Таблица «Плотность стали и драгоценных металлов», плотность металлов показана в возрастающей последовательности.
Металл | Символ | Плотность кг/м³ | Плотность г/см³ |
СТАЛЬ | STEEL | 7800 кг/м3 | 7,8 г/cм3 |
СЕРЕБРО | SILVER | 10500 кг/м3 | 10,5 г/cм3 |
ПАЛЛАДИЙ | PALLADIUM | 12020 кг/м3 | 12,02 г/cм3 |
РОДИЙ | RHODIUM | 12410 кг/м3 | 12,41г/cм3 |
РУТЕНИЙ | RUTHENIUM | 12450 кг/м3 | 12,45г/cм3 |
ЗОЛОТО | GOLD | 19300 кг/м3 | 19,3г/cм3 |
ПЛАТИНА | PLATINUM | 21500 кг/м3 | 21,5г/cм3 |
ИРИДИЙ | IRIDIUM | 22650 кг/м3 | 22,65г/cм3 |
- Определение плотности
- Плотность — это отношение массы тела (веса предмета) к его площади или объему.
- В чем измеряется плотность
- Единицы измерения плотности металлов в международной системе измерения — это кг/м³ и г/см³.
Мы не случайно сравниваем плотность драгоценных металлов и плотность стали. Сегодня ювелирные изделия из нержавеющей стали на пике популярности.
Такие изделия достаточно практичны и неприхотливы в уходе, а цена настолько заманчива, что ювелирная сталь успешно конкурирует с серебром и даже платиной.
Более того, внешне не представляется возможным отличить ювелирное изделие из нержавеющей стали от украшения из платины, серебра, палладия или белого золота. Взгляните на фото.
1.Cталь. 2.Серебро 3.Белое золото 4.Платина 5.Палладий
Все эти изделия роднит светло-серебристый цвет и блеск. Так вот отличительной особенностью сравниваемых металлов является именно плотность, которая оказывает непосредственное влияние на вес ювелирного изделия.
Негласное правило: ювелирное изделие из стали всегда будет легче украшения из представленных драгоценных металлов. При сравнении украшений в одной весовой категории.
Клейма ювелирных металлов — второй отличительный признак
Определить, какой перед Вами металл, можно также по клейму. Для этого необходимо знать стандарты проб драгоценных металлов, как российские (украинские) так и зарубежные. Т.к. в различных странах пробы благородных металлов могут отличаться, не говоря уже о грубом нарушении законодательства и прав потребителя – подделке ювелирных изделий.
На представленных выше фотографиях можно разглядеть отличительные маркировки металлов.
Для стали – steel (иногда можно встретить конкретную марку стали, например, L316), для серебра – 925 проба, для белого золота — 585 проба, для платины – 950 проба, для палладия – также 950 проба. Обратите внимание, маркировка платины — Pt и палладия – PD, — говорит нам об импортном изделии.
Как отличается золото от платины по плотности — в продолжение темы проиллюстрирован пример с обручальными кольцами из золота и платины.
- Другие статьи:
- Твердость золота и других драгоценных металлов
Плотность металлов
Таблица плотности металлов:
- Плотность – скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму.
- Для обозначения плотности обычно используется греческая буква ρ.
- ρ = m / V , где m – масса тела, V – его объём.
В таблице плотность металлов приведена при нормальных условиях (согласно ИЮПАК), т.е. при 0 °C и давлении 105 (100 000) Па.
Для ртути плотность приведена при 20 °C.
Для сведения: 101 325 Па = 1 атм = 760 мм рт. ст.
Необходимо иметь в виду, что плотность металлов может изменяться в зависимости от условий окружающей среды (температуры и давления). Точное значение плотности металлов в зависимости от условий окружающей среды (температуры и давления) необходимо смотреть в справочниках.
Металлы | Плотность металлов, г/см3 | Плотность металлов, кг/м3 |
Актиний | 10,07 | 10070 |
Алюминий | 2,6989 | 2698,9 |
Америций | 13,67 | 13670 |
Барий | 3,5 | 3500 |
Бериллий | 1,848 | 1848 |
Ванадий | 6,11 | 6110 |
Висмут | 9,79 | 9790 |
Вольфрам | 19,25 | 19250 |
Галлий | 5,91 | 5910 |
Германий | 5,323 | 5323 |
Железо | 7,874 | 7874 |
Золото | 19,3 | 19300 |
Индий | 7,31 | 7310 |
Иридий | 22,65 | 22650 |
Иттрий | 4,47 | 4470 |
Кадмий | 8,65 | 8650 |
Калий | 0,856 | 856 |
Кальций | 1,55 | 1550 |
Кобальт | 8,9 | 8900 |
Лантан | 6,162 – 6,18 | 6162 – 6180 |
Латунь | 8,5 – 8,7 | 8500 – 8700 |
Литий | 0,534 | 534 |
Магний | 1,738 | 1738 |
Марганец | 7,21 | 7210 |
Медь | 8,92 | 8920 |
Молибден | 10,22 | 10220 |
Натрий | 0,971 | 971 |
Никель | 8,902 | 8902 |
Ниобий | 8,57 | 8570 |
Олово белое | 7,265 | 7300 |
Олово серое | 5,769 | 5850 |
Осмий | 22,587 | 22587 |
Палладий | 12,02 | 12020 |
Платина | 21,09 | 21090 |
Радий | 5,5 | 5500 |
Рений | 21,02 | 21020 |
Родий | 12,41 | 12410 |
Ртуть | 13,546* | 13546* |
Рубидий | 1,532 | 1532 |
Рутений | 12,41 | 12410 |
Свинец | 11,3415 | 11341,5 |
Серебро | 10,5 | 10500 |
Скандий | 2,99 | 2990 |
Сталь | 7,64 – 8,8 | 7640 – 8800 |
Стронций | 2,54 | 2540 |
Сурьма | 6,691 | 6691 |
Таллий | 11,849 | 11849 |
Тантал | 16,65 | 16650 |
Теллур | 6,24 | 6240 |
Титан | 4,54 | 4540 |
Уран | 19,05 | 19050 |
Хром | 7,19 | 7190 |
Цезий | 1,873 | 1873 |
Цинк | 7,133 | 7133 |
Цирконий | 6,506 | 6506 |
Чугун | 6,8 – 7,2 | 6800 – 7200 |
* – при 20 оС.
Источник: https://ru.wikipedia.org
Примечание: © Фото https://www.pexels.com, https://pixabay.com
карта сайта
Плотность стали
Первые упоминания о стали содержатся в индийские источники, датируемые приблизительно 1 тысячелетием до н. э. Стальные мечи, изготовленные индийскими мастерами, были прочнее и острее бронзовых. Сталь обрабатывалась на Ближнем Востоке и в Древнем Риме. Именно стальные мечи и доспехи помогли римским легионам в их победоносном шествии по античному миру.
Второе рождение материала произошло в 19 веке, года был разработан мартеновский метод ее выплавки, позволяющий получать сплавы высокого и стабильного качества в больших количествах. В 20 веке сталь стала основным конструкционным материалом. Одной из важных характеристик любого материала, является его плотность — масса вещества в единице объема.
Плотность стали
Плотность измеряется в граммах на кубический сантиметр или в тоннах на кубометр. Цифровое значение плотности для этих двух единиц измерения будет совпадать. Плотность одного и того же материала при разной температуре меняется вследствие явления теплового и объемного расширения. У большинства веществ, включая металлы, плотность с ростом температуры падает.
Плотность стали конструкционной легированной
Конструкционные легированные сплавы применяются в производстве высоконагруженных ответственных конструкций, в том числе работающих в агрессивных средах. Плотность марки 30ХГСА близка к стандартному значению в 7,85 т/м3плотность стали конструкционной низколегированной для сварных конструкций
Низколегированные сплавы обладают прекрасной свариваемостью и высокой стойкостью к коррозии, поэтому их широко применяют для ответственных конструкций в строительстве и кораблестроении. УВ стали этой группы колеблется в пределах 7,85-7,87 т/м3 и приведен в таблице:
Группа | Марка | Плотность |
низколегированная конструкционная | 09Г2С | 7,85 |
высоко-углеродистая | 70 (ВС и ОВС) | 7,85 |
среднеуглеродистая | 45 | 7,85 |
мало-углеродистая | 10, 10А, 20, 20А | 7,85 |
углеродистая конструкционная | Ст3сп, Ст3пс | 7,87 |
Плотность стали конструкционной повышенной обрабатываемости
Удельный вес стали 30ХГСА, применяемой для валов, осей, рычагов составляет 7,85 т/м3. При нагреве до 200 ºС он снижается до 7,8. Плотность стали конструкционной подшипниковой марки 35ХГ2 равна 7,8 т/м3.
