего трения.
В процессе релаксации происходит несанкционированное снижение напряжения. Это приводит к проявлению остаточной деформации, когда активная нагрузка уже не действует. При наступлении внутреннего трения происходит потеря энергии. Это вызывает необратимые последствия, которые характеризуются декрементом затухания и коэффициентом внутреннего трения.
Такие металлы активно гасят вибрацию и сдерживают звук, например, серый чугун, или свободно распространяют колебания, как это делает колокольная бронза. С повышением температурного воздействия упругость металлов снижается.
Предел прочности
Предел прочности стали, который возникает после прохождения его границы текучести и позволяет образцу вновь начать сопротивление к растяжению, отображается на графике линией, которая поднимается уже более полого.
Наступает фаза временного сопротивления действующей постоянной нагрузке. При применении максимума напряжения в точке предела прочности возникает участок, где площадь сечения уменьшается, а шейка значительно сужается.
При этом испытываемый образец разрывается в наиболее узком месте, его напряжение снижается и значение величины силы уменьшается. Предел прочности для ст. 3 составляет 4000−5000 кГ/кв.см.
Взаимосвязь напряжения текучести с твердостью и пределом прочности
Связь между напряжением текучести и пределом прочности устанавливается по зависимости между экстраполированным пределом текучести и σB. Поскольку по экстраполированному пределу текучести можно достаточно точно определить напряжение текучести для большинства материалов, начиная со степени деформации , то такое допущение можно считать оправданным.
Ниже рассмотрены зависимости между пределом прочности и экстраполированным пределом текучести кривых упрочнения при растяжении первого рода и при сжатии второго рода.
Экстраполированный предел текучести у кривых упрочнения первого рода при растяжении находится по пересечению касательной к кривой упрочнения в точке начала образования шейки с осью ординат.
У кривых упрочнения второго рода при сжатии экстраполированный предел текучести S0 (см. рис.
1) представляет собой напряжение, соответствующее по величине отрезку ординаты, отсекаемому прямой, являющейся продолжением участка III кривой упрочнения.
Согласно теоретическим выкладкам М. П. Марковца для материалов, у которых равномерное относительное поперечное сужение ΨB не более 0,15, разница между экстраполированным пределом текучести определенным по кривым упрочнения при растяжении, и пределом прочности σB не превышает 3%, а при ΨB до 0,2 — не более 7%. При этом всегда должно быть меньше величины σB.
Теоретически установленную зависимость между и σB М.П. Марковец подтвердил экспериментально.
Было показано, что независимо от рода материала (цветные и черные металлы), вида предшествующей термической обработки (отжиг, нормализация, закалка, закалка + отпуск) и прочности ( изучаемых материалов составлял 20-180 кГ/мм2) отношение для материалов с до 15% близко к единице (рис. 1). Только для латуни и аустенитной стали ЭИ69, у которых величина ΨB доходит до 30%, это соотношение составляет 1,2-1,3.
П. Марковцем также была проведена большая работа по сопоставлению и σB по экспериментальным данным других исследователей — Н. Н. Давиденкова, Кербера и Роланда.
Было установлено, что данные различных авторов, полученные экспериментально в разных лабораториях над огромным количеством металлов н сплавов (алюминии, меди и их сплавах, углеродистых и легированных сталях) при комнатных и повышенных температурах (от 20 до 300°С), подтверждают теоретически установленную закономерность для металлов и сплавов, у которых ΨB не превышает 15%.
Экспериментально определим взаимосвязь между экстраполированным пределом текучести при сжатии S0 и σB. В качестве исследуемого материала служили углеродистые и легированные горячекатаные и термически обработанные стали (табл. 1).
Кривые упрочнения строили по результатам осадки образцов с торцовыми цилиндрическими выточками. Результаты сравнения графически изображены на рис. 1, из которого видно, что между величинами S0 и σB независимо от марки изделия и вида, и режима предварительной обработки имеется линейная зависимость.
Математическая обработка экспериментальных данных показывает, что S0 в среднем меньше σB примерно на 6%, т. е.
