- Классификация латуней
- В зависимости от химического состава различают:
- По степени обработки латуни бывают:
- Подробнее о сплавах латуни
- Существует также классификация по количеству цинка в сплаве:
- Основные свойства латуни
- Рассмотрим, как легирующие элементы оказывают влияние на свойства латуней
- Способы получения
- Применение
- Различают несколько видов латунного проката:
- Характеристики и использование латуни, являющейся сплавом меди и цинка
- Что такое сплавы?
- Сплав меди с цинком
- Свойства латуни
- Где используют латунь?
- Характеристики сплава меди с содержанием цинка
- Латунь, состоящая из двух и более компонентов
- Маркировка сплавов, состоящих из меди и цинка
- Латуни, относящиеся к категории деформируемых и литейных сплавов
- Что такое сплавы?
- Сплав меди с цинком
- Свойства латуни
- Где используют латунь?
- Производство и применение сплава меди с цинком
- Область применения латуни
- Медь и ее сплавы
- Латуни
- Бронзы
- Медные сплавы
- Медь
- Медные сплавы, их свойства, характеристики, марки
- Бронза
- Латунь
- Медно-никелевые сплавы
- Область применения сплавов меди
- Источники меди для вторсырья
Латунь можно назвать самым диковинным сплавом древности. В Римской империи производство сплава началось в I веке до нашей эры. Среди драгоценных металлов латунь занимала третье место после серебра и золота. На Востоке о сплаве известно с VIII века. Источником меди, свинца и серебра считается рудник Анарак, который находится в северном Иране. Есть данные об использовании латунных сплавов в VIII-IX столетиях на Северо-Западном Кавказе. По «шелковому пути» жители Северного Кавказа могли купить латунь из Малой Азии. В Англии в 1781 году латунь была изготовлена при сплавлении меди с цинком.
Классификация латуней
В зависимости от химического состава различают:
- Простые (двухкомпонентные) латуни. В их составе только медь и цинк. Маркируются простые латуни буквой «Л» и цифрой, которая обозначает соотношение меди в процентах. Например: в состав Л85 входит 85% меди и 15% цинка.
- Специальные (многокомпонентные) латуни. Они содержат медь, цинк, свинец, алюминий, железо и другие элементы, улучшающие основные свойства материала. Такие элементы называются легирующими. Маркируются специальные латуни буквой «Л», а также буквами и цифрами, обозначающими легирующие дополнительные элементы и их количество в процентах. Например: ЛА77-2 содержит 77% меди, 2% алюминия и 21% цинка.
Специальные латуни подразделяются на классы, названные по главному легирующему элементу (марганцевые, алюминиевые, кремнистые, оловянные, никелевые, свинцовые).
По степени обработки латуни бывают:
• деформируемые (латунная лента, проволока, труба, латунный лист);• литейные (арматура, подшипник, детали приборов).
Подробнее о сплавах латуни
Латунь Л63, Латунь ЛС59-1
Существует также классификация по количеству цинка в сплаве:
• 5-20% цинка – красная латунь (томпак);• 20-36% цинка – желтая латунь.
Основные свойства латуни
Латуни хорошо поддаются обработке давлением. Механические свойства сравнительно высокие, коррозионная устойчивость удовлетворительная. Если сравнивать латуни с бронзой, то их прочность, устойчивость к коррозии и антифрикционные свойства меньше. Они не очень устойчивы на воздухе, в соленой морской воде, углекислых растворах и растворах многих органических кислот.
Латунь красивого цвета и в сравнении с медью обладает лучшей коррозионной стойкостью. Однако с увеличением температуры растёт и скорость коррозии. Наиболее заметен этот процесс в тонкостенных изделиях. Спровоцировать коррозию могут: влажность, следы аммиака и сернистого газа в воздухе. Для предупреждения этого явления латунные изделия подвергают низкотемпературному обжигу после обработки.
Практически все латуни при понижении температуры (до гелиевых температур) остаются пластичными и не становятся хрупкими, что даёт возможность использовать их в качестве хорошего конструкционного материала.
За счёт более высокого показателя температуры рекристаллизации (300-370°С), чем у меди, при высокой температуре ползучесть латуней будет меньше. При средней температуре (200-600°С) возникает явление хрупкости, так как нерастворимые при невысоких температурах примеси (например: свинец, висмут) образуют хрупкие межкристаллические прослойки.
При повышении температуры снижается ударная вязкость латуней. В сравнении с медью показатели электропроводности и теплопроводности латуней ниже.
Рассмотрим, как легирующие элементы оказывают влияние на свойства латуней
- Олово значительно увеличивает антикоррозийные свойства в морской воде, повышает прочность сплава. Латуни с оловом часто называют морскими.
- Марганец увеличивает прочность, сопротивление коррозии. Марганцевые латуни часто сочетают с оловом, железом и алюминием.
- Никель повышает коррозионные свойства и прочность в различных средах.
- Кремний понижает прочность и твердость, а также улучшает свариваемость. Латуни, содержащие кремний и свинец, обладают хорошими антифрикционными свойствами. Такими сплавами можно заменить более дорогостоящие, например оловянные бронзы.
