Маркировка сталей: принципы классификации, содержание металлов в зависимости от типа сплава

На сегодняшний день подразделение сплавов со специальными добавками различных элементов осуществляется по разным признакам. Общепринятые и широко распространенные варианты классификации таких сталей предполагают причисление их к какой-либо конкретной категории на основании следующих характеристик:

  • химический состав;
  • равновесная структура;
  • назначение;
  • структура после естественного охлаждения (на воздухе).

Если рассматривать легированные стали с точки зрения содержания в них тех или иных дополнительных элементов (то есть, по их химсоставу), можно выделить три группы сплавов:

  • с массовой долей легирующих компонентов не более 2,5 % (низколегированные);
  • с долей легирующих компонентов от 2,5 до 10 % (среднелегированные, иначе – с обычным уровнем легирования);
  • с долей легирующих компонентов 10 % и более (высоколегированные стали).

Рекомендуем ознакомиться

В зависимости от того, какие именно добавки используются, сплавы с точки зрения их состава подразделяют на хромистые, марганцовистые, хромомолибденовые и так далее.

По равновесной структуре интересующие нас композиции делятся на пять классов. К первому причисляют все стали перлитной группы, а именно – эвтектоидные (структура – чисто перлитная), доэвтектодиные (избыточный феррит плюс эвтектоид) и заэвтектоидные (вторичные карбиды плюс эвтектоид).

Ко второму – ферритные стали, характеризуемые высоким содержанием легирующего компонента и малым количеством углерода. К третьему – ледебуритные сплавы (ледебуритная эвтектика), к четвертому – аустенитные (большой объем легирующей добавки).

Также существуют стали полуаустенитного и полуферритного класса.

Впервые классификацию легированных сталей по структуре в равновесном состоянии разработал ученый Обергофер.

А вот Гийе из Франции предложил делить такие сплавы на три группы, принимая во внимание их структуру после остывания в естественных условиях.

Согласно его классификации бывают аустенитные (в них содержится очень много легирующих элементов), перлитные (сравнительно мало добавок) и мартенситные стали. В последних сплавах количество примесей находится на среднем уровне.

По данному показателю описываемые стали бывают инструментальными, конструкционными, специальными. На практике по назначению их классифицируют на машиностроительные и строительные. Машиностроительные используются для производства корпусных конструкций, элементов различных видов машин и технических механизмов. Такие стали могут быть:

  • Жаропрочными. Они применяются для изготовления крепежных компонентов, роторов и валов паровых турбин, других деталей сферы энергетики. Жаропрочные составы являются перлитными среднеуглеродистыми, их основные легирующие добавки – ванадий, молибден и хром.
  • Улучшаемыми (среднее и незначительное легирование, содержание углерода – среднее). Сплавы, которые функционируют при нагрузках знакопеременного характера. Из них делают тяжелонагруженные изделия. Улучшаемые составы применяются после отпуска (высокого) и закалки.
  • Цементируемые. Их, как правило, подвергают нитроцементации либо обычной цементации. Используются для выпуска валов, зубчатых колес и аналогичных им деталей.

Категорий строительных легированных сталей в несколько раз больше. Выделяют мостостроительные сплавы (из них производят элементы железнодорожных и автомостов), стальные композиции массового использования, относимые к перлитно-ферритным составам (отличаются повышенными хладостойкостью и пределом текучести), высокопрочные стали (дополнительно проходят упрочнение карбонитридами).

Также можно встретить и другие специальные легированные композиции: высокопрочные, используемые в судостроении, теплоустойчивые для изготовления трубопроводов, по которым подают пар и горячую воду, низкоотпущенные повышеннопрочные (применяются при строительстве современной летательной техники), упрочняемые (дополнительно) прокаткой, содержащие относительно много титана, ниобия либо ванадия.

Отечественная система кодировки легированных сплавов признается самой наглядной и удобной, что выгодно отличает ее от принципов маркировки, принятых в США и Европе. Российская маркировка – это комбинация цифр и литер, которые указывают, какие добавки внесены в сталь, а также на их количество в сплавах различных категорий.

Легирующие компоненты кодируются одной буквой: бор – Р, цирконий – Ц, кремний – С, алюминий – Ю, ванадий – Ф, вольфрам – В, хром – Х, ниобий – Б, кобальт – К, марганец – Г, медь – Д, титан – Т, молибден – М, никель – Н. Азот кодируется буквой А, но только в том случае, когда она стоит в середине маркировки. Если же в какой-либо марке сплава данная буква находится в самом конце, это означает, что перед нами состав высокого качества.

Самые первые цифры (от одной до трех) в маркировке легированных сталей говорят нам об объеме углерода. Если речь идет об инструментальных сталях, объем указывается в десятых долях процентов, о конструкционных – в сотых долях. Цифры после букв, обозначающих легирующий компонент, определяют его содержание в сплаве.

В тех случаях, когда цифры не ставятся после цинка, ниобия, титана, ванадия, молибдена, можно понять, что этих элементов в стали имеется от 0,2 до 0,5 процентов. Если же цифры отсутствуют после других компонентов, это значит, что их в композиции содержится от 0,9 до 1,5 процентов.

Высоколегированные сплавы, в которых углерод содержится до 0,08 процента, маркируются нулем в начале кодировки (например, 0Х18Н12Т). Также заметим, что во многих высоколегированных и инструментальных сталях с углеродом в районе одного процента в начале марки вообще не ставится никакая цифра (Х12Ф).

Стоит отметить отдельно, что некоторые стали с легирующими добавками маркируются особым образом.

Кремнистые тонколистовые композиции, например, в начале имеют литеру Э (Э41), подшипниковые – Ш (ШХ15), быстрорежущие – Р (Р18), используемые для производства магнитов – Е (Е355).

Кроме того, есть и такие сплавы, которые причисляют к сталям поисковых либо экспериментальных марок. В данном случае первые две буквы в них будут ЭИ. Яркий представитель такого состава – ЭИ69. Под таким кодом «скрывается» сплав 4Х14Н14В2М.

Источник: http://tutmet.ru/legirovannye-stali-klassifikacija-markirovka.html

Материаловедение



Все известные в природе металлы относят к двум группам — черные и цветные металлы. К черным металлам относятся железо и сплавы на его основе (сталь и чугун).