Полученные экспериментальные данные согласуются с экспериментальными и теоретическими данными М. П. Марковца о зависимости между экстраполированным пределом текучести при растяжении и σB в том смысле, что S0 меньше σB примерно на ту же величину.
Таблица 1
Химический состав и вид предшествующей обработки сталей, для которых устанавливали зависимость между экстраполированным пределом текучести при сжатии S0 и пределом прочности σB
10 | Горячая прокатка | 0,11 | 0,45 | 0,21 | — | — | — |
15 | То же | 0,15 | 0,43 | 0,27 | — | — | — |
20 | » | 0,19 | 0,37 | 0,37 | — | — | — |
15Х | » | 0,13 | 0,42 | 0,32 | 0,90 | — | — |
20Х | » | 0,24 | 0,67 | 0,25 | 0,91 | — | — |
45Х | » | 0,44 | 0,61 | 0,19 | 0,90 | — | — |
12ХНЗА | » | 0,13 | 0,26 | 0,64 | 2,95 | — | |
12ХНЗА | Отжиг, нормализация | 0,16 | 0,40 | 0,36 | 0,66 | 2,81 | — |
40ХНМА | Отжиг, нормализация, улучшение (t0 mn=600°С) | 0,37 | 0,60 | 0,24 | 0,66 | 1,39 | 0,15-0,25 |
Зависимость между напряжением текучести и твердостью
На основании обработки экспериментальных данных установлены закономерности взаимосвязи:
- а) между S0 и твердостью исходного металла НВ;
- б) между S и твердостью сформированных образцов НВ'.
Напряжение текучести и экстраполированный предел текучести определяем по кривым упрочнения при сжатии, построенным по результатам осадки образцов с торцовыми цилиндрическими выточками. Твердость определяем обычным методом на твердомере типа ИТР с замером ее на торцах и по образующей.
Для определения зависимости между величинами S и НВ' испытанию подвергали армко-железо, углеродистые и легированные стали, предварительно горячекатаные или термически обработанные (отжиг,
нормализация или улучшение). Вид предшествующей обработки и химический состав сталей, используемых при этих исследованиях, приведены в табл. 2.
Таблица 2
Химический состав и вид предшествующей обработки материала, исследуемого для установления зависимости между S и НВ'
Армко-железо | Горячая прокатка | 0,057 | 0,10 | 0,17 | — | — |
Сталь 30 | Нормализация | 0,29 | 0,61 | 0,30 | — | — |
» 40 | Нормализация, улучшение | 0,41 | 0,59 | 0,30 | — | — |
» 50 | Горячая прокатка | 0,50 | 0,70 | 0,27 | — | — |
12ХНЗА | » » | 0,13 | — | 0,26 | 0,64 | 2,95 |
12ХНЗА | Отжиг, нормализация | 0,11 | 0,42 | 0,23 | 0,64 | 2,79 |
Результаты экспериментальных данных приведены на рис.
3, из которого видно, что для всех исследуемых материалов независимо от вида предшествующей обработки и всего диапазона степеней деформации между напряжением текучести и соответствующей твердостью сформированных образцов имеется линейная зависимость. При обработке опытных данных установлено, что эта зависимость может быть представлена в следующем виде:
Влияние исходной твердости на величину экстраполированного предела текучести при сжатии изучали на примере углеродистых и легированных термически обработанных (отжиг, нормализация, улучшение) и горячекатаных сталей (табл. 3). Экспериментальные данные графически изображены на рис. 4.