- Свинец значительно улучшает обрабатываемость резанием, но в тоже время ухудшает механические свойства. Свинцовые латуни называют автоматными, так как они обрабатываются на станках-автоматах. Данный сплав является самым распространённым.
- Алюминий снижает летучесть цинка, за счёт образования на поверхности расплавленной латуни защитной плёнки (оксида алюминия).
Способы получения
В технологии получения латуни задействованы процессы медной, цинковой промышленности, а также переработка вторсырья. Сырьём для производства сплавов являются заготовки меди, цинка и других металлов для получения многокомпонентных сплавов. Также используются собственные отходы производства и вторичное сырьё. Все заготовки изготовлены в соответствии с ГОСТ.
Для плавки латуни используют различные виды плавильных печей, применяющихся для плавки медных сплавов. Самыми эффективными являются электрические индукционные низкочастотные печи с магнитопроводом.
Плавку проводят под вытяжной вентиляцией, поскольку некоторые элементы сплава интенсивно испаряются и могут навредить здоровью человека. Сплав нежелательно перегревать, из-за вероятности возгорания на воздухе некоторых компонентов.
В качестве шихт для плавки латуни используют чистые и оборотные металлы.
Предварительно сырьё подготавливают, а печи очищают. Разогретую до красного каления медь помещают в печь, а затем добавляют кусковые заготовки цинка.
Во время плавки медно-цинковых сплавов берут во внимание значительную окисляемость цинка. Для уменьшения окисляемости проводят ряд мероприятий.
Для изготовления многокомпонентных сплавов в первую очередь добавляют медь, а затем с осторожностью остальные компоненты.
Применение
Из латуни производят охлаждающие системы для моторов, разнообразные втулки, переходники. Сплав используется в строительной сфере. Например, для изготовления сантехнического оборудования и элементов дизайна. Элементы для крепежа, такие как болты и гайки, также производят из латуни. Этот сплав применяется в судостроении и при изготовлении боеприпасов.
Различают несколько видов латунного проката:
- Латунный пруток – это длинномерное металлическое изделие, которое является заготовкой для различных деталей. Пруток имеет различную форму сечения: круглую, овальную, прямоугольную, квадратную, шестигранную, трапециевидную.
- Латунная плита – это плоский полуфабрикат с прямоугольным сечением толщиной более 25 мм, который изготавливается прокаткой или литьём. Плиты бывают мягкими, твёрдыми, полутвёрдыми и особо твёрдыми. Латунные плиты используются в промышленности, для декоративной отделки зданий.
- Латунная проволока – это вытянутый профиль небольшого диаметра. Применяется проволока в производстве электротехники и декоративных элементов, а также в машиностроении, авиастроении, при сварке и в обувной промышленности.
- Латунная труба – обладает высокой пластичностью, устойчивостью к коррозии, износу. Трубы применяются в жилищно-коммунальном хозяйстве, машиностроении, приборостроении, электроэнергетике.
- Латунный круг – это сплошной профиль круглого сечения. Применяется изделие в автомобилестроении, приборостроении, при изготовлении станков и механизмов.
- Латунный лист — незаменим в полиграфии, автомобилестроении, электроэнергетике, приборостроении, электротехнической, строительной и химической промышленностях.
Источник: https://cu-prum.ru/latun.html
Характеристики и использование латуни, являющейся сплавом меди и цинка
Что такое сплавы?
Сплавы представляют собой материалы из смеси нескольких металлов и других элементов. Они могут содержать случайные примеси природных компонентов. Одним из первых известных сплавов была бронза. Изделия из неё человек создавал ещё в IV тысячелетии до нашей эры.
Сплавы изготавливают для улучшения качества металлов. Например, чтобы золотые украшения дольше служили, были прочнее или имели определенный оттенок, к ним добавляют небольшую долю никеля, платины, цинка или серебра.
Смешав несколько компонентов, можно изменить свойства металла, повысить температуру плавления и ковкость, придать прочности и твердости, увеличить износоустойчивость. Наиболее распространенными сплавами являются бронза, латунь (сплав меди с цинком), чугун, сталь, баббит, победит, дюралюминий.
Их используют в машиностроении, строительстве, промышленности, авиастроении и т.д. Из смеси никеля, магния и кобальта делают магниты. Олово со свинцом раньше использовали для изготовления столовых приборов, а чугун широко применялся для изготовления бытовых предметов, например, сковородок или утюгов.
Сплав меди с цинком
Смесь меди и цинка называется латунью. Как и бронза, она появилась ещё до нашей эры. С тех пор технология ее изготовления несколько поменялась. Раньше, чтобы сделать латунь, смешивали медь с древесным углем и цинковой рудой. В XVIII веке англичанин Джеймс Эмерсон предложил смешивать сами металлы без использования руды.
Основу латуни представляет медь. Содержание цинка варьирует от 5 до 45 процентов. Из-за желтоватого цвета, напоминающего золото, в Древнем Риме латунь называли орихалком, что буквально означает «златомедь».
Сплав меди с цинком не всегда ограничивается только этими металлами. Он может содержать немного олова, свинца, железа, марганца, никеля и других компонентов. Если олова добавить больше, чем цинка, получится уже совершенно другой материал – оловянная бронза.