Кроме того, к черным металлам относят марганец — металл серебристо-белого цвета; но в металлургии и в бытовом сленге этот элемент в перечне черных металлов упоминается редко. Маркировка сталей: принципы классификации, содержание металлов в зависимости от типа сплава Все прочие металлы и сплавы, не содержание железо или содержащие его в небольшом количестве, относят к цветным металлам.

Такая классификация обусловлена рядом причин, в первую очередь, химико-механическими свойствами железосодержащих металлов и сплавов, обладающих низкой коррозийной стойкостью (кроме некоторых сталей со специфическими добавками) и магнетизмом.

Черные металлы привлекают машиностроителей хорошей податливостью к обработке, механической прочностью, а также низкой ценой. Цветные металлы обладают рядом уникальных свойств — высокой электропроводностью, устойчивостью к коррозии, небольшим удельным весом при высокой прочности, а в некоторых случаях и высокими эстетико-ювелирными качествами.

Как правило, цветные металлы являются более дорогостоящими из-за их относительной редкости в природе, а также сложности выделения из породы.

Цветные металлы, чаще всего, классифицируют на легкие, тяжелые и благородные металлы.

Итак, основой черных металлов является железо.

Однако в чистом виде этот металл в природе практически не встречается из-за относительно низкой коррозийной стойкости, поэтому железо в чистом виде в машиностроении не применяется, а используются сплавы, основу которых составляют соединения железа с углеродом — стали и чугуны. Сталями называют многокомпонентные сплавы с содержанием углерода до 2,14 %. Чугун – сплав железа с углеродом при содержании углерода более 2,14 %.

Стали и чугуны очень широко используются в машиностроении. При этом незначительные добавки цветных металлов или неметаллических элементов в стальные или чугунные сплавы позволяют существенно изменять их химико-механические свойства в зависимости от потребностей машиностроителей, незначительно влияя, при этом, на стоимость полученного сплава.

***

Свойства, классификация и маркировка сталей

В основу классификации сталей заложены их химический состав, структура, назначение, технологическая обрабатываемость, качество.

В зависимости от химического состава различают стали углеродистые (ГОСТ 380-94, ГОСТ 1050-88) и легированные (ГОСТ 4543-71, ГОСТ 5632-72, ГОСТ 14959-79).

По структуре — доэвтектоидные, эвтектоидные, заэвтектоидные, феррито-перлитная, аустенитная, мартенситная.

  • По назначению — конструкционные, машиностроительные и инструментальные.
  • Углеродистые стали, в зависимости от содержания в них углерода, могут быть:
  • малоуглеродистыми, содержащими углерода менее 0,25%;
  • среднеуглеродистыми, содержание углерода составляет 0,25…0,60%;
  • высокоуглеродистыми, в которых концентрация углерода превышает 0,60%.

Легированные стали подразделяют на:

  • низколегированные содержание легирующих элементов до 2,5%;
  • среднелегированные, в их состав входят от 2,5 до 10% легирующих элементов;
  • высоколегированные, которые содержат свыше 10% легирующих элементов.

Маркировка сталей: принципы классификации, содержание металлов в зависимости от типа сплава

Конструкционные стали предназначены для изготовления строительных и машиностроительных изделий.

Инструментальные сталипредназначены для изготовления режущего, измерительного, штампового и прочего инструмента. Эти стали содержат более 0,65% углерода.

Стали с особыми физическими свойствами: с определенными магнитными характеристиками (электротехническая сталь) или с малым коэффициентом линейного расширения (суперинвар).

Стали с особыми химическими свойствами: нержавеющие, жаростойкие и жаропрочные стали.

Качество стали зависит от содержания вредных примесей: серы и фосфора. Стали обыкновенного качества, содержат до 0.06% серы и до 0,07% фосфора; качественные – до 0,035% серы и фосфора каждого отдельно; высококачественные – до 0,025% серы и фосфора; особо высококачественные – до 0,025% фосфора и до 0,015% серы.

По степени удаления кислорода из стали, т. е. по степени её раскисления, существуют:

  • спокойные стали, т. е., полностью раскисленные; такие стали обозначаются буквами «СП» в конце марки (иногда буквы опускаются);
  • кипящие стали – слабо раскисленные; маркируются буквами «КП»;
  • полуспокойные стали, занимающие промежуточное положение между двумя предыдущими; обозначаются буквами «ПС».

Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы:

  • сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора);
  • сталь группы Б – по химическому составу;
  • сталь группы В – с гарантированными механическими свойствами и химическим составом.

***

Конструкционные стали

Нелегированные конструкционные стали обыкновенного качества обозначают по ГОСТ 380-94 буквами «Ст» и условным номером марки (от 0 до 6) в зависимости от химического состава и механических свойств. Чем выше содержание углерода и прочностные свойства стали, тем больше её номер. Буква «Г» после номера марки указывает на повышенное содержание марганца в стали. Например:

  1. Ст1КП2 – углеродистая сталь обыкновенного качества, номер  марки 1, кипящая второй категории, поставляется потребителям по механическим свойствам (группа А); 
  2. ВСт5Г – углеродистая сталь с повышенным содержанием  марганца, спокойная, номер марки 5, первой категории с гарантированными механическими свойствами и химическим составом (группа В);
  3. БСт0 – углеродистая сталь обыкновенного качества, номер марки 0, группы Б, первой категории.
  4. Таблица 1. Содержание углерода в стали:
Марка стали Содержание углерода
Ст0 < 0.23%
Ст1 0.06…0.12%
Ст2 0.09…0.15%
Ст3 0.14…0.22%
Ст4 0.18…0.27%
Ст5 0.28…0.37%
Ст6 0.38…0.49%

Нелегированные конструкционные качественные стали

В соответствии с ГОСТ 1050-88 эти стали маркируются двухзначными числами, показывающими среднее содержание углерода в сотых долях процента: 05; 08; 10; 25; 40 и т.д. Так сталь с содержанием углерода 0,07…0,14% обозначается 10, сталь с содержанием углерода 0,42…0,50% – 45 и т.д..

При этом для сталей с содержанием углерода меньше  0,2%, не подвергнутых полному раскислению, в обозначение добавляются буквы «кп» (для кипящей стали) и «пс» (для полуспокойной). Для спокойных сталей буквы в конце их наименований не добавляются.  Например, 08КП, 10ПС, 15, 18КП, 20 и т.д. Буква «Г» в марке стали указывает на повышенное содержание марганца.  Например: 14Г, 18Г и т.д.