Таблица 3
Химический состав и вид предшествующей обработки материала, исследуемого для определения зависимости между экстраполированным пределом текучести при сжатии S0 и исходной твердостью НВ
Сталь 40 | Отжиг, нормализация, улучшение (tотп=500, 600°С) | 0,41 | 0,59 | 0,30 | — | — | — |
Сталь 45 | Отжиг, нормализация, улучшение (tотп=700, 600, 540°С) | 0,43 | 0,58 | 0,30 | — | — | — |
Сталь 50 | Горячая прокатка | 0,50 | 0,70 | 0,27 | — | — | — |
15Х | Горячая прокатка | 0,13 | 0,42 | 0,32 | 0,90 | — | — |
20Х | Отжиг, нормализация, улучшение (tотп=600, 500, 400°С) | 0,19 | 0,59 | 0,30 | 0,88 | — | — |
40Х | Отжиг, нормализация, улучшение (tотп=500, 600°С) | 0,38 | 0,62 | 0,32 | 1,03 | — | — |
12ХНЗА | Улучшение (tотп=600°С) | 0,16 | 0,40 | 0,36 | 0,66 | 2,81 | — |
30ХГСА | Отжиг, улучшение (tотп=550°С) | 0,34 | 0,98 | 1,13 | 1,08 | — | — |
40ХНМА | Отжиг, нормализация, улучшение (tотп=600°С) | 0,37 | 0,60 | 0,24 | 0,66 | 1,39 | 0,25 |
На основании экспериментальных данных установлено, что с увеличением твердости исходных образцов экстраполированный предел текучести возрастает по следующей зависимости:
Следует учесть, что в реальных металлических телах твердость в разных точках тела может отличаться на несколько единиц, а точность измерения составляет 3% при испытании на твердомере Бринелля, поэтому зависимости (2) и (3) носят несколько приближенный характер.
Предел текучести стали
За достаточно длительный период работы, связанной с металлом, я понял, что далеко не каждый человек может похвастаться возможностью предельно легко рассказать и показать, что же такое предел текучести.
Я же постараюсь достаточно быстро и без особых проблем рассказать все, что сам сумел понять за годы работы в этой отрасли. Всем устроиться поудобнее, сейчас мы начнём.
Текучесть металла
Механические свойства металла, крайне важны для каждого конструктора, который использует их для своей работы.
Что касательно данной особенности, то она в обязательном порядке влияет на максимально допустимую нагрузку на деталь, либо конструкцию.
При повышении показателя возникает деформация, в некоторых случаях конструкция может быть полностью разрушена. Стоит понимать, что данная проблема может в свою очередь привести к очень серьезным разрушениям и к человеческим жертвам.
Если говорить о пределе текучести, то это, по сути, максимально допустимая нагрузка, которая возможна, до момента разрушения конструкции. Чем выше допустимый предел, тем выше вероятность устойчивости всей конструкции.
Если говорить с практической точки зрения, то здесь в первую очередь речь идет о работоспособности материала либо изделия. Люди на протяжение длительного времени прогнозировали максимально допустимые нагрузки на определенные изделия и не только. Теория сопротивляемости металлов появилось только в начале 19 века, а до этого, все эти особенности определялись, что называется на практике.
В настоящее время, в век высоких технологий, справиться с поставленной задачей возможно даже с помощью специальных компьютерных программ.
Величина предела текучести металла
В то время, когда атомная физика начала развиваться в значительной степени, удалось рассчитать значение параметра путем теории. Что касательно данной работы, то ее впервые выполнил знаменитый Яков Френкель, еще в далеком 1924 году.
Собственно говоря, его работа была достаточно сложной и действительно требующей внимания, именно по этой причине была изобретена особая формула, которая поможет всем справиться с поставленной задачей.
Величина текучести металла равна Тт=G/2тт, где G является модулем сдвига.
Для начала пластической деформации считалось, что будет достаточным, чтобы первая половина тела подверглась сдвигу относительно другой, до того эффекта, что возвращение в начальное положение невозможно.
Физический предел текучести
Если говорить более простым и понятным для каждого человека языком, то в настоящее время для каждого материала имеется своя характеристика этого важного показателя.
Физический предел текучести, равен значению напряжения, при этом, невзирая на деформацию, удельная нагрузка совершенно не изменяется, или же меняется, но в незначительной степени. Это необходимо понимать в обязательном порядке, поскольку именно данное значение имеет огромное значение.
Условный предел текучести
Значительная часть металлов, а также сплавов при работах на разрыв показывают слабо выраженную площадку текучести, либо совершенно никакой текучести. Именно в этом случае речь и идет о так называемом условном пределе текучести. Чаще всего речь идет о напряжении, при котором имеется деформация в 0.2 процента.