Свойства латуни
В зависимости от количества цинка цвет и качества латуни варьируются. Чем его меньше, тем цвет материала более красный и насыщенный. Если сплав меди с цинком не содержит других элементов, он называется простой латунью, которая разделяется на два вида: томпак (цинка до 20 %) и желтая латунь (цинка от 20 %).
Материал латунь является очень пластичным и проявляет большую стойкость к коррозии, чем медь. Температура плавления составляет от 880 оС до 950 оС, с большими пропорциями цинка она уменьшается. Металл отлично поддается сварке, прокату и обработке давлением.
На влажном воздухе желтая латунь растрескивается. Исправить это можно при помощи отжига при температуре 250 оС. Многокомпонентная латунь лучше противостоит коррозии и является прочнее. Добавление в состав олова способствует стойкости к морской воде.
Содержание примесей в сплаве можно найти на маркировке изделия. Заглавные буквы указывают на название компонентов. Вначале идет букв «Л», затем остальные добавочные (легирующие) элементы.
После них в соответствии с буквенным порядком указано процентное содержание веществ, причем первые две цифры говорят о количестве меди в сплаве.
Так, маркировка ЛАЖ60-1-1 означает, что латунь состоит из 60 % меди, 1 % алюминия и 1 % железа, остальное количество приходится на цинк.
Где используют латунь?
Латунь обладает хорошей теплоемкостью. Неслучайно в Древней Руси из нее делали самовары. В Риме при Октавиане Августе из латуни чеканились монеты сестерции и дупондии. В Средневековье она использовалась для изготовления украшений, обрамления компасов, оформления предметов искусства.
И сейчас материал используют повсеместно. Из латуни делают бижутерию и мелкие предметы интерьера. Специальная техника искусственного состаривания придает изделиям из латуни особый шарм. Из нее отливают статуэтки, дверные ручки, рамы для зеркал.
Высокие технологические свойства латуни позволяют использовать материал для производства мелких строительных деталей, трубок, пластин, лент и проволок. Сплав со свинцом используют для автомобилей и часов, томпак применяют для плакирования стали и изготовления радиаторных труб. Из состава с содержанием алюминия 0,5 % изготавливают знаки отличия, так как он обладает золотистым оттенком.
Характеристики сплава меди с содержанием цинка
Для сплава меди с цинком характерны такие свойства, как устойчивость к коррозии и высокая прочность. Уровень коррозионной устойчивости латуни находится посередине значений данного параметра у меди и второго металла – цинка.
Применение сплава меди с цинком в производстве изделий сложных форм, но с небольшими геометрическими размерами оправдано его технологическими свойствами. Такой материал (как медь и ее сплавы другого типа) хорошо формуется, а готовые изделия из него легко поддаются обработке различными методами.
Латунь отличается высокой текучестью и незначительной склонностью к ликвации, что делает ее идеальным материалом для производства различных деталей методом литья. Кроме того, латунь хорошо поддается обработке методом пластической деформации, что дает возможность производить из нее различные изделия методом прокатывания (проволока, ленты, листы, прокат различного профиля).
Цинк может содержаться в латуни в количестве 5–45%, сплав по такому параметру может относиться к различным категориям.
Первая категория – это желтые латуни (цинка в них содержится 20–36%), вторая – красные (в них содержание цинка составляет от 5 до 20%). Вид сплава, который называется томпак, содержит до 10% цинка.
Есть латуни, цинка в которых больше 45%, но их использование очень ограничено.
Для сплавов меди (в том числе и с цинком) характерна меньшая тепло- и электропроводность, если сравнивать их с основным металлом, но и стоимость их значительно меньше. Учитывая этот факт, а также то, что по основным характеристикам – механическим, технологическим, а также антифрикционным – такие материалы мало чем отличаются от основного металла, использовать их экономически целесообразнее.
Латунь, состоящая из двух и более компонентов
Среди сплавов меди с цинком выделяют не только красные и желтые, но и двух-, а также многокомпонентные латуни.
В состав двухкомпонентных сплавов входят преимущественно медь и цинк, остальных включений в них совсем немного. Сюда, в частности, относится томпак, цинка в котором, как отмечалось выше, содержится не более 10%.
Количество меди в таком сплаве может доходить до 97%, а ее минимальное содержание составляет 88%.
Двухкомпонентные латуни могут быть одно- и двухфазными. В однофазных, отличающихся высокой пластичностью, цинк присутствует в состоянии твердого раствора. Если сравнивать однофазные и двухфазные латуни, вторые менее пластичны, но обладают большей прочностью, цинка в таких сплавах содержится более 39%.
Как однофазные, так и двухфазные латуни нельзя подвергать деформации при высоких температурах (300–700 градусов Цельсия). При таких условиях в них формируется зона хрупкости.
В структуре сплава меди с цинком, относящегося к категории многокомпонентных, есть дополнительные легирующие элементы. Перечислим их.
- Никель увеличивает коррозионную устойчивость сплава, а также его прочность.
- Олово увеличивает не только прочность, но и устойчивость сплава к воздействию соленой воды.
- Кремнием сплав обогащается для того, чтобы улучшить антифрикционные характеристики изделий из него. Однако этот элемент ухудшает прочность, а также твердость сплавов.
- Свинец при добавлении в сплав значительно улучшает обрабатываемость изделий из него посредством режущих инструментов. Между тем свинец ухудшает механические характеристики сплава.
- Марганец, как и олово, улучшает прочность и коррозионную устойчивость сплавов. Как правило, наряду с марганцем в латунь добавляют олово, железо и алюминий, что значительно повышает эффект от использования этого легирующего элемента.
- Комбинируя легирующие элементы, добавляемые в латунь, можно получать сплавы меди с требуемыми качественными и технологическими характеристиками, а также придавать им особые свойства, если в этом есть необходимость.
Маркировка сплавов, состоящих из меди и цинка
Маркировка сплавов меди, в которых содержится цинк, основана на достаточно несложном принципе.
В обозначении любого сплава меди с цинком (как двух-, так и многокомпонентного) есть буква «Л», которая стоит первой.
В двухкомпонентных сплавах за этой буквой следуют цифры, обозначающие содержание меди в целых процентах. Таким образом, по этой цифре можно сразу узнать, сколько процентов меди содержится в данной марке латуни.
Более сложной маркировкой отличаются многокомпонентные латуни, в обозначении которых присутствует сразу несколько букв и цифр. Первой буквой является «Л», по которой становится понятно, что перед нами латунь, за этой буквой следуют буквенные обозначения различных легирующих элементов.
Вторая часть маркировки многокомпонентных сплавов – это процентное содержание легирующих элементов, указанных в буквенной части маркировки. Для большего удобства цифры, соответствующие содержанию каждого легирующего элемента, разделены между собой дефисами.
Порядок расположения цифр в маркировке многокомпонентных латуней такой:
- первая двухзначная цифра – это содержание меди;
- остальные цифры, разделенные дефисами, соответствуют содержанию легирующих элементов, указанных в буквенной части маркировки.
Чтобы было более понятно, разберем, какие элементы содержатся в сплаве меди с цинком марки ЛАЖМц66-6-3-2. Согласно первой цифре, в данном сплаве содержится 66% меди, затем следует Алюминий (6%), Железо (3%) и Марганец (2%). Если просуммировать эти цифры, то можно определить, что меди с остальными элементами в данной латуни содержится 77%. Оставшиеся 23% составляет цинк.
Несколько иначе маркируются латуни, относящиеся к категории литейных. В их маркировке сразу после букв, обозначающих легирующие элементы, ставятся цифры, соответствующие их процентному содержанию. К примеру, в сплаве марки ЛЦ40Мц1,5 содержится:
- 40% цинка;
- 1,5% марганца;
- оставшиеся 58,5% составляет медь.
Латуни, относящиеся к категории деформируемых и литейных сплавов
Латуни, относящиеся к категории деформируемых сплавов, отличаются повышенной устойчивостью к коррозии, они очень пластичны и обладают исключительными антифрикционными характеристиками.
Сплавы меди с цинком этой категории хорошо свариваются с изделиями из стали. Это свойство дает возможность использовать их для производства различных биметаллических конструкций.
Желтая латунь имеет привлекательный внешний вид, благодаря чему ее часто используют для производства различной фурнитуры и декоративных изделий.
Латуни, относящиеся к категории деформируемых сплавов, используются для производства:
- конденсаторных труб (для этих целей требуются латуни марок ЛМш68-0,05, ЛО60-1, ЛО62-1, ЛО70-1, ЛО90-1, ЛА77-2);
- обладающих повышенной коррозионной устойчивостью деталей машин, речных, морских судов (здесь применяется латунь марок Л68, Л80, Л90);
- деталей, которые производятся методом резки (для производства таких деталей используется латунь марки ЛЖС58-1-1);
- различных втулок, крепежных изделий – болтов, гаек и т.п. (для производства таких изделий применяются латуни марок ЛС59-1, ЛМц58-2, ЛС60-1);
- матриц, которые используются в полиграфической промышленности (для таких изделий требуется латунь марки ЛС64-2).
Латуни, относящиеся к категории литейных сплавов, применяются для производства таких изделий, как:
- штуцеры, используемые для оснащения гидравлических систем автомобилей (ЛЦ25С2);
- подшипники и сепараторы различного типа (ЛЦ40С);
- винты червячного типа, имеющие большие габариты и массу (ЛЦ23А6Ж3Мц2);
- детали с особыми свойствами, которые эксплуатируются при температурах, превышающих 300 градусов Цельсия (ЛЦ40Мц3Ж);
- детали, к которым предъявляются повышенные требования по коррозионной устойчивости (ЛЦ30А3).
Что такое сплавы?
Сплавы представляют собой материалы из смеси нескольких металлов и других элементов. Они могут содержать случайные примеси природных компонентов. Одним из первых известных сплавов была бронза. Изделия из неё человек создавал ещё в IV тысячелетии до нашей эры.
Сплавы изготавливают для улучшения качества металлов. Например, чтобы золотые украшения дольше служили, были прочнее или имели определенный оттенок, к ним добавляют небольшую долю никеля, платины, цинка или серебра.
Смешав несколько компонентов, можно изменить свойства металла, повысить температуру плавления и ковкость, придать прочности и твердости, увеличить износоустойчивость. Наиболее распространенными сплавами являются бронза, латунь (сплав меди с цинком), чугун, сталь, баббит, победит, дюралюминий.
Их используют в машиностроении, строительстве, промышленности, авиастроении и т.д. Из смеси никеля, магния и кобальта делают магниты. Олово со свинцом раньше использовали для изготовления столовых приборов, а чугун широко применялся для изготовления бытовых предметов, например, сковородок или утюгов.
Сплав меди с цинком
Смесь меди и цинка называется латунью. Как и бронза, она появилась ещё до нашей эры. С тех пор технология ее изготовления несколько поменялась. Раньше, чтобы сделать латунь, смешивали медь с древесным углем и цинковой рудой. В XVIII веке англичанин Джеймс Эмерсон предложил смешивать сами металлы без использования руды.
Основу латуни представляет медь. Содержание цинка варьирует от 5 до 45 процентов. Из-за желтоватого цвета, напоминающего золото, в Древнем Риме латунь называли орихалком, что буквально означает «златомедь».
Сплав меди с цинком не всегда ограничивается только этими металлами. Он может содержать немного олова, свинца, железа, марганца, никеля и других компонентов. Если олова добавить больше, чем цинка, получится уже совершенно другой материал – оловянная бронза.
Свойства латуни
В зависимости от количества цинка цвет и качества латуни варьируются. Чем его меньше, тем цвет материала более красный и насыщенный. Если сплав меди с цинком не содержит других элементов, он называется простой латунью, которая разделяется на два вида: томпак (цинка до 20 %) и желтая латунь (цинка от 20 %).
Материал латунь является очень пластичным и проявляет большую стойкость к коррозии, чем медь. Температура плавления составляет от 880 оС до 950 оС, с большими пропорциями цинка она уменьшается. Металл отлично поддается сварке, прокату и обработке давлением.
На влажном воздухе желтая латунь растрескивается. Исправить это можно при помощи отжига при температуре 250 оС. Многокомпонентная латунь лучше противостоит коррозии и является прочнее. Добавление в состав олова способствует стойкости к морской воде.
Содержание примесей в сплаве можно найти на маркировке изделия. Заглавные буквы указывают на название компонентов. Вначале идет букв «Л», затем остальные добавочные (легирующие) элементы.
После них в соответствии с буквенным порядком указано процентное содержание веществ, причем первые две цифры говорят о количестве меди в сплаве.
Так, маркировка ЛАЖ60-1-1 означает, что латунь состоит из 60 % меди, 1 % алюминия и 1 % железа, остальное количество приходится на цинк.
Где используют латунь?
Латунь обладает хорошей теплоемкостью. Неслучайно в Древней Руси из нее делали самовары. В Риме при Октавиане Августе из латуни чеканились монеты сестерции и дупондии. В Средневековье она использовалась для изготовления украшений, обрамления компасов, оформления предметов искусства.
И сейчас материал используют повсеместно. Из латуни делают бижутерию и мелкие предметы интерьера. Специальная техника искусственного состаривания придает изделиям из латуни особый шарм. Из нее отливают статуэтки, дверные ручки, рамы для зеркал.
Высокие технологические свойства латуни позволяют использовать материал для производства мелких строительных деталей, трубок, пластин, лент и проволок. Сплав со свинцом используют для автомобилей и часов, томпак применяют для плакирования стали и изготовления радиаторных труб. Из состава с содержанием алюминия 0,5 % изготавливают знаки отличия, так как он обладает золотистым оттенком.
Источник: fb.ru
Источник: https://novoevmire.biz/obshhestvo/dosug/proizvodstvo-i-ispolzovanie-splava-medi-i-tsinka.html
Производство и применение сплава меди с цинком
Сплав меди с цинком больше известен нам под названием латуни, уходит своими корнями в глубокую древность. Римляне выплавляли ее из меди и цинковой руды (галмея). Из этого металла они первыми начали изготавливать посуду, вазы, украшения, фигурки богов. Там же латунь была наделена магическими свойствами.
Алхимиками она обозначалась знаком солнца.
В настоящее время сплав меди и цинка широко применяется при изготовлении часов, в автомобиле и приборостроении. Из нее изготавливают трубы и отливают корпуса арматуры.
Современные способы производства латуни основаны на плавлении халькопирита (медный колчедан) в электрических печах при температуре +1400 °C. Образующийся в процессе плавления силикат всплывает на поверхность и удаляется. Основной металл (штейн) сливается в конвертер и продувается кислородом.
В результате окислительных реакций образуется металлическая «черновая» медь с содержанием металла около 91%. Далее происходит электролитическая очистка в подкисленном растворе медного купороса. Образующаяся на катоде электролитическая медь имеет чистоту 99.
99% и используется в производстве проводов, электрического оборудования и сплавов.
В расплавленную медь порционно вводят цинк, который придает ей новые свойства — прочность, коррозионную стойкость и пластичность.
В зависимости от области применения металла могут добавляться и другие добавки: никель, железо, олово, марганец, алюминий.
Изготовленный таким способом сплав из меди имеет низкий коэффициент трения и применяется в изготовлении червячных пар и в качестве втулок скольжения в малых бытовых электродвигателях.
Версий о том, как называется сплав, и откуда произошло название латунь, существует множество. Во времена правления Августа ее называли орихалк, что в буквальном переводе означает златомедь.
Нынешнее название пришло в русский язык от немецкого latun, которое, в свою очередь, произошло от итальянского lattone — венец, или laton (latta) — жесть.
В настоящее время это наиболее распространенная версия.
Одним из видов латуни является томпак (медь — 88–97%, цинк — до 10%), который повторно был открыт лондонским часовщиком Кристофером Пинчбеккером в XVIII веке. Ранее этот сплав был известен перуанской цивилизации Моче. Название его происходит от французского tombak, что в переводе означает медь.
Широкое применение томпак получил в плакировании стали и получении биметаллического соединения сталь-латунь.
Латунь получают путем плавления меди и стали.
Плакирование (фр. plaquer — накладывать, покрывать) — это термомеханическое покрытие, используемое для придачи металлу специальных свойств с применением других материалов.
Например, внутренняя поверхность ядерного реактора плакирована высоколегированной аустенитной сталью, так как основной металл корпуса подвержен коррозии при воздействии высоких температур.
Томпак применяется для плакирования стали при изготовлении монет достоинством 10 и 50 копеек.
Область применения латуни
- Сплав меди с цинком в процентном соотношении 70 к 30 является самым востребованным и называется техническим. Он достаточно прочен и пластичен. Высокие антикоррозионные свойства позволяют использовать его в деталях и приспособлениях, имеющих непосредственный контакт с водой. Это, как правило, корпуса арматуры, трубы, конденсаторные трубки и другие изделия.
- При наличии в сплаве только цинка и меди его называют двухкомпонентным, и качество материала будет зависеть от доли цинка. При содержании в сплаве до 20% цинка он называется — красная латунь или томпак, и используется при плакировке поверхности пуль и снарядов. Из такой латуни изготавливают фурнитуру и раструбы некоторых духовых инструментов.
Применение красной латуни. - Если в сплаве цинка с медью содержится 20–35% легирующего металла, то такая латунь называется желтой и служит для изготовления как технических деталей, так и элементов декора и украшений интерьера. Изготавливают их способом ручного литья. Как правило, это изделия единичного высокохудожественного исполнения. Для их производства создается эскиз, на основании которого изготавливается 3D модель. Затем вручную производится форма или набор форм для различных элементов. Это один из наиболее сложных и продолжительных этапов изготовления отливки. Сплав меди с цинком и другими присадками (олово, марганец, алюминий) плавят в электропечи, а затем подготовленную форму заливают латунью. Это наиболее короткий, но очень важный процесс. Производится он вручную с применением ковшей самых разнообразных конфигураций. Во время заливки форм возможны различные виды брака — пустоты, спаи, недоливы, пригары, шлаковые раковины.
- После извлечения отливок происходит процесс зачистки от литников, выпоров и заливов. Называют его обрубкой. Затем детали очищают от формовочной смеси, шлифуют, чеканят и полируют. После всего элементы сваривают в единую конструкцию и окончательно полируют. Такая работа требует больших финансовых затрат, но результат того стоит. Чаще всего изготавливают вентиляционные решетки, столики, подсвечники и другие изделия.
Древние артефакты из латуни. - Сплав из меди и цинка отличается красивым золотистым цветом. Однако без защитной обработки быстро окисляется на воздухе, приобретая благородный тусклый с зеленцой оттенок. В большинстве случаев это не портит изделие. При желании окисную пленку можно убрать, обработав его азотной кислотой, а потом промыть в проточной воде. Изделия из латуни долговечны и будут долгие годы радовать своим видом не одно поколение.
Источник: https://ometallah.com/plavlenie/proizvodstvo-splava-medi-s-tsinkom.html
Медь и ее сплавы
Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å. Удельный вес меди g = 8,94 г/см3, температура плавления — 1083 0С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.
Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.
Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).
В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).
Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0С и 326 0С).
Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.
В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:
- О — олово; Ц — цинк; Х — хром;
- Ж — железо; Н — никель; С — свинец;
- К — кремний; А — алюминий; Ф — фосфор;
- Мц — марганец; Мг – магний; Б – бериллий.
Латуни
Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.
В зависимости от содержания цинка латуни промышленного применения бывают:
- однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
- двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
- однофазные b|- латуни ,содержащие до 50 % цинка.
Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0С и выше 700 0С (в интервале от 300 0С до 700 0С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается.
В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны.
Практическое применение имеют латуни с содержанием цинка до 42…43 %.
Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах.
Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %.
Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.
К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35…40 %).
Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.
Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|).
Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства.
Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.
В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.
Алюминиевые латуни используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде.
Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении).
Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.
Марганцевые латуни кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.
Кремнистые латуни характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 0С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.
Свинцовистые латуни отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.
Никелевая латунь обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.
Литейные латуни содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.
Бронзы
Бронзы — это сплавы меди с оловом, алюминием, кремнием и другими элементами.
По технологическому признаку бронзы делятся на деформируемые и литейные. Деформируемые маркируются буквами Бр, после которых перечисляются легирующие элементы, а затем соответственно содержание этих элементов в процентах. Содержание меди определяется по разности от 100 %. Например, БрОЦС 8-4-3 содержит 8 % Sn, 4 % Zn, 3 % Pb, 85 % Сu.
Литейные бронзы маркируются аналогично литейным латуням. Например, бронза Бр06Ц3Н6 содержит 6 % Sn, 3 % Zn, 6 % Pb, 85 % Сu.
Бронзы по сравнению с латунью обладают лучшими механическими, антифрикционными свойствами и коррозионной стойкостью.
Оловянные бронзы. Наибольшее практическое значение имеют сплавы, содержащие до 10…12 % Sn. Предельная растворимость олова в меди 15,8%, однако в реальных условиях кристаллизации и охлаждения предельная растворимость снижается примерно до 6 %.
К однофазным сплавам относятся бронзы с содержанием олова до 5…6 % и a — фаза, представляет твердый раствор олова в меди с ГЦК — решеткой. При большем содержании олова наряду с a — раствором присутствует эвтектоид (a + Сu31Sn8).
Предел прочности бронзы возрастает с увеличением олова, но при его высоких концентрациях резко снижается из-за большего количества хрупкого интерметаллида Сu31Sn8.
Оловянные бронзы обычно легируют Zn, Pb, Ni, P. Цинк улучшает технологические свойства бронзы и удешевляет ее. Фосфор улучшает литейные свойства. Для изготовления художественного литья содержание фосфора может достигать 1 %.
Свинец (до 3…5 %) вводится в бронзу для улучшения ее обрабатываемости резанием. Никель повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию.
Среди медных сплавов оловянные бронзы имеют самую низкую линейную усадку (0,8 % при литье в землю и 1,4 % — в металлическую форму).
Для проведения пластичности проводится гомогенизация сплавов при температурах 700…750 0С с с быстрым охлаждением. Остаточные напряжения снимаются отжигом при 550 0С.
Оловянные деформируемые бронзы Бр0Ф7-0.2, БрОЦС4-4-4, БрОЦ4-3 и другие имеют более высокую прочность, упругость, сопротивление усталости, чем литейные. Их используют для изготовления подшипников скольжения, шестерен, трубок контрольно — измерительных и других приборов, манометрических пружин и т.д.
Литейные оловянные бронзы. По сравнению с деформируемыми они содержат большее количество легирующих элементов, имеют ниже жидкотекучесть, малую линейную усадку, склонны к образованию усадочной пористости. Бронзы БрОЗЦ7С5Н, БрО10Ф1, БрО6Ц6С3, БрО5С25 и другие применяются для изготовления арматуры, работающей в воде и водяном паре, подшипников, шестерен, втулок.
Алюминиевые бронзы отличаются высокими механическими антикоррозионными свойствами, жидкотекучестью, малой склонностью к дендритной ликвации. Из-за большой усадки трудно получить сложную фасонную отливку. Они морозостойки, немагнитны, не дают искры при ударах. По коррозионной стойкости превосходят латуни и оловянистые бронзы.
Алюминий растворяется в меди, образуя a — твердый раствор замещения с пределом растворимости 9,4 %. При большем содержании в структуре появляется эвтектоид (a + g|); g| — интерметаллид Сu32Al9.
Однофазные бронзы БрА5, БрА7 имеют хорошую пластичность и относятся к деформируемым. Обладают наилучшим сочетанием прочности и пластичности: sв = 400…450 МПа, d = 60 %.
Двухфазные бронзы (a + g|) имеют повышенную прочность до 600 МПа, но пластичность заметно ниже d = (35…45) %. Эти сплавы упрочняются термообработкой и дополнительно легируются Fe, Ni, Mn.
Железо измельчает зерно и повышает механические и антифрикционные свойства алюминиевых бронз. Никель улучшает механические свойства и износостойкость, температуру рекристаллизации и коррозионную стойкость. Марганец повышает технологические и коррозионные свойства.
Бронзы БрАЖН10-4-4, БрАЖМц10-3-1-5 и др. применяются для изготовления зубчатых колес, деталей турбин, седел клапанов и других деталей, работающих в тяжелых условиях износа при повышенных температурах до 400 0С, корпуса насосов, клапанные коробки и др.
Закалка проводится с температуры 950 0С, после чего бронзы подвергают старению при 250…300 0С в течение 2…3 ч.
Кремнистые бронзы применяются в качестве заменителей оловянистых бронз. До 3 % кремний растворяется в меди, и образуется однофазный a-твердый раствор. При большем содержании кремния появляется твердая и хрупкая g-фаза.
Никель и марганец улучшает механические и коррозионные свойства. Они не теряют пластичности при низких температурах, хорошо паяются, обрабатываются давлением, немагнитны и не дают искры при ударах.
Их используют для деталей, работающих до 500 0С, а также в агрессивных средах (пресная, морская вода).
Бронзы БрКН1-3, БрКМц3-1 применяют для изготовления пружин, антифрикционных деталей, испарителей и др.
Бериллиевые бронзы. Содержат 2…2,5 % Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 0С составляет 2,7 %, при 600 0С — 1,5 %, а при 300 0С всего 0,2 %. Закалка проводится при 760…800 0С в воде и старение при 300 0С в течение 3 ч.
Сплав упрочняется за счет выделения дисперсных частиц g-фазы СuBe, что приводит к резкому повышению прочности до 1250 МПа при d = 3…5 %. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов).
Применяются для изготовления мембран, пружин, электрических контактов.
Свинцовые бронзы. Свинец практически не растворяется в жидкой меди. Поэтому сплавы после затвердевания состоят из кристаллов меди и включений свинца. Такая структура обеспечивает высокие антифрикционные свойства.
Бронза БрС30 применяется для изготовления вкладышей подшипников скольжения, работающих при повышенных давлениях и с большими скоростями. По сравнению с оловянистыми бронзами, теплопроводность ее в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении.
Прочность этих бронз невысокая sв = 60 МПа, d = 4 %.
Алюминий и его сплавы >
Дальше >
Источник: https://dprm.ru/materialovedenie/med-i-ee-splavy
Медные сплавы
Медные сплавы – продукция металлургического производства, процесс изготовления которой человечество освоило с давних времён. Первый медный сплав – сплав меди с оловом – дал начало целой технологической эпохе истории цивилизации, получившей название «бронзовый век».
Медь
Мягкий, пластичный металл розовато-золотистого цвета. Его красота издревле привлекала человека, поэтому первыми изделиями из меди были украшения.
В присутствии кислорода медные слитки и изделия из меди приобретают красновато-жёлтый оттенок за счёт образования плёнки из оксидов. Во влажной среде в присутствии углекислого газа медь становится зеленоватой.
Медь имеет высокие показатели теплопроводности и электропроводности, что обеспечивает ей использование в электротехнике. Не меняет свойств в значительном диапазоне температур от очень низких до очень высоких. Не магнитная.
В природе залежи медной руды чаще, чем других металлов, находятся на поверхности. Это позволяет вести добычу открытым способом. Встречаются крупные медные самородки с высокой чистотой меди и медные жилы. Помимо этого медь получают из таких соединений:
- медный колчедан,
- халькозин,
- борнит,
- ковеллин,
- куприт,
- азурит,
- малахит.
Медные сплавы, их свойства, характеристики, марки
Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.
К медным сплавам относят: бронзу, латунь и медно-никелевые сплавы.
Бронза
Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.
Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.
Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.
Буквенные обозначения легирующих элементов бронз:
- А – алюминий,
- Б – бериллий,
- Ж – железо,
- К – кремний,
- Мц – марганец,
- Н – никель,
- О – олово,
- С – свинец,
- Ц – цинк,
- Ф – фосфор.
Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».
Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».
Латунь
Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.
Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.
Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.
Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».
Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».
Медно-никелевые сплавы
- Мельхиор — сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
- Нейзильбер – дополнительно содержит цинк,
- Константан – дополнительно содержит марганец.
У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.
Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.
Выпускается 2 марки мельхиора:
- МНЖМц – сплав меди с никелем, железом и марганцем;
- МН19 – сплав меди и никеля.
Область применения сплавов меди
Медь обладает невысоким удельным сопротивлением. Это свойство обеспечило меди широкое применение в электротехнической промышленности. Из меди изготавливаются проводники, провода, кабели. Медь используется при изготовлении печатных плат различных электронных устройств. Медные провода используются в электрических двигателях и трансформаторах.
У меди высокая теплопроводность. Это обеспечивает ей применение при изготовлении охладительных и отопительных радиаторов, кондиционеров, кулеров.
Прочность и коррозиоустойчивость меди послужили основанием для изготовления из неё труб, находящих значительную сферу применения: в водопроводных, газовых и отопительных системах, в охладительном оборудовании, в кондиционировании.
В строительстве медь применяется при изготовлении крыш и фасадных деталей зданий.
Бактерицидные особенности меди дают ей возможность использования в медицинских заведениях как дезинфицирующего материала: при изготовлении деталей интерьера, которых люди касаются больше всего – дверных ручек, перил, поручней, бортиков кроватей и т.п.
Медные сплавы имеют не меньшую сферу применения.
Бронзы (по маркам) применяются при производстве деталей машин: паровой и водяной арматуры, элементов ответственного назначения, подшипников, втулок. Оловянистые деформируемые бронзы используют для производства сеток, используемых в целлюлозно-бумажной промышленности.
Латуни (по маркам) находят применение при производстве деталей машин в области теплотехники и химической аппаратуры. Из них изготавливают различные змеевики и сильфоны.
В автомобилестроении латуни используют для изготовления конденсаторных труб, патрубков, метизов. В судостроении и авиастроении латуни также используются для изготовления деталей, конденсаторных труб, метизов.
Из латуней изготавливаются детали часовых механизмов, полиграфические матрицы.
Мельхиор МНЖМц используется для производства конденсаторных трубок морских судов, работающих в наиболее тяжёлых условиях. Мельхиор МН19 используется для изготовления медицинских инструментов, монет, украшений, столовых приборов.
Источники меди для вторсырья
Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться.
Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья.
На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.
Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо.
Современное промышленное производство невозможно себе представить без использования цветных металлов.
В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально.
Источник: https://prompriem.ru/splavyi/mednye.html