***

Стали с повышенными свойствами

Качественные стали с повышенными свойствами, используемые для производства котлов и сосудов высокого давления, обозначают по ГОСТ 5520-79 добавлением буквы «К» в конце наименования стали: 15К, 18К, 22К.

***

Конструкционные легированные стали

В соответствии с ГОСТ 4543-71 наименования таких сталей состоят из цифр и букв. Первые цифры марки обозначают среднее содержание углерода в стали в сотых долях процента. Буквы указывают на основные легирующие элементы, включенные в сталь. Буквенные обозначения легирующих элементов приведены в таблице 2.

Читайте также:  Уличная печь для дачи металл

Таблица 2.  Буквенные обозначения легирующих элементов в сталях

Элемент Обозначение
  Ниобий Nb Б
  Вольфрам W В
  Марганец Mn Г
  Медь Cu Д
  Кобальт Co К
  Молибден Mo М
  Никель Ni Н
  Бор B Р
  Кремний Si С
  Титан Ti Т
  Ванадий V Ф
  Хром Cr Х
  Цирконий Zr Ц
  Алюминий Al Ю

Цифры после каждой буквы обозначают примерное процентное содержание соответствующего элемента, округленное до целого числа, при содержании легирующего элемента до 1,5% цифра за соответствующей буквой не указывается.  Например, сталь состава: углерода C 0,09…0,15%, хрома Cr 0,4…0,7%, никеля Ni 0,5…

0,8% обозначается 12ХН, а обыкновенного качества с повышенным содержанием легирующих элементов: сталь содержащая  углерода C 0,27…0,34%, хрома Cr 2,3…2,7%, молибдена Mo 0,2…0,3%, ванадия V 0,06…0,12%.обозначается   30Х3МФ.

  Для того, чтобы показать, что в стали ограничено содержание серы и фосфора (S

Источник: http://k-a-t.ru/materialovedenie/6-2_stali/index.shtml

Сталь — виды, классы, информация по стали и металлопрокату

Словом «сталь» обозначают сплавы железа с углеродом и другими химическими элементами, отвечающие следующим условиям: углерода в сплаве от 0,1% до 2,14%, а железа – не менее 45%. Существуют обычные углеродистые стали, стали легированные и высоколегированные. В последних двух случаях в сплав добавляются легирующие элементы, которые придают стали особую прочность.

Для чего вообще железо смешивать с углеродом? Это начали делать после того, как открыли влияние углерода на железо, выявили, как изменяются после этого физические свойства железа: оно становится более прочным, крепким, но при этом теряет пластичность. Добавление легирующих элементов еще больше усиливает этот эффект.

Между собой стали подразделяются по различным признакам, а потому существует несколько их классификаций. Давайте рассмотрим их по порядку и начнем с уже упоминавшихся трех классов, сгруппированных по химическим признакам:

Углеродистые стали

К таким сталям относят любые сплавы железа и углерода, не содержащие дополнительных легирующих элементов, и предназначенные для конструкционных и инструментальных задач. В свою очередь, углеродистая группа делится на подгруппы по количеству углерода в сплаве:

  • низкоуглеродистая (где присутствует до 0,25% углерода),
  • среднеуглеродистая (от 0,25% до 0,6% углерода в сплаве)
  • высокоуглеродистая (до 2% углерода).

Главное отличие углеродистых сталей – их высокие прочность и твердость, а в химическом плане – еще и малое содержание иных примесей.

Легированные стали

Так называют все сплавы железа и углерода с добавлением (для прочности конечного продукта) легирующих элементов. Так же, как и углеродистые, стали легированные разделяются по подгруппам, в зависимости от качества и количества легирующей примеси в них:

  • низколегированные стали (в их сплаве менее 4% легирующих добавок)
  • среднелегированные (от 4% до 11% легирующих элементов в сплаве)
  • высоколегированные стали (в них более 11% легирующих элементов).

В качестве легирующих элементов могут выступать хром (Cr), никель (Ni), молибден (Mo). В сочетании с железом и углеродом они обеспечивают получившийся материал износостойкостью и высокой прочностью.

Далее, стали можно разгруппировать по их структуре:

Аустенитная сталь

Аустенитными сталями называют железные сплавы, которые при кристаллизации образуют однофазную аустенитную структуру γ-Fe c гранецентрированной кристаллической решеткой и сохраняют ее при охлаждении до криогенных температур. Данный класс также можно разделить на подгруппы:

  • коррозийностойкие аустенитные стали
  • жаростойкие аустенитные стали
  • жаропрочные аустенитные стали
  • хладостойкие аустенитные стали

Другое название данного класса сталей – «сталь аустенитного класса».

Ферритная сталь

Так называется сталь со структурой из легированного феррита с допустимыми добавлениями карбидов. Ферритную сталь (иное название – сталь ферритного класса) получают с добавлением к железу небольшого количества углерода и большой доли легирующего элемента, например, ванадия или кремния.

Мартенситная сталь

Мартенсит – это игольчатая микроструктура в некоторых чистых металлах и закаленных металлических сплавах. Мартенситными сталями, в свою очередь, называют сплавы с преобладанием мартенсита в структуре.

Помимо железа в таких сплавах содержится небольшое количество углерода (около 0,2%), и сравнительно большое количество хрома – от 11% до 17%. Допускается и наличие в мартенситной стали других элементов: никеля, ванадия или молибдена.

Стали мартенситного класса стойки к щелочным средам, способны к самозакаливанию, обладают невысокой пластичностью и высокой жаропрочностью.

Бейнитная сталь

Бейнитом называют структуру стали, которая образуется в ходе промежуточного превращения аустенита. Поэтому иногда такую структуру называют «промежуточной». Химически сталь бейнитного класса отличается наличием легирующих добавок и низким содержанием углерода.

Перлитная сталь

Стали перлитного класса объединяют из следующих подгрупп:

  • доэвтектоидные стали (то есть, стали с содержанием углерода менее 0,8%)
  • эвтектоидные стали (стали с содержанием 0,8% углерода в сплаве)
  • заэвтектоидные стали (содержание углерода от 0,8% до 2%).