Если говорить о таких материалах, то в данном случае речь идет о бронзе, дюралюминий и так далее. В том случае, если материал пластичный, то и показатель остаточной деформации будет высоким. Что касательно пластичных материалов, то здесь можно выделить медь, латунь, алюминий и так далее.
Если говорить о стали, то ни для кого не секрет, что данный материал является одним из наиболее популярных и востребованных металлов, по этой причине и со стороны специалистов имеется достаточно высокий предел внимания в смысле нагрузок.
Что касательно стальных сооружений, то они в свою очередь действительно серьезным образом подвергаются нагрузкам. Тем не менее, вам необходимо понимать, что металл должен обязательно сопротивляться нагрузкам, иметь высокий показатель безопасности и так далее.
Также сталь должна иметь высокий показатель механических свойств. Сбалансированность в данном случае должна быть одной из главных особенностей.
Предел текучести стали является одним из главных показателей, на который в обязательном порядке необходимо обращать пристальное внимание.
Влияние содержания углерода на свойства сталей
Изменение физических свойств материалов определяется наличием углерода. В том случае, если присутствует до 1.2 процентов углерода, то получается добиться наиболее прочного материала.
Тем не менее, нужно понимать, что более высокий показатель содержания углерода приводит к не самым положительным последствиям. К примеру, снижается свариваемость и предельная деформация. А это, очень важный показатель, на который в обязательном порядке стоит обратить внимание.
Очень надеюсь, что вам действительно было интересно и полезно!
Предел текучести
Если охарактеризовать понятие предела текучести кратко, то в сопротивлении материалов пределом текучести называют напряжение, при котором начинает развиваться пластическая деформация. Предел текучести относится к характеристикам прочности.
Согласно [1], текучесть — это макропластическая деформация с весьма малым упрочнением dτ/dγ.
Физический предел текучести — это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (рисунок), σТ=PТ/F0. Здесь PТ — это нагрузка предела текучести, а F0 — это первоначальная площадь поперечного сечения образца.
Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования. Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации. [2]
Условный предел текучести
Условный предел текучести (он же технический предел текучести).
Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести — напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). [2] Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.
Выделяют также условный предел текучести при изгибе и условный предел текучести при кручении.
Предел текучести металла
Характеристика, данная выше, справедлива в первую очередь для предела текучести металла. Предел текучести металла измеряется в кг/мм2 или Н/м2.
На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др. Предел текучести металлов сильно меняется с изменением температуры.
Предел текучести стали
Предел текучести сталей в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.
Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:
- Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм2 или 25 кгс/мм2.
- Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм2 или 30 кгс/мм2.
- Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм2 или 36 кгс/мм2.
Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:
- Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм2 или 41 кгс/мм2; прокат размером от 16 до 40 мм — не менее 355 Н/мм2 или 36 кгс/мм2; прокат размером от 40 до 100 мм — не менее295 Н/мм2 или 30 кгс/мм2.
- Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм2 или 50 кгс/мм2; прокат размером от 16 до 40 мм — не менее 430 Н/мм2 или 44 кгс/мм2; прокат размером от 40 до 100 мм — не менее 375 Н/мм2 или 38 кгс/мм2.
- *Механические свойства стали 30 распространяются на прокат размером до 63 мм.
- Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм2 или 80 кгс/мм2.
Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая).
Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм2 (27 кгс/мм2) до 345 Н/мм2 (35 кгс/мм2).
Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).
Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм2 (не менее).
Текучесть расплава
Текучесть расплава металла — это способность расплавленного металла заполнять литейную форму. Текучесть расплава для металлов и металлических сплавов — то же что и жидкотекучесть. (См. Литейные свойства сплавов).
Текучесть жидкости вообще и расплава в частности есть величина, обратная динамической вязкости. В Международной системе единиц (СИ) текучесть жидкости выражается в Па-1*с-1.
Подготовлено: Корниенко А.Э. (ИЦМ)
Лит.:
- Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
- Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
- Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
- Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.
- Белянкин Ф.П. Энергетический предел текучести металлов. // Сборник Института строительной механики АН УССР. №9, 1948.152