Удельный вес стали 12Х2Н4А, применяемой для создания высоконагруженных шестерен, поршневых пальцев и т. п., составляет 7,84 т/м3 при 20 ºС и снижается до 7,63 при нагреве до 600 ºС
Плотность стали конструкционной рессорно – пружинной
Рессорно-пружинные сплавы обладают повышенной упругостью при сохранении высокой прочности и применяются для изготовления элементов упругости механизмов — рессор, пружин, амортизаторов. Плотность марки 65Г составляет 7,85 т/м3.
Плотность стали конструкционной углеродистой качественной
Сталь качественная конструкционная углеродистая марок 10, 20, 30, 40 имеет плотность 7,85 т/м3
Плотность нержавеющей стали
Плотность вещества вычисляется путем деления массы объекта на его объем. Такие вычисления для всех известных человеку веществ уже сделаны, и метрологические службы периодически повторяют и уточняют эти измерения. На практике перед людьми встает другая практическая задача: зная материал, из которого изготовлено изделие, определить его массу.
Плотность вещества также называют удельной массой (или, в быту, удельным весом) — т. е. массой сплошного физического тела изготовленного из данного вещества и имеющего единичный объем.
Нержавеющая сталь
Следует отметить, что, используя термин «масса», в 99% случаев люди имеют дело с весом — силой притяжения физического тела к Земле.
Дело в том, что для определения массы тела в строгом физическом смысле требуется сложное оборудование, доступное лишь в крупнейших научных центрах.
Для практического применения в большинстве случаев достаточно обычных, более или менее точных весов, использующих гравитацию Земли и пружины, либо рычаги и стандартные гири, либо пьезоэлементы.
На практике, чтобы рассчитать вес погонного или квадратного метра металлопроката используют удельную массу, или плотность материала, из которого он изготовлен. В справочниках по сортаменту металлопроката среди основных характеристик каждого сорта обязательно указывается масса погонного или квадратного метра и значение плотности, использованное при вычислениях.
В большинстве случаев расчета по массе погонного или квадратного метра хватает для практических применений. Сырье и комплектующие закупаются с некоторым нормированным запасом, а перед отгрузкой потребителю изделие взвешивают на весах для точных взаиморасчетов между контрагентами.
Однако нужно понимать, что данные в справочнике рассчитываются на основании стандартной плотности стали, чаще всего это 7,85 т/м3. В то же время фактическая плотность стали конкретной марки зависит от состава и удельного количества присадок и может колебаться от 7,6 до 8,8 т/м3.
Это может дать погрешность до 10% в большую или в меньшую сторону для изделия, сделанного из очень легкого или, наоборот, очень тяжелого сплаваю. Для малого количества металла разница будет мала, и ею можно будет пренебречь. Однако для сложных изделий, использующих большие объемы металла, потребуются более точные расчеты.
Масса понадобится при формировании заявки на закупку металла. На основе плотности данного сплава делают корректировку справочных значений массы одного погонного или квадратного метра, и далее в расчетах используют уже уточненное значение.
Как рассчитать P или выполнить корректировку массы 1 метра?
Практический способ определения плотности достаточно прост и известен нам из школьного курса физики. В мерную емкость, заполненную водой до определенной отметки, опускают образец материала. Уровень воды поднимается на определенную высоту. Объем вытесненной воды равен объему образца. Массу образца определяют взвешиванием на точных весах. Плотность будет равна отношению массы и объема.
Чтобы выполнить корректировку массы погонного или квадратного метра, нужно значение из справочника разделить на плотность из справочника и результат умножить на измеренную плотность материала образца. Получится откорректированная величина.
Если предвидится повторение подобных вычислений, то удобнее будет вычислить корректировочный коэффициент, равный отношению стандартной плотности и плотности образца, и далее применять его в расчетах.
Плотность 12Х18Н10Т и некоторых нержавеющих сталей
Марка 12×18Н10Т является одной из самых широко применяемых нержавеющих сталей. Плотность для нее и нескольких популярных в производстве марок приведена в таблице, марки расположены по мере возрастания плотности. В третьей колонке показан коэффициент корректировки плотности относительно стандартного значения в 7,85:
Марка стали | Плотность т/м3 | Корректировочный коэффициент |
08Х22Н6Т15Х28 | 7,60 | 0,97 |
08Х1312Х17 | 7,70 | 0,98 |
04Х18Н1008Х18Н12Б12Х18Н10Т17Х18Н9 | 7,90 | 1,01 |
08Х18Н12Т10Х23Н18 | 7,95 | 1,01 |
06ХН28МДТ08ХН28МДТ | 7,96 | 1,01 |
10Х17Н13М2Т | 8,00 | 1,02 |
08Х17Н15М3Т | 8,10 | 1,03 |
Плотность других сталей и сплавов
Удельный вес стали других групп приведен в таблице:
Тип стали | Марка | Плотность |
криогенная нержавеющая конструкционная | 12Х18Н10Т | 7,9 |
жаропрочная нержавеющая коррозионно-стойкая | 08Х18Н10Т | 7,9 |
штамповая инструментальная | Х12МФ | 7,7 |
штамповая инструментальная | 5ХНМ | 7,8 |
мало-углеродистая электро-техническая (Армко) | А и Э; ЭА; ЭАА | 7,8 |
хромистая | 15ХА | 7,74 |
хромоалюминиевомолибденовая азотируемая | 38ХМЮА | 7,71 |
хромомарганцовокремнистая | 25ХГСА | 7,85 |
хромованадиевая | 30ХГСА; 20ХН3А | 7,85 |
Сталь — понятие и ее характеристики
Сталь– является самым распространенным материалом для изготовления конструкций, деталей, механизмов и инструмента.
К сталям относятся все сплавы железа и углерода, причем доля железа должна быть не менее 45 %, а доля углерода — менее 2,14 процента.
Углерод, выстраиваясь в молекулярные структуры железа, повышает прочность и твердость, но делает сплав менее пластичным и ковким. Кроме углерода, в состав сплава входят металлы и неметаллы.
К наиболее важным характеристикам сплава относятся:
- модуль сдвига;
- модуль упругости;
- плотность;
- коэффициент линейного расширения.
Разные сферы применения материалов требуют от них отличающихся друг от друга физических и химических свойств. Так, например, стальные сплавы с высоким модулем упругости применяют для производства пружин и амортизаторов рессорного типа. Эти свойства целенаправленно меняются в результате добавления различных присадок.
Плавление стали
Плотность стали, или УВ стали — одна из важнейших характеристик сплава. Исходя из нее, конструктор подсчитывает вес детали и общий вес изделия, логистика организует закупку и доставку сырья, заготовок и готовых изделий, экономисты определяют себестоимость.Вес стали определяется как произведение плотности на объем.
Классификация стали
В зависимости от доли неметаллических примесей, определяемой методом выплавки данной марки, стальные сплавы разделяют на:
- особо высококачественные;
- высококачественные;
- обыкновенного качества.
По химическому составу сплавы также разделяют на легированные и углеродистые.
Углеродистые стали
Используются преимущественно для производства сварных конструкций и содержит от 0,25 до 2,14 процента углерода. Внутри группы они далее разделяются на подгруппы, и также по процентной доле углерода:
- высокоуглеродистые (0,6-2,14);
- среднеуглеродистые (0,3-0,55);
- низкоуглеродистые (ниже 0,25).
В качестве присадок в них также входят кремний и марганец.Кроме полезных, вводимых целенаправленно присадок в сплаве могут содержаться и вредные примеси, отрицательно влияющие на ее физико- химические свойства:
- фосфор снижает пластичность при нагреве и повышает хрупкость при охлаждении;
- сера приводит к образованию микротрещин.
Низкоуглеродистая сталь
В состав сплава могут попадать и другие примеси.
Легированная сталь
Для обретения сплавом требуемых свойств при плавке в него добавляют полезные присадки, или легирующие элементы, чаще всего металлы, такие, как алюминий, молибден, хром, марганец, никель, ванадий и другие.
Свойства сплава меняются при этом весьма существенно: сплав приобретает стойкость к коррозии, особую прочность, высокую ковкость, повышенную или пониженную электропроводность и т.д.Сплав с такими добавками называют легированной сталью.
По процентному содержанию легирующих присадок они делятся на три группы:
- высоколегированные – свыше 11;
- среднелегированные – от 4 до 11;
- низколегированные – менее 4.
По области применения стальные сплавы делятся на:
- инструментальные — высокопрочные сплавы применяются для изготовления инструментов, штампов, фрез, сверл и резцов;
- конструкционные – применяются для производства корпусов и узлов транспортных средств, станков, строительных конструкций;
- специальные. В эту группу включают сплавы с повышенной стойкостью к кислотной и щелочной среде, радиации, нержавеющие сплавы, электроматериалы и