Все они отличаются сравнительно небольшим содержанием легирующих элементов.

Другой, наиболее простой способ классификации стали – по ее качеству, которое зависит от характеристик элементов, участвующих в создании сплава, и их количества в нем.

Сталь обыкновенного качества

Самый дешевый вид стали, что обусловлено качеством сплава. В стали обыкновенного качества допускается присутствие загрязнений, сторонних (то есть, не входящих в «рецептуру» сплава) элементов и даже неметаллических вкраплений.

Вместе с тем, у обыкновенной стали есть свои градации качества: А, Б и В, при этом, в маркировке стали указываются только буквы «Б» и «В».

Если же в указании марки стали обыкновенного качества нет буквенного обозначения, то подразумевается по умолчанию, что она относится к классу «А». В чем же особенности этих подклассов?

  • сталь А – без указания химического состава, но с гарантией определенных механических свойств;
  • сталь Б – химические свойства указываются, но не гарантируются механические свойства материала;
  • сталь В – гарантируются определенные химические и механические свойства материала.

Из марок стали обыкновенного качества не рекомендуется изготавливать изделия, которые должны выдерживать большие нагрузки во время эксплуатации. Другое название стали обыкновенного качества – «рядовая сталь».

Качественная сталь

К составу этой стали предъявляются гораздо более высокие требования, чем к предыдущей. В ней тоже допускаются включения неметаллических элементов, но совсем незначительные. Содержание серы в сплаве такой стали – не более 0,4%. Столько же может содержаться и фосфора – не более четырех десятых процента.

Плавят качественные стали в мартенах и кислородных конвертерах. Более высокие свойства качественной стали позволяют изготавливать изделия, которые допустимо использовать в сферах, где на них будет оказываться большая физическая нагрузка.

ВЫСОКОКачественная сталь

К составу этого вида стали предъявляются высокие стандарты. В сплаве не должно быть неметаллических вкраплений, процентное соотношение вредных примесей допускается совсем мизерное (серы – до 0,030%, фосфора – до 0,035%). Также понижено допустимое присутствие в высококачественном сплаве углерода.

Высококачественные стали выплавляются в электрических и кислых мартенах. Изготавливать из них можно любые металлические изделия, без боязни быстрой поломки или недостаточной износостойкости. При этом, нужно учитывать, что высококачественный сплав отличается повышенной вязкостью, нежели качественный.

Сталь особо высококачественная

Особо высококачественные стали изготавливаются с помощью самых современных методов, позволяющих не допускать сторонних, не входящих в «рецептуру» элементов и добиваться предельно высокой частоты сплава. Плавка таких сталей производится в электропечах с электрошлаковым переплавом. В химическом составе особо высококачественных сплавов практически нет газов и неметаллических вкраплений.

В конце марки особо высококачественных сталей принято ставить букву Ш. Поскольку производство таких материалов довольно трудоемкое и дорогое, то изготавливают из них изделия с наиболее ответственными функциями.

Наконец, популярно разделение сталей по их назначению. Такая классификация содержит большое множество групп:

Конструкционные стали

Применяются для изготовления механизмов, деталей, конструкции в строительстве, машиностроении, автомобилестроении, судостроении. Внутри этой группы сталей есть свои подгруппы, которые состоят из сплавов, различающихся между собой прежде всего качеством.

Инструментальные стали

Так называют стали, которые содержат от 0,7% углерода и выше. Содержание серы и фосфора в сплаве определяет качество инструментальной стали (она может быть качественной и высококачественной).

  • Отличаются инструментальные стали невысокой стоимостью, высокой твердостью, но, при этом, невысокой износостойчивостью.
  • Внутри группы принято деление на следующие подгруппы:
  • инструментальные углеродистые стали
  • инструментальные легированные стали
  • инструментальные валковые стали
  • стали инструментальные штамповые
  • стали инструментальные быстрорежущие.
  • По названию всей группы не трудно догадаться, что из такого рода материалов изготавливают различные инструменты: метчики, топоры, молотки, пилы, фрезы и прочее.

Нержавеющие стали

Другое их название – «коррозийно-стойкие стали». Само название указывает на главное их свойство: они не подвержены коррозийным влияниям и стойки к воздействию агрессивных сред.

Достигается это за счет включения в сплав с железом металла с антикоррозийными свойствами. Чаще всего в этой роли в нержавеющих сталях выступает хром или соединение хрома и никеля.

Чем больше содержание хрома в сплаве, тем более коррозийно-стойкой оказывается сталь.

Стали жаропрочные

Главное их отличие – стойкость к высоким температурам, высокие показатели ползучести и длительной прочности (это основные характеристики жаропрочных материалов).

Изделия из таких сталей можно использовать длительное время в условиях высокой температуры, не опасаясь, что они начнут деформироваться и разрушаться.

Соответственно, из жаропрочных сталей делают лопатки паровых турбин, газовые турбины, котельные установки, детали ракет и многое другое.

  1. При создании жаропрочного сплава внимание прежде всего обращают на следующие характеристики основного компонента: температура плавления, легирование, режимы уже пройденной им термообработки.
  2. По легированию жаропрочных сталей их подразделяют на уже рассмотренные на этой странице классы:
  3. ферритные
  4. мартенситные
  5. мартенситно-ферритные
  6. аустенитные.

Стали жаростойкие

Другое название – «окалиностойкие стали». Они отличаются стойкостью к коррозийному воздействию в газовых средах при повышенных температурах (имеются в виду температуры выше 550 °C).

Поверхность их не окисляется и не начинает разрушаться при таком температурном режиме, что позволяет изготавливать из них изделия, которые предназначены для функционирования в условиях повышенных температур.

Изделиями могут быть части двигателей машин и самолетов, конструкционные части печей, трубы теплоприемников.

Чтобы добиться окалиностойких свойств, в сплав добавляют некоторые элементы, которые при повышении температур образуют на поверхности стали защитный слой.

В современной металлургии элементами этими выступают хром или кремний, которые при окислении образуют оксиды. От количества хрома или кремния зависит степень жаростойкости материала.

Чтобы добиться наиболее высоких жаростойких свойств, в сплав вводят и хром, и кремний одновременно.

Внутри жаростойких сталей есть свое разделение на группы, различающиеся составом и структурой:

  • стали хромистые ферритного класса
  • стали хромокремнистые мартенситного класса
  • хромоникелевые стали аустенитно-ферритного класса
  • хромоникелевые аустенитные стали.

И КРИОГЕННЫЕ СТАЛИ.

Источник: http://mirsplava.ru/poleznaya-informatsiya/steels

Цветные металлы и сплавы: классификация, ассортимент и свойства

    К цветным металлам относятся все металлы, кроме железа и сплавов на его основе – сталей и чугунов, которые называются черными. Сплавы на основе цветных металлов используют в основном как конструкционные материалы со специальными свойствами: коррозионно-стойкие, подшипниковые (обладающие низким коэффициентом трения), тепло- и жаропрочные и др.

    В маркировке цветных металлов и сплавов на их основе нет единой системы. Во всех случаях принята буквенно-цифровая система. Буквы указывают на принадлежность сплавов к определенной группе, а цифры в разных группах материалов имеют разное значение.

В одном случае они указывают на степень чистоты металла (для чистых металлов), в другом – на количество легирующих элементов, а в третьем обозначают номер сплава, которому по гос. стандарту должны соответствовать определенный состав или свойства.

    Медь и ее сплавы   Техническая медь маркируется буквой М, после которой идут цифры, связанные с количеством примесей (показывают степень чистоты материала). Медь марки М3 содержит примесей больше, чем М000. Буквы в конце марки означают: к – катодная, б – безкислородная, р – раскисленная.

Высокая электропроводность меди обуславливает ее преимущественное применение в электротехнике как проводникового материала. Медь хорошо деформируется, хорошо сваривается и паяется. Ее недостатком является плохая обрабатываемость резанием.    К основным сплавам на основе меди относятся латуни и бронзы.

Читайте также:  Как приклеить металл к мрамору

 В сплавах на основе меди принята буквенно-цифровая система, характеризующая химический состав сплава. Легирующие элементы обозначаются русской буквой, соответствующей начальной букве названия элемента. Причем часто эти буквы не совпадают с обозначением тех же легирующих элементов при маркировке стали.

Алюминий – А; Кремний – К; Марганец – Мц; Медь – М; Никель – Н; Титан –Т; Фосфор – Ф; Хром –Х; Бериллий – Б; Железо – Ж; Магний – Мг; Олово – О; Свинец – С; Цинк — Ц.    Порядок маркировки литейных и деформируемых латуней разный.

   Латунь — сплав меди с цинком (Zn от 5 до 45%). Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), с содержанием 20–36% Zn – желтой. На практике редко используют латуни, в которых концентрация цинка превышает 45%. Обычно латуни делят на:

  — двухкомпонентные латуни или простые, состоящие только из меди, цинка и, в незначительных количествах, примесей;   -многокомпонентные латуни или специальные – кроме меди и цинка присутствуют дополнительные легирующие элементы.   Деформируемые латуни маркируются по ГОСТ 15527-70.   Марка простой латуни состоит из буквы «Л», указывающей тип сплава — латунь, и двузначной цифры, характеризующей среднее содержание меди. Например, марка Л80 — латунь, содержащая 80 % Cu и 20 % Zn. Все двухкомпонентные латуни хорошо обрабатываются давлением. Их поставляют в виде труб и трубок разной формы сечения, листов, полос, ленты, проволоки и прутков различного профиля. Латунные изделия с большим внутренним напряжением (например, нагартованные) подвержены растрескиванию. При длительном хранении на воздухе на них образуются продольные и поперечные трещины. Чтобы избежать этого, перед длительным хранением необходимо снять внутреннее напряжение, проведя низкотемпературный отжиг при 200-300 C.    В многокомпонентных латунях после буквы Л пишут ряд букв, указывающих, какие легирующие элементы, кроме цинка, входят в эту латунь. Затем через дефисы следуют цифры, первая из которых характеризует среднее содержание меди в процентах, а последующие — каждого из легирующих элементов в той же последовательности, как и в буквенной части марки. Порядок букв и цифр устанавливается по содержанию соответствующего элемента: сначала идет тот элемент, которого больше, а далее по нисходящей. Содержание цинка определяется по разности от 100%.    Латуни в основном применяются как деформируемый коррозионно-стойкий материал. Из них изготавливают листы, трубы, прутки, полосы и некоторые детали: гайки, винты, втулки и др.    Литейные латуни маркируются в соответствии с ГОСТ 1711-30. В начале марки тоже пишут букву Л (латунь), после которой пишут букву Ц, что означает цинк, и число, указывающее на его содержание в процентах. В легированных латунях дополнительно пишут буквы, соответствующие введенным легирующим элементам, и следующие за ними числа указывают на содержание этих элементов в процентах. Остаток, недостающий до 100 %, соответствует содержанию меди. Литейные латуни используют для изготовления арматуры и деталей для судостроения, втулок, вкладышей и подшипников.

   Бронзы(сплавы меди с различными элементами, где цинк не является основным). Они подобно латуням подразделяются на литейные и деформируемые. Маркировка всех бронз начинается с букв Бр, что сокращенно означает бронза.

В литейных бронзах после Бр пишут буквы с последующими цифрами, которые символически обозначают элементы, введенные в сплав (в соответствии с таблицей 1), а последующие цифры обозначают содержание этих элементов в процентах. Остальное (до 100 %) – подразумевается медь. Иногда в некоторых марках литейных бронз в конце пишут букву «Л», что означает литейная.    Большинство бронз обладает хорошими литейными свойствами. Их применяют для различного фасонного литья. Чаще всего их используют как коррозионно-стойкий и антифрикционный материал: арматура, ободы, втулки, зубчатые колеса, седла клапанов, червячные колеса и т.д. Все сплавы на основе меди имеют высокую хладостойкость.

   Алюминий и сплавы на его основе

  Алюминий выпускают в виде чушек, слитков, катанки и т.п. (первичный алюминий) по   ГОСТ 11069-74 и в виде деформируемого полуфабриката (листы, профили, прутки и т.п.) по ГОСТ 4784-74. По степени загрязненности тот и другой алюминий подразделяется на алюминий особой чистоты, высокой чистоты и технической чистоты. Первичный алюминий по ГОСТ 11069-74 маркируют буквой А и числом, по которому можно определить содержание примесей в алюминии. Алюминий хорошо деформируется, но плохо обрабатывается резанием. Прокаткой из него можно получить фольгу.

   Сплавы на основе алюминия подразделяются на литейные и деформируемые.    Литейные сплавы на основе алюминиямаркируются по ГОСТ 1583-93. Марка отражает основной состав сплава. Большинство марок литейных сплавов начинаются с буквы А, что означает алюминиевый сплав. Затем пишут буквы и цифры, отражающие состав сплава.

В ряде случаев алюминиевые сплавы маркируют буквами АЛ (что означает литейный сплав алюминия) и цифрой, означающей номер сплава. Буква В, стоящая в начале марки показывает, что сплав высокопрочный.    Применение алюминия и сплавов на его основе очень разнообразно.

Технический алюминий применяют в основном в электротехнике в качестве проводника электрического тока, как заменитель меди.

Литейные сплавы на основе алюминия широко применяются в холодильной и пищевой промышленности при изготовлении деталей сложной формы (различными методами литья), от которых требуется повышенная коррозионная стойкость в сочетании с небольшой плотностью, например, поршни некоторых компрессоров, рычаги и другие детали.

     Деформируемые сплавы на основе алюминия также находят широкое применение в пищевой и холодильной технике для изготовления различных деталей методом обработки давлением, к которым предъявляются также повышенные требования к коррозионной стойкости и плотности: различные емкости, заклепки и т.п. Важным достоинством всех сплавов на основе алюминия является их высокая хладостойкость. 

   Титан и сплавы на его основе

  Титан и сплавы на его основе маркируются в соответствии с ГОСТ 19807-74 по буквенно-цифровой системе. Однако какой-либо закономерности в маркировке не имеется. Единственной особенностью является наличие во всех марках буквы Т, которая свидетельствует о принадлежности к титану. Числа в марке означают условный номер сплава. 

   Технический титан маркируется: ВТ1-00; ВТ1-0. Все остальные марки относятся к сплавам на основе титана (ВТ16, АТ4, ОТ4, ПТ21 и др).

Главным достоинством титана и его сплавов является хорошее сочетание свойств: относительно низкой плотности, высокой механической прочности и очень высокой коррозионной стойкости (во многих агрессивных средах).

Основной недостаток – высокая стоимость и дефицитность. Эти недостатки сдерживают применение их в пищевой и холодильной технике.

    Сплавы титана применяются в ракетной, авиационной технике, химическом машиностроении, в судостроении и транспортном машиностроении. Они могут использоваться при повышенных температурах до 500-550 градусов. Изделия из сплавов титана изготавливают обработкой давлением, но могут быть изготовлены и литьем.

Состав литейных сплавов обычно соответствует составу деформируемых сплавов. В конце марки литейного сплава стоит буква Л.     Магний и сплавы на его основе    Технический магний из-за его неудовлетворительных свойств не находит применения в качестве конструкционного материала. Сплавы на основе магния в соответствии с гос.

стандартом делятся на литейные и деформируемые. 

   Литейные сплавы магнияв соответствии с ГОСТ 2856-79 маркируют буквами МЛ и числом, которое обозначает условный номер сплава.

Иногда после числа пишут строчные буквы: пч – повышенной чистоты; он – общего назначения. Деформируемые сплавы магния маркируют в соответствии с ГОСТ 14957-76 буквами МА и числом, обозначающим условный номер сплава.

Иногда после числа могут быть строчные буквы пч, что означает повышенной чистоты.

   Сплавы на основе магния обладают подобно сплавам на основе алюминия хорошим сочетанием свойств: низкой плотностью, повышенной коррозионной стойкостью, относительно высокой прочностью (особенно удельной) при хороших технологических свойствах.

Поэтому из сплавов магния изготавливают как простые, так и сложные по форме детали, от которых требуется повышенная коррозионная стойкость: горловины, бензиновые баки, арматура, корпусы насосов, барабаны тормозных колес, фермы, штурвалы и многие другие изделия.

   Олово, свинец и сплавы на их основе     Свинец в чистом виде практически не используется в пищевой и холодильной технике. Олово применяется в пищевой промышленности в качестве покрытий пищевой тары (например лужение консервной жести). Маркируется олово в соответствии с ГОСТ 860-75.

Имеются марки О1пч; О1; О2; О3; О4. Буква О обозначает олово, а цифры – условный номер. С увеличением номера увеличивается количество примесей. Буквы пч в конце марки означают – повышенной чистоты. В пищевой промышленности для лужения консервной жести применяют олово чаще всего марок О1 и О2.

   Сплавы на основе олова и свинца в зависимости от назначения подразделяются на две большие группы: баббиты и припои.

   Баббиты – сложные сплавы на основе олова и свинца, которые дополнительно содержат сурьму, медь и другие добавки. Они маркируются по ГОСТ 1320-74 буквой Б, что означает баббит, и числом, которое показывает содержание олова в процентах. Иногда кроме буквы Б может быть другая буква, которая указывает на особые добавки.

Например, буква Н обозначает добавку никеля (никелевый баббит), буква С – свинцовый баббит и др. Следует иметь в виду, что по марке баббита нельзя установить его полный химический состав. В некоторых случаях даже не указывается содержание олова, например в марке БН, хотя здесь его содержится около 10 %.

Имеются и безоловянистые баббиты (например свинцово-кальциевые), которые маркируются по ГОСТ 1209-78 и в данной работе не изучаются.

   Баббиты являются наилучшим антифрикционным материалом и применяются в основном в подшипниках скольжения.     Припои в соответствии с ГОСТ 19248-73 подразделяются на группы по многим признакам: по способу расплавления, по температуре расплавления, по основному компоненту и др. По температуре расплавления они подразделяются на 5 групп:

  •    1. Особолегкоплавкие (температура плавления tпл ≤ 145 °С);
  •    2. Легкоплавкие (температура плавления tпл > 145 °С ≤ 450 °С );
  •    3. Среднеплавкие (температура плавления tпл > 450 °С ≤ 1100 °С );
  •    4. Высокоплавкие (температура плавления tпл > 1100 °С ≤ 1850 °С );

   5. Тугоплавкие (температура плавления tпл > 1850 °С).

   Первые две группы применяются для низкотемпературной (мягкой) пайки, остальные – высокотемпературной (твердой) пайки.

По основному компоненту припои подразделяют на: галлиевые, висмутовые, оловянно-свинцовые, оловянные, кадмиевые, свинцовые, цинковые, алюминиевые, германиевые, магниевые, серебряные, медно-цинковые, медные, кобальтовые, никелевые, марганцевые, золотые, палладиевые, платиновые, титановые, железные, циркониевые, ниобиевые, молибденоыве, ванадиевые.

Источник: https://www.vekomet.ru/articles/tsvetnye-metally-i-splavy-klassifikatsiia-assortim/

Классификация металлов и сплавов

Все известные в настоящее время химические элементы (более 100 наименований) по совокупности свойств подразделяют на металлы и неметаллы. Примерно 80 % общего числа элементов относится к металлам. Некоторые из них (мышьяк, сурьму и др.) иногда называют полуметаллами, так как по одним свойствам их можно отнести к металлам, а по другим – к неметаллам.

Читайте также:  Металл не эмалированных ведер

Металлы (от греческого металлон – копи, рудники, а не буквально – «добытое из земли») – вещества неорганического происхождения, многие из которых обладают характерным блеском, высокой плотностью, прочностью и твердостью, пластичностью, хорошей электро- и теплопроводностью. К металлам относят также их сплавы, имеющие по свойствам много общего с металлами.

Сплавы металлов представляют собой системы, образованные сплавлением нескольких металлов или металлов с неметаллами (например, железа с углеродом).

Сплавы классифицируют по многим признакам: по назначению – на сплавы общего назначения и специальные (шарикоподшипниковые; твердые, используемые для армирования резцовых инструментов; для изготовления заклепок и др.

); по количеству компонентов – на двойные (бинарные) и сложные (тройные, четверные и т. д.); по наличию специальных примесей – на легированные (с примесями) и нелегированные; по способу получения из них изделий – на деформируемые (производят давлением – прокаткой, ковкой и т. п.

) и литейные (производят литьем); по структуре – на твердые растворы, механические смеси и химические соединения.

Если атомы входящих в состав сплава компонентов имеют незначительные различия в размерах и строении электронной оболочки, то они обычно образуют общую кристаллическую решетку; такую структуру принято называть твердым раствором.

Механическая смесь получается, когда компоненты сплава не могут образовать общую решетку и каждый из них кристаллизуется самостоятельно. При химическом взаимодействии компонентов сплава получается новое вещество, свойства которого резко отличаются от свойств исходных компонентов; такой сплав называют химическим соединением.

Следует отметить, что классификация по структуре имеет теоретический характер, поскольку в составах практически могут сочетаться все три рассмотренных вида строения.

Читайте так же:  Твердость материалов

В твердом виде металлы и сплавы на их основе имеют кристаллическую структуру, причем каждый металл или сплав характеризуется определенной кристаллической решеткой, отличающейся от других числом атомов и расстоянием между ними.

Ряд металлов в зависимости от температуры, давления и других факторов может иметь несколько решеток.

Существование одного металла в нескольких кристаллических формах называют аллотропией (от греческих аллос – другой и тропос – поворот, свойство).

Металлы и сплавы металлов подразделяются на две основные группы:

  • черные (железные);
  • цветные (нежелезные).

К черным относят железо и сплавы на его основе, к цветным – все остальные металлы и сплавы. Среди железных сплавов различают сталь (до 2 % углерода в сплаве), чугун (более 2 % углерода в сплаве) и ферросплавы (сплавы железа с кремнием, хромом, марганцем, никелем и некоторыми другими элементами).

Нежелезные металлы и сплавы подразделяют: по плотности – на тяжелые (свинец, медь, олово, их сплавы и др.) и легкие (алюминий, магний, титан, их сплавы и др.); по температуре плавления – на легкоплавкие (свинец, олово, цинк и т. п.) и тугоплавкие (вольфрам, молибден, хром и т. п.); по степени окисления – на благородные (золото, серебро, платина) и обыкновенные (все остальные).

В природе металлы встречаются в виде руд и реже в самородном состоянии.

Источник: https://arxipedia.ru/materialy-i-svojstva/klassifikaciya-metallov-i-splavov.html

Металлы и сплавы — Свойства, классификация и маркировка сталей

Page 11 of 13

Как указывалось выше, сталью называют сплав железа с углеродом и другими элементами с содержанием углерода до 2,14 %

На свойства стали значительное влияние оказывают постоянные (нежелательные) примеси (сера, фосфор, газы), а также технологические добавки (кремний, марганец и др.). Примеси могут попадать в сплав из природных соединений и руд, а также при переработке металлолома.

Основным элементом сплава, по отношению к которому все остальные элементы – примеси, является тот, чья атомная решетка определяет кристаллографическое строение всего сплава. Пока содержание элементов в стали таково, что кристаллографическое строение сплава определяется решеткой железа, сплав называется легированной сталью.

Когда содержание элементов достигает таких значений, что строение сплава определяется решеткой добавочных элементов, а не железа, то говорят уже о сплаве (титановом, никелевом и др.).

Если сталь имеет в своем составе железо, углерод и некоторое количество постоянных примесей (S, P, Si, Mn, газы), то такую сталь называют углеродистой. Если в процессе выплавки углеродистой стали к ней добавляют легирующие элементы (Cr, Ni, W, Mo и др.), а также Mn и Si в повышенном количестве (более 0,8 – 1,0 %), то такую сталь называют легированной.

Углерод оказывает основное влияние на свойства углеродистой стали, находится в ее составе главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита содержится в чугунах. С увеличением содержания углерода в стали повышаются ее твердость и прочность, уменьшаются пластичность и вязкость.

Сера является нежелательной примесью, образует с железом сульфид железа FeS, который находится в стали в виде эвтектики Fe – FeS с температурой плавления 985 °С.

При нагреве стали до температуры 1000 – 1200 °С для горячей обработки давлением эвтектика плавится, сера кристаллизуется на границах зерен, что приводит к нарушению связи между зернами, повышению хрупкости, разрушению при деформации вследствие образования внутренних трещин и надрывов. Это явление называют красноломкостью. Содержание серы в стали не должно превышать 0,06 %.

Фосфор растворяется в a- и g-Fe, искажает кристаллическую решетку и ухудшает пластичность стали. Фосфор вызывает явление хладноломкости, является нежелательной примесью, содержание которой в сталях должно быть менее 0,08 %.

Азот, кислород присутствуют в сплавах в составе оксидов, нитридов – хрупких неметаллических соединений (включений), которые создают дефекты кристаллической структуры. Они являются концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).

Водород поглощается сталью в атомарном состоянии. При охлаждении сплава растворимость водорода снижается, он накапливается в микропорах под высоким давлением. Это может привести к образованию в материале внутренних надрывов (флокенов).

Марганец и кремний – полезные примеси. Их добавляют в сталь при выплавке. Марганец существенно снижает красноломкость стали, образует пластичный MnS с температурой плавления 1620 °С. Марганец увеличивает твердость, прочность и износостойкость стали, при его содержании более 1,5 % снижается пластичность стали.

Кремний связывает закись железа (FeO) с образованием силикатов (FeO×SiO2), которые удаляются вместе со шлаками.

Кроме того, кремний понижает склонность стали к хладноломкости, способствует получению более однородной структуры, положительно сказывается на упругих характеристиках.

Кремний способствует изменению магнитных свойств стали, а при содержании его в количестве 15 – 20 % придает материалу кислотоупорность.

Обычное содержание кремния в углеродистой стали – не более 0,4 %, марганца – 0,8 %.

Стали классифицируют по химическому составу, качеству и назначению. По назначению стали подразделяются на конструкционные, инструментальные, стали с особыми физико-химическими свойствами. По химическому составу различают стали углеродистые и легированные.

Конструкционные стали применяют для изготовления деталей машин и конструкций; инструментальные – режущих, измерительных инструментов, штампов и т.д. К сталям и сплавам с особыми свойствами относят жаропрочные, коррозионно-стойкие, магнитные и др. Они нашли широкое применение в приборостроении, в том числе в медицинской технике.

По качеству различают стали обыкновенного качества, качественные, высококачественные и особо высококачественные. При этом учитываются способ выплавки и содержание серы и фосфора.

Стали обыкновенного качества имеют повышенное содержание нежелательных примесей – до 0,06 % серы и до 0,08 % фосфора, их механические свойства ниже, чем у сталей других групп. Качественные стали содержат серу и фосфор в концентрации менее 0,035 % каждого элемента.

Высококачественные стали, выплавляемые в электропечах, содержат менее 0,025 % и серы, и фосфора. Особо высококачественные стали, подвергнутые электрошлаковому переплаву с вакуумированием, содержат серу и фосфор в концентрации, не превышающей 0,015 %.

Углеродистые стали

В зависимости от содержания углерода стали делятся на низкоуглеродистые с содержанием углерода 0,09 – 0,25 %, среднеуглеродистые с содержанием 0,25 – 0,60 % углерода и высокоуглеродистые с содержанием более 0,60 % углерода.

Стали обыкновенного качества являются наиболее дешевыми и широко применяются в тех случаях, когда к материалу не предъявляются повышенные требования. По сравнению с качественными сталями они содержат больше серы, фосфора, неметаллических включений вследствие менее тщательной очистки в процессе выплавки.

Из углеродистых сталей обыкновенного качества изготавливают балки, прутки, листы, трубы; сварные, клепаные и болтовые конструкции (балки, фермы, детали подъемных кранов и др.); малонапряженные детали машин (оси, валы, шестерни, втулки, валики, болты и др.).

Детали машин часто упрочняются с помощью термической обработки.

Марки углеродистой стали обыкновенного качества обозначаются буквами и цифрами, например Ст0, …, Ст6, БСт0,…, БСт6, ВCт0, …, ВСт6. Буквы Ст обозначают сталь, цифры от 0 до 6 – условный номер марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность.

В зависимости от гарантируемых химического состава и свойств углеродистые стали обыкновенного качества делят на три группы: А, Б, В (группа А в марке стали не указывается).

Сталь группы А имеет гарантированные механические свойства и не подвергается горячей обработке.

Для стали группы Б гарантируется химический состав, сталь подвергается обработке давлением; для стали группы В гарантируются химический состав и механические свойства (используется для сварных конструкций).

К углеродистым качественным конструкционным сталям предъявляются повышенные требования по химическому составу и механическим свойствам. Эти стали выплавляются кислородно-конвертерным способом в мартеновских или электропечах.

Качественные углеродистые стали маркируют цифрами: 05, 08, 10, 15, 20, …, 85, которые указывают среднее содержание углерода в сотых долях процента. Такие стали делят на несколько групп.

Низкоуглеродистые качественные стали 05, …, 10 (без термической обработки) хорошо обрабатываются давлением в холодном состоянии вследствие их высокой пластичности, а также хорошо свариваются из-за малого содержания углерода. Они используются для производства малонагруженных деталей машин и сварных конструкций.

Стали 15, 20, 25, составляющие вторую группу низкоуглеродистых качественных сталей, хорошо свариваются и обрабатываются резанием. Их применяют без термической обработки или в нормализованном состоянии для изготовления неответственных деталей машин, после цементации – деталей с повышенной износостойкостью (кулачковые валики, кронштейны и др.).

Самой значительной является группа среднеуглеродистых сталей 30, 35, 40, 45, 50, подвергающихся термической обработке. Они хорошо обрабатываются на металлорежущих станках в отожженном состоянии. Сочетание высоких прочностных и пластических свойств позволяет применять эти стали для изготовления ответственных деталей машин (шпиндели, распределительные валы и др.).

Высокоуглеродистые стали 60, 65, 70, 75, 80 и 85 подвергаются различным видам термической обработки, в результате чего приобретают высокую прочность, износостойкость и упругие свойства. Применяются для изготовления пружин, рессор, замковых шайб и др.

Углеродистые инструментальные стали маркируют следующим образом: впереди ставят букву У, затем цифру – среднее содержание углерода, выраженное в десятых долях процента. Например, сталь марки У9 содержит в среднем 0,9 % С, сталь У11 – 1,1 % С.

Для обозначения высококачественных сталей в конце марки ставится буква А, а особо высококачественных сталей (выплавленных, например, методом электрошлакового переплава с вакуумированием) – буква Ш. В марках некоторых специальных сталей буква впереди указывает на назначение: А – автоматная сталь (А30), Р – быстрорежущая сталь (Р12) и др.

Источник: http://mashmex.ru/materiali/65-metalli-splavi.html?start=10

Понравилась статья? Поделиться с друзьями:
Станок