Электрохимическая защита металлов от коррозии реферат

Содержание
  1. Электрохимическая защита
  2. Суть электрохимической защиты
  3. Катодная защита от коррозии
  4. Протекторная защита (применение протектора)
  5. Цинковые протекторы
  6. Протектор магниевый
  7. Алюминиевые протекторы
  8. Анодная защита от коррозии
  9. Защита металлов от коррозии
  10. Разработка ингибитора кислотной коррозии нелегированных сталей
  11. 1. Химическая коррозия. Жаростойкость. Жаропрочность
  12. Тугоплавкие металлы и сплавы
  13. 2. Жаростойкость. Теории легирования для повышения жаростойкости
  14. 1 Теория уменьшения дефектности образующегося оксида
  15. Электрохимическая зашита от коррозии
  16. Москва 2008
  17. ВВЕДЕНИЕ
  18. ПРИНЦИП ДЕЙСТВИЯ ЭЛЕКТРОХИМИЧЕСКИХ  МЕТОДОВ ЗАЩИТЫ ОТ КОРРОЗИИ
  19. КАТОДНАЯ  ЗАЩИТА
  20. Катодная защита с помощью протекторов
  21. Материалы анодных протекторов
  22. Катодная защита внешним током
  23. Организация КЗВТ
  24. Коррозия металлов и способы защиты от нее
  25. Защитные покрытия
  26. Создание сплавов, стойких к коррозии
  27. Изменение состава среды
  28. Электрохимические методы защиты

Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т.п.

При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами.

Если в воде растворены ионы солей, кислот, или т.п., электропроводность ее повышается, и скорость процесса увеличивается.

При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый коррозионный элемент.

Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не корродирует.

Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента.

Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.

Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём оцинковки — цинк имеют более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а цинк должен корродировать. Однако в связи с образованием на поверхности цинка оксидной плёнки процесс коррозии сильно замедляется.

  • Водородная и кислородная коррозия
  • Если происходит восстановление ионов H3O+ или молекул воды H2O, говорят о водородной коррозии или коррозии с водородной деполяризацией. Восстановление ионов происходит по следующей схеме:
  • 2H3O+ + 2e− → 2H2O + H2
  • или
  • 2H2O + 2e− → 2OH− + H2
  • Если водород не выделяется, что часто происходит в нейтральной или сильно щелочной среде, происходит восстановление кислорода и здесь говорят о кислородной коррозии или коррозии с кислородной деполяризацией:
  • O2 + 2H2O + 4e− → 4OH−

Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.

Борьба с коррозией.

Коррозия приводит ежегодно к миллиардным убыткам, и разрешение этой проблемы является важной задачей. Основной ущерб, причиняемый коррозией, заключается не в потере металла как такового, а в огромной стоимости изделий, разрушаемых коррозией. Вот почему ежегодные потери от неё в промышленно развитых странах столь велики.

Истинные убытки от неё нельзя определить, оценив только прямые потери, к которым относятся стоимость разрушившейся конструкции, стоимость замены оборудования, затраты на мероприятия по защите от коррозии. Ещё больший ущерб составляют косвенные потери.

Это простои оборудования при замене прокорродировавших деталей и узлов, утечка продуктов, нарушение технологических процессов.

Идеальная защита от коррозии на 80 % обеспечивается правильной подготовкой поверхности, и только на 20 % качеством используемых лакокрасочных материа­лов и способом их нанесения. Наиболее производительным и эффективным методом подготовки поверхности перед дальнейшей защитой субстрата является абразивоструйная очистка.

Обычно выделяют три направления методов защиты от коррозии:

  1. Конструкционный
  2. Активный
  3. Пассивный

Для предотвращения коррозии в качестве конструкционных материалов применяют нержавеющие стали, кортеновские стали, цветные металлы. При проектировании конструкции стараются максимально изолировать от попадания коррозионной среды, применяя клеи, герметики, резиновые прокладки.

Активные методы борьбы с коррозией направлены на изменение структуры двойного электрического слоя.

Применяется наложение постоянного электрического поля с помощью источника постоянного тока, напряжение выбирается с целью повышения электродного потенциала защищаемого металла.

Другой метод — использование жертвенного анода, более активного материала, который будет разрушаться, предохраняя защищаемое изделие.

В качестве защиты от коррозии может применяться нанесение какого-либо покрытия, которое препятствует образованию коррозионного элемента (пассивный метод).

Электрохимическая защита

Электрохимическая защита – эффективный способ защиты готовых изделий от электрохимической коррозии.

В некоторых случаях невозможно возобновить лакокрасочное покрытие или же защитный оберточный материал, тогда целесообразно использовать электрохимическую защиту.

Покрытие  подземного трубопровода или же днища морского суда очень трудоемко и дорого возобновлять, иногда просто невозможно. Электрохимическая защита надежно защищает изделие от коррозии, предупреждая разрушение подземных трубопроводов, днищ судов, различных резервуаров и т.п.

Применяется электрохимическая защита в тех случаях, когда потенциал свободной коррозии находится в области интенсивного растворения основного металла либо перепассивации. Т.е. когда идет интенсивное разрушение металлоконструкции.

Суть электрохимической защиты

К готовому металлическому изделию извне подключается постоянный ток (источник постоянного тока или протектор).

Электрический ток на поверхности защищаемого изделия создает  катодную поляризацию электродов микрогальванических пар. Результатом этого является то, что анодные участки на поверхности металла стают  катодными.

А вследствии воздействия коррозионной среды идет разрушение не металла конструкции, а анода.

В зависимости от того, в какую сторону (положительную или отрицательную) смещается потенциал металла, электрохимическую защиту подразделяют на анодную и катодную.

Катодная защита от коррозии

Катодная электрохимическая  защита от коррозии применяется тогда, когда защищаемый металл не склонен к пассивации. Это один из основных видов защиты металлов от коррозии.

Суть катодной защиты состоит в приложении к изделию внешнего тока от отрицательного полюса, который поляризует катодные участки коррозионных элементов, приближая значение потенциала к анодным. Положительный полюс источника тока присоединяется к аноду.

  При этом коррозия защищаемой конструкции почти сводится к нулю. Анод же постепенно разрушается и его необходимо периодически менять.

Существует несколько вариантов катодной защиты: поляризация от внешнего источника электрического тока; уменьшение скорости протекания катодного процесса (например, деаэрация электролита); контакт с металлом, у которого потенциал свободной коррозии в данной среде более электроотрицательный (так называемая, протекторная защита).

Поляризация от внешнего источника электрического тока используется очень часто для защиты сооружений,  находящихся в почве, воде (днища судов и т.д.). Кроме того данный вид коррозионной защиты применяется для цинка, олова, алюминия и его сплавов, титана, меди и ее сплавов, свинца, а также высокохромистых, углеродистых, легированных (как низко так и высоколегированных) сталей.

Внешним источником тока служат станции катодной защиты, которые состоят из выпрямителя (преобразователь), токоподвода к защищаемому сооружению, анодных заземлителей, электрода сравнения и анодного кабеля.

Катодная защита применяется как самостоятельный, так и дополнительный вид коррозионной защиты.

Главным критерием, по которому можно судить о  эффективности катодной защиты, является защитный потенциал. Защитным называется потенциал, при котором скорость коррозии металла в определенных условиях окружающей среды принимает самое низкое (на сколько это возможно) значение.

В использовании катодной защиты есть свои недостатки. Одним из них является опасность перезащиты. Перезащита наблюдается при большом смещении потенциала защищаемого объекта в отрицательную сторону. При этом выделяется. В результате – разрушение защитных покрытий, водородное охрупчивание металла, коррозионное растрескивание.

Протекторная защита (применение протектора)

Разновидностью катодной защиты является протекторная. При  использовании протекторной защиты к защищаемому объекту подсоединяется металл  с более электроотрицательным потенциалом. При этом идет разрушение не конструкции, а протектора. Со временем протектор корродирует и его необходимо заменять  на новый.

Протекторная защита эффективна в случаях, когда между протектором и окружающей средой небольшое переходное сопротивление.

Каждый протектор имеет свой радиус защитного действия, который определяется максимально возможным расстоянием, на которое можно удалить протектор без потери защитного эффекта.  Применяется протекторная защита чаще всего тогда, когда невозможно или трудно и дорого подвести к конструкции ток.

Протекторы используются для защиты сооружений в нейтральных средах (морская или речная вода, воздух, почва и др.).

Для изготовления протекторов используют такие металлы: магний, цинк, железо, алюминий. Чистые металлы не выполняют в полной мере своих защитных функций, поэтому при изготовлении протекторов их  дополнительно легируют.

Железные протекторы изготавливаются из углеродистых сталей либо чистого железа.

Цинковые протекторы

Цинковые протекторы содержат около 0,001 – 0,005 %  свинца, меди и  железа, 0,1 – 0,5 % алюминия и 0,025 – 0,15 % кадмия. Цинковые проекторы применяют для защиты изделий от морской коррозии (в соленой воде). Если цинковый протектор эксплуатировать в слабосоленой, пресной воде либо почвах – он достаточно быстро  покрывается толстым слоем оксидов и гидроксидов.

Читайте также:  Металл заготовка для ковки

Протектор магниевый

Сплавы для изготовления магниевых протекторов легируют 2 – 5 % цинка и 5 – 7 % алюминия. Количество в сплаве меди, свинца, железа, кремния, никеля не должно превышать десятых и сотых долей процента.

Протектор магниевый используют в слабосоленых, пресных водах, почвах. Протектор применяется с средах, где цинковые и алюминиевые протекторы малоэффективны. Важным аспектом является то, что протекторы из магния должны эксплуатироваться в среде с рН 9,5 – 10,5. Это объясняется высокой скоростью растворения магния и образованием на его поверхности труднорастворимых соединений.

Магниевый протектор опасен, т.к. является причиной водородного охрупчивания и коррозионного растрескивания  конструкций.

Алюминиевые протекторы

Алюминиевые протекторы содержат добавки, которые предотвращают образование окислов алюминия. В такие протекторы вводят до 8 % цинка, до 5 % магния и десятые-сотые доли кремния, кадмия, индия, таллия. Алюминиевые протекторы эксплуатируются в прибрежном шельфе и проточной морской воде.

Анодная защита от коррозии

Анодную электрохимическую защиту применяют для конструкций, изготовленных из титана, низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся  металлов. Анодная защита применяется в хорошо электропроводных  коррозионных средах.

При анодной защите потенциал защищаемого металла смещается в более положительную сторону до достижения пассивного устойчивого состояния системы. Достоинствами  анодной электрохимической защиты является не только очень значительное замедление скорости коррозии, но и тот факт, что в производимый продукт и среду не попадают продукты коррозии.

Анодную защиту можно реализовать несколькими способами: сместив потенциал в положительную сторону при помощи источника внешнего электрического тока или введением в коррозионную среду окислителей (или элементов в сплав), которые   повышают эффективность катодного процесса на поверхности металла.

Анодная защита с применением окислителей по защитному механизму схожа с анодной поляризацией.

Если использовать пассивирующие ингибиторы с окисляющими свойствами, то защищаемая поверхность переходит в пассивное состояние под действием возникшего тока. К ним относятся бихроматы, нитраты и др. Но они достаточно сильно загрязняют окружающую технологическую среду.

  • При введении в сплав добавок (в основном легирование  благородным металлом) реакция восстановления деполяризаторов, протекающая на катоде,  проходит с меньшим перенапряжением, чем на защищаемом металле.
  • Если через защищаемую конструкцию пропустить электрический ток, происходит смещение потенциала в положительную сторону.
  • Установка для анодной электрохимической защиты от коррозии состоит из источника внешнего тока, электрода сравнения, катода и самого защищаемого объекта.
  • Для того, чтоб узнать, возможно ли для определенного объекта применить анодную электрохимическую защиту, снимают анодные поляризационные кривые, при помощи которых можно определить потенциал коррозии исследуемой конструкции в определенной коррозионной среде,  область устойчивой пассивности и плотность тока в этой области.
  • Для изготовления катодов используются металлы малорастворимые, такие, как высоколегированные нержавеющие стали, тантал, никель, свинец, платина.
  • Чтобы анодная электрохимическая защита в определенной среде была эффективна,  необходимо использовать легкопассивируемые металлы и сплавы, электрод сравнения и катод должны все время находится в растворе, качественно выполнены соединительные элементы.
  • Для каждого случая анодной защиты схема расположения катодов проектируется индивидуально.
  • Для того, чтоб анодная защита  была эффективной для определенного объекта, необходимо, чтоб он отвечал некоторым требованием:
  • — все сварные швы должны быть выполнены качественно;
  • — в технологической среде материал, из которого изготовлен защищаемый объект, должен переходить в пассивное состояние;
  • — количество воздушных карманов и щелей должно быть минимальным;
  • — на конструкции не должно присутствовать заклепочных соединений;
  • — в защищаемом  устройстве электрод сравнения и катод должны всегда находиться в растворе.
  • Для реализации анодной защиты в химической промышленности часто используют теплообменники и установки, имеющие цилиндрическую форму.
  • Электрохимическая анодная защита  нержавеющих сталей  применима для  производственных хранилищ серной кислоты, растворов на основе аммиака, минеральных удобрений, а также всевозможных сборников, цистерн, мерников.
  • Анодная защита может также применяться для предотвращения коррозионного разрушения ванн  химического никелирования, теплообменных установок в производстве искусственного волокна и серной кислоты.

Защита металлов от коррозии

Проблема коррозии является одной из важнейших в промышленности, транспорте и сельском хозяйстве, так как суммарные потери составляют в странах с развитой экономиках 2-4 % совокупного национального продукта и сопоставимы с затратами в крупных отраслях хозяйства.

В настоящее время созданы национальные центры и институты по коррозии, действует сеть лабораторий, испытательных станций, противокоррозионных служб и сервисных центров.

Успехи науки о химическом сопротивлении металлических материалов обеспечиваются совместными усилиями ученых коррозионистов, материаловедов, металлургов, химиков.

Защита металлов от коррозии стала важнейшим элементом современной технологии, а учение о химсопрамате материалов — существенной составляющей материаловедения и физической химии. Наука о коррозии и противокоррозионной защите занимает важное место среди разделов физикохимии, использующих электрохимический подход.

В процессе коррозии поверхность металла является катализатором окислительно-востановительных превращений компонентов жидкой и газовой фаз, как это имеет место гетерогенном катализе, но сама служит участником реакций. Поэтому большую роль играют степень гетерогенности металлической поверхности, её фазовый состав, поликристалличность и взаимное влияние структурных составляющих материала.

Ситуация осложняется изменением во времени электродного потенциала и поверхностных слоёв коррозирующего металла и среды. Поэтому научной основой коррозиологии является электрохимия растворяющихся металлических поверхностей.

Исходя из этого, коррозия трактуется как переход компонентов металлического материала из его собственной системы связей в состояние связи с компонентами среды. Химическое или электрохимическое взаимодействие металла и среды изменяет его свойства и нарушает его функции.

Коррозия характеризуется скоростью воображаемого непрерывного движения точки фронта коррозии, то есть границы раздела между металлом и средой, в том числе продуктами коррозии. Техническая скорость коррозии как характеристика коррозионной стойкости — это наибольший показатель коррозии, вероятностью превышения которого нельзя пренебречь.

Существуют следующие показатели коррозии: массовый (г/м2 с), линейный 9мм/год), объёмный (м/с), токовый (А/м2), а также время до появления первого очага коррозии, доля поверхности, занятая продуктами коррозии, количество точек или язв на единице поверхности и др.

Коррозия классифицируется по характеру поражения металла: сплошная или общая (равномерная, неравномерная, избирательная, например, обесцинкование сплавов) и местная (пятнами, язвами, точечная или питтинг, сквозная, нитевидная, поверхностная, мелкокристаллитная, ножевая и д.

р); по условиям протекания: газовая, в жидких металлах, в неэлектролитах (кислотная, щелочная, в нейтральных средах), атмосферная, почвенная, биокоррозия, электрокоррозия, под напряжением и при другом воздействии внешних факторов; по условиям контакта с агрессивной средой: при полном, неполном и периодическом погружении, струйная, щелевая.

Разработка ингибитора кислотной коррозии нелегированных сталей

… металлом и средой. Например, окисление железа в воздухе при высоких температурах (образование окалины).

Электрохимическую коррозию характеризуют процессы, в которых наряду с разрушением металла в среде …

Алюминий обладает свойством образовывать на своей поверхности защитную пленку, даже при отсутствии окислителя, … и легирующие компоненты марганца, кремния и другие, которые составляют в сумме менее …

Следует рассматривать следующие аспекты коррозии: экономический (прямые и косвенные потери от коррозии и расходы на противокоррозионную защиту), экологический(изменение среды влияет на коррозионную стойкость, а коррозия может приводить к ухудшению экологической обстановки), технологический (создание новых технологий и получение сверхчистых материалов), биомедицинский (создание протезов), культурный (сохранение исторических памятников), стратегический(дефицит металлов).

1. Химическая коррозия. Жаростойкость. Жаропрочность

Химическая коррозия — это взаимодействие металла с коррозионной средой, при которой окисление металла и восстановление окислительного компонента коррозионной среды протекает в одном акте. Ее первопричиной является термодинамическая неустойчивость металлов в разных агрессивных средах.

Наиболее распространенным и практически важным видом химической коррозии металлов является газовая коррозия.

Она протекает при многочисленных высокотемпературных технологических процессах получения и обработки металлов (выплавке и разливке металла, нагреве перед прокаткой, ковке, штамповке, термообработке и т.д.

), работе оборудования в условиях влияния высоких температур (арматура нагревательных печей, детали двигателей внутреннего сгорания и т.д.).

  • Поведение металлов и сплавов в этих условиях оценивается двумя характеристиками: жаростойкостью и жаропрочностью.
  • Жаростойкость — это способность металла оказывать сопротивление коррозионному влиянию газов при высоких температурах.
  • Жаропрочность — способность металла сохранять при высоких температурах необходимые механические свойства: длительную прочность и сопротивление ползучести.
  • При коррозии в кислородсодержащих газах поверхность металла покрывается пленкой оксидов других соединений, от защитных свойств которой в значительной мере зависит жаростойкость металлов и сплавов.
  • Заметными защитными свойствами могут обладать лишь сплошные пленки. Возможность их образования определяется условием:
Читайте также:  Российский экспорт черных металлов

где Vок — молекулярный объем оксида или другого соединения; VМе — атомный объем металла, из которого образуется оксид или другое соединение.

Жаростойкость металлов и сплавов можно в значительной мере повысить легированием — введением в их состав компонентов, которые улучшают защитные свойства образующихся пленок. В результате этого на поверхности сплава образуется слой оксидов легирующего компонента или высокозащитных двойных оксидов легирующего компонента с основным металлом типа шпинели (FeCr2O4, NiFe2O4 и др.).

Тугоплавкие металлы и сплавы

… более высокую температуру плавления. Еще более эффективным оказывается механизм дисперсионного упрочнения в результате образования карбидов ZrC, TiC, (Ti, Zr)C.

Тугоплавкие металлы и их сплавы широко используются … для многих отраслей техники являются сплавы на основе Nb. Они обладают хорошей технологичностью, свариваемостью, высокой жаростойкостью до 1300°С.

Температура хладноломкости Nb ниже — …

  1. В установившемся режиме скорость химической коррозии определяется кинетическими возможностями протекания отдельных стадий процесса: кристаллохимическим превращением (кинетический контроль процесса); диффузией реагентов в образовавшейся пленке продуктов коррозии (диффузионный контроль процесса); обеими этими стадиями одновременно при соизмеримом сопротивлении их протеканию (диффузионно-кинетический контроль процесса).
  2. При кинетическом контроле процесса (образование несплошных пористых пленок) жаростойкость определяется природой металла, а при диффузном контроле (образование сплошных оксидных пленок) — защитными свойствами пленки, которая образуется на металле.
  3. Примером удачного сочетания обоих свойств являются сплавы никеля с хромом.

2. Жаростойкость. Теории легирования для повышения жаростойкости

Жаростойкость — способность металлов и сплавов сопротивляться окислению и газовой коррозии при высоких температурах. Жаростойкость зависит от многих внешних и внутренних факторов. В основном за жаростойкость отвечают поверхность металла и чистота ее обработки.

Полированные поверхности окисляются медленнее, так как оксиды распределены равномерно и более прочно сцеплены с поверхностью металла.

Формирующаяся на поверхности оксидная пленка достаточно хорошо защищает металл от дальнейшего окисления в том случае, если она плотная и не пропускает ионы кислорода, хорошо сцеплена с подложкой и не отслаивается при механических испытаниях. К металлам, которые образуют такие пленки, относятся хром и алюминий.

Оксидные пленки типа шпинели Сг203 и А1203 хорошо защищают от окисления при высоких температурах. Если на поверхности образуется рыхлый оксид, как у магния, то он не стоек и не защищает металл от дальнейшего окисления.

Повышение жаростойкости сплавов достигается легированием элементами (хром, алюминий, кремний), образующими на поверхности непроницаемые для ионов основного металла и кислорода Оксидные пленки.

Также для этих целей используются защитные покрытия, состав которых выбирается с учетом условий работы изделия и состава агрессивной среды.

Структура жаростойкого материала должна быть однородной и однофазной (чистые металлы, твердые растворы).

Термическая обработка меняет строение сплавов и, следовательно, их коррозионную стойкость. Отжиг и нормализация приводят к формированию однофазной структуры и способствуют увеличению жаростойкости материала.

Пластическая деформация ухудшает жаростойкость, так как приводит к появлению градиента напряжений в структуре металла. Величина зерна для жаростойкого материала не существенна, поэтому эта характеристика является структурно нечувствительной.

  • Характеристики сплавов, стойких к коррозии при повышенных температурах, могут быть даны лишь к конкретным агрессивным средам и выбор материала решается с учетом условий работы данного изделия.
  • Во многих химических процессах металлические конструкции и изделия эксплуатируются в жестких условиях, при повышенных температурах, больших давлениях, высокой агрессивности среды.
  • Чистые металлы, как правило, являются коррозионностойкими и требуют дополнительных мер защиты.

Современная техника противокоррозионной защиты располагает рядом эффективных способов для увеличения стойкости металлов и сроков их эксплуатации. Применительно к условиям газовой коррозии одним из наиболее часто используемых способов является жаростойкое легирование с целью получения сплавов, обладающих повышенной коррозионной устойчивостью.

Применительно к условиям газовой коррозии одним из эффективных способов защиты металлов является легирование с целью получения сплавов жаростойких сплавов. В зависимости от предполагаемого действия легирующей добавки можно указать на три наиболее обоснованные теории такого легирования, которые не противоречат, а скорее дополняют друг друга.

1 Теория уменьшения дефектности образующегося оксида

  1. Согласно теории, разработанной Вагнером и Хауфе, небольшая добавка легирующего элемента окисляется с образованием ионов определенной валентности и, растворяясь в оксиде основного металла, уменьшает в его кристаллической решетке концентрацию дефектов (межузельных катионов в оксидах с избытком металла или катионных вакансий в оксидах с недостатком металла).
  2. Это приводит к упорядочению структуры и снижению скорости диффузии ионов в защитной пленке, уменьшая тем самым скорость окисления.
  3. В соответствии с этой теорией к легирующему элементу Лэ предъявляются следующие требования:
  • иметь большее сродство к кислороду, чем у основного металла, т.е. (Gт)ЛэО
  • z, гдеz — валентность ионов основного металла;
  • при легировании металлов, образующих оксиды с недостатком металла, необходимо соблюдение неравенства zЛэ

Электрохимическая зашита от коррозии

на тему «Электрохимическая зашита от коррозии»   
      
      
      

Москва 2008

Оглавление


ВВЕДЕНИЕ

    Среди различных способов защиты металлов от коррозии особое место занимают электрохимические способы. Это обстоятельство связано с тем, что чаще всего металлы в эксплуатационных условиях подвергаются электрохимической коррозии, против которой наиболее эффективны электрохимические методы защиты.

    Сущность 
всех электрохимических методов 
защиты заключается в смещении потенциала защищаемого металла в область значений, при которых его ионизация затруднена или вообще невозможна.

ПРИНЦИП ДЕЙСТВИЯ ЭЛЕКТРОХИМИЧЕСКИХ 
МЕТОДОВ ЗАЩИТЫ ОТ КОРРОЗИИ

 

    Защита 
от коррозии вообще необходима в том 
случае, когда процесс коррозии протекает 
при таком потенциале, которому соответствует 
скорость ионизации металла, превышающая 
технически допустимую, обеспечивающую необходимую долговечность конструкции.

    Как правило, в этом случае потенциал 
коррозии ЕСТ
находится в области активного растворения металла Е1СТ
или в области нарушения пассивного состояния Е11 СТ (рис.1).

    Уменьшить скорость растворения до приемлемой, величины jдоп
можно, сместив потенциал к достаточно низкому значению в активной области, например к Eзащ
или сместив его в пассивную область, например, до Е11защ. Добиться требуемого смещения потенциала можно при помощи электрохимической защиты.

    
Для смещения потенциала от Е1ст
к Е1защ
или от Е11ст
к Е11защ
металл необходимо поляризовать катодно. Добиться смещения потенциала в этом направлении можно, пользуясь внешним источником тока. Этот метод принято называть катодной защитой от внешнего источника.

    Катодную 
поляризацию можно осуществить, соединив защищаемый металл с другим металлом, имеющим более отрицательный потенциал. Этот метод получил название катонной защиты с помощью анодных протекторов. Протектор в данном случае работает  

    Рисунок 1.

    Полная 
анодная поляризационная кривая

как анод. Для смещения потенциала от Е1ст
до Е11защ
металл необходимо поляризовать анодно. При поляризации от внешнего источника тока метод называют анодной защитой.

Возможно также осуществление анодной поляризации за счет соединения защищаемого металла с протектором, имеющим более положительный потенциал. Этот метод называется анодной защитой с помощью катодного протектора.

Протектор в этом случае работает как катод.

    Таким образом, электрохимическая защита металлов от коррозии в растворах электролитов основана на зависимости скоростей растворения от потенциала.

При катодной защите используют снижение скорости растворения металла в активной области при смещении потенциала в отрицательную сторону, т.е. положительный протект-эффект.

Анодная защита использует принцип перевода металла в пассивное состояние.

КАТОДНАЯ 
ЗАЩИТА

Катодная защита с помощью протекторов

 

    Наиболее 
простым случаем катодной защиты является защита с помощью протекторов.

В данном случае процесс электрохимической защиты обусловлен действием коррозионного элемента, образованного двумя разнородными металлами, помещенными в проводящую среду.

В этом случае более благородный электрод коррозионного элемента – катод, менее благородным – анод. Возникающий гальванический ток является током короткого замыкания.

    Ток этого коротко замкнутого гальванического элемента катодно защищает теплопровод точно так же, как если бы поляризующий ток подавался от внешнего источника тока.

    
Схематически катодная защита с 
помощью протектора может быть представлена следующим образом (рис. 2).  
      

  •     Рисунок 2.
  •     1. протектор 
  •     2. активатор протектора 

    3. защищаемое сооружение (трубопровод).  

    При замыкании защищаемой конструкции 
с протектором с помощью соединительного кабеля происходит растворение материала протектора, а на поверхности защищаемого сооружения идут восстановительные процессы, не приводящие к разрушению сооружения. В процессе эксплуатации протектор растворяется и требует периодической замены.

Читайте также:  Ручной станок для резки металла своими руками

    Протекторы 
широко используются для защиты подземных 
трубопроводов и кабелей. Катодная защита с помощью протекторов не требует специальных источников энергии, поэтому может быть использована в труднодоступных районах, где отсутствуют постоянные источники энергии.

    Ее 
используют преимущественно в тех 
случаях, когда необходим защитный ток малой величины. Это бывает, если конструкция имеет хорошее изоляционное покрытие и необходима защита только тех участков, где изоляция нарушена.

    Область применения протекторной защиты ограничивается величиной удельного сопротивления 
грунта. В токопроводящих грунтах протекторная защита становится малоэффективной.

    К протекторным материалам предъявляются 
определенные требования:

    — потенциал материала протектора 
должен быть достаточно отрицательным, чтобы пара «протектор – сталь» имела максимальную ЭДС;

    — протекторы не должны пассивироваться, т.е. поляризация протектора при пассивации может значительно снизить защитный ток.

    Для уменьшения возможности пассивации протектора его помещают в мешки, заполненные специальным активатором.

    — протекторный материал должен иметь высокую эффективность или высокую токоотдачу. Практической токоотдачей протектора
q
пр называют среднее количество электричества, получаемое с единицы массы протектора.

Материалы анодных протекторов

 

    В качестве протекторных материалов могут 
быть использованы магний, алюминий, цинк или сплавы на основе этих металлов.

Однако следует отметить, что чистые металлы, несмотря на достаточно высокий отрицательный потенциал, не получили широкое применение. Это объясняется тем, что Mg имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации.

Например, КПД магния на 10-20% ниже, чем КПД специальных протекторов, изготовленных из сплавов на основе магния.

    Поэтому наибольшее применение находят различные 
протекторные сплавы. Введение добавок в основной металл позволяет получать более отрицательный потенциал, более, активный, равномерно растворяющийся и не склонный к пассивации материал.  

Катодная защита внешним током

 

    Катодную 
защиту внешним током (КЗВТ) широко применяют для защиты подземных и гидротехнических сооружений. Практически катодную защиту можно применять всегда, когда это экономически обосновано и имеются источники электроэнергии. Применимость катодной защиты зависит от характера катодной реакции коррозионного процесса.

    Если 
коррозия протекает с водородной деполяризацией, то для достижения полной защиты металла необходим защитный ток, плотность которого во много раз превышает плотность коррозионного тока.

Практически это означает, что использование катодной защиты в таких условиях невозможно из-за больших количеств выделяющегося водорода и значительных энергетических затрат. Например, для защиты стали в 0,3 М H2SO4 защитная плотность тока должна быть примерно 300 А/м2.

Если же коррозия металла идет с кислородной деполяризацией, например, в грунтах, то защитная плотность тока в основном зависит от скорости диффузии кислорода. При этом величина защитного тока будет расти только при увеличении степени аэрации.

  1.     Обычно 
    КЗВТ используется совместно с различными изоляционными покрытиями наружной поверхности защищаемого сооружения:
  2.     — высокая эффективность (почти 
    100% защита);
  3.     — возможность защиты протяженных 
    металлических поверхностей, имеющих 
    поврежденную изоляцию и вообще 
    лишенных её в средах с различным удельным сопротивлением;
  4.     -возможность регулирования защитного тока в процессе эксплуатации;
  5.     -возможность 
    автоматизации процесса защиты.
  6.     К недостаткам метода можно отнести 
    высокую начальную стоимость 
    работ, необходимость систематического контроля и профилактического ремонта, а также возможное вредное влияние на соседние незащищенные металлические конструкции.

Организация КЗВТ

 

Установка катодной защиты состоит из источника 
постоянного тока, анодного заземления и соединительных кабелей.

    Защищаемая 
конструкция присоединяется к отрицательному полюсу источника тока, к его положительному полюсу подключают второй электрод – анодный заземлитель. Место контакта с конструкцией называется точкой дренажа. Принципиальную схему метода можно представить следующим образом (рис. 3)

  •     рис. 3
  •     1 – источник постоянного тока 2 – защищаемое сооружение
  •     3 – точка дренажа 4 – анодное 
    заземление 

    Работа 
катодной защиты возможна лишь в том 
случае, когда защищаемая конструкция и анодное заземление находятся в электронном и электролитическом контакте. Электронный контакт достигается с помощью металлических проводников, электролитический обеспечивается электропроводностью грунта.

При этом поверхность защищаемого металла поляризуется катодно и на ней протекают процессы катодного восстановления, чаще всего – кислорода. Аноды служат для съема на землю положительных зарядов и на них протекают преимущественно анодные процессы окисления.

Поэтому в данном случае, в отличие от протекторной защиты, необходимо заботиться о том, чтобы аноды были изготовлены из материалов, наиболее стойких к окислению.

    Для питания постоянным током обычно используют выпрямители, преобразующие переменный ток промышленной частоты в постоянный.

    В простейшем случае КЗВТ сооружения может 
производиться от нерегулируемого источника с настраиваемым постоянным напряжением на выходе. Они получили название преобразователей потенциала с ручным управлением.

    Такая система защиты может быть использована, если параметры защищаемого объекта остаются стабильными во времени.

Тогда задается от источника постоянная величина защитного потенциала, нерегулируемая во времени.

Если параметры защищаемого объекта меняются во времени, то следует при организации КЗВТ использовать автоматические катодные станции, поддерживающие потенциал защищаемого объекта в заданном режиме.

    Преобразователи с автоматическим управлением оборудованы 
устройством для стабилизации заданной разности потенциалов между защищаемым сооружением и землей. Они называются автоматическими станциями катодной защиты. Блок-схема автоматической станции катодной защиты представлена на рис.4

    С помощью блока, задающего потенциал 1, устанавливается требуемый защитный потенциал.

Это значение потенциала сравнивается с помощью блока 
сравнения 2 с потенциалом защищаемой конструкции, измеренной по отношению 
к тому же электроду сравнения 4 с помощью блока измерения потенциала 3.

Разность потенциалов после усиления блоком усилителя 5 подается на блок управления 6, корректирующего силу поляризующего тока, идущего от выпрямителя 7.

Коррозия металлов и способы защиты от нее

Коррозия – это процесс разрушения металлов и металлических конструкций под воздействием различных факторов окружающей среды – кислорода, влаги, вредных примесей в воздухе.

Коррозионная стойкость металла зависит от его природы, характера среды и температуры.

  • Благородные металлы не подвергаются коррозии из-за химической инертности.
  • Металлы Al, Ti, Zn, Cr, Ni имеют плотные газонепроницаемые оксидные плёнки, которые препятствуют коррозии.
  • Металлы с рыхлой оксидной плёнкой – Fe, Cu  и другие – коррозионно неустойчивы. Особенно сильно ржавеет железо.

       Различают химическую и электрохимическую коррозию.

Химическая коррозия  сопровождается химическими реакциями. Как правило, химическая коррозия металлов происходит при действии на металл сухих газов, её также называют газовой.  
  • 3Fe + 2O2 = Fe3O4
  • При химической коррозии также возможны процессы:
  • Fe + 2HCl → FeCl2 + H2
  •  2Fe + 3Cl2 → 2FeCl3
  • Как правило, такие процессы протекают в аппаратах химических производств.
Электрохимическая коррозия – это процесс разрушения металла, который сопровождается электрохимическими процессами. Как правило, электрохимическая коррозия протекает в присутствии воды и кислорода,  либо в растворах электролитов.

В таких растворах на поверхности металла возникают процессы переноса электронов  от металла к окислителю, которым является либо кислород, либо кислота, содержащаяся в растворе. 

При этом электродами являются сам металл (например, железо) и содержащиеся в нем примеси (обычно менее активные металлы, например, олово).

В таком загрязнённом металле идёт перенос электронов от  железа к олову, при этом железо (анод) растворяется, т.е. подвергается коррозии:

  1. Fe –2e = Fe 2+
  2. На поверхности олова (катод) идёт процесс восстановления водорода из воды или растворённого кислорода:
  3. 2H+ + 2e → H2
  4. O2 + 2H2O + 4e → 4OH–
Например, при контакте железа с оловом в растворе соляной кислоты происходят процессы:
  • Анод: Fe –2e → Fe 2+
  • Катод2H+ + 2e → H2
  • Суммарная реакция:   Fe + 2H+ → H2 + Fe2+
  • Если реакция проходит в атмосферных условиях в воде, в ней участвует кислород и происходят процессы:
  • Анод:  Fe –2e → Fe 2+
  • Катод: O2 + 2H2O + 4e → 4OH–
  • Суммарная реакция: 
  • Fe 2+ + 2OH Fe(OH)2
  • 4Fe(OH)2 + O2+ 2H2O → 4Fe(OH)3 
  • При этом образуется ржавчина.

Защитные покрытия

Защитные покрытия предотвращают контакт поверхности металла с окислителями.

  • Катодное покрытие – покрытие менее активным металлом (защищает металл только неповреждённое покрытие).
  • Покрытие краской, лаками, смазками.
  • Создание на поверхности некоторых металлов прочной оксидной плёнки химическим путём (анодирование алюминия, кипячение железа в фосфорной кислоте).

Создание сплавов, стойких к коррозии

Физические свойства сплавов могут существенно отличаться от свойств чистых металлов. Добавление некоторых металлов может приводить к повышению коррозионной стойкости сплава. Например, нержавеющая сталь, новые сплавы с большой коррозионной устойчивостью.

Изменение состава среды

Коррозия замедляется при добавлении в среду, окружающую металлическую конструкцию, ингибиторов коррозии. Ингибиторы коррозии — это вещества, подавляющие процессы коррозии.

Электрохимические методы защиты

Протекторная защита: при присоединении к металлической конструкции пластинок из более активного металла – протектора. В результате идёт разрушение протектора, а металлическая конструкция при этом не разрушается.

Понравилась статья? Поделиться с друзьями:
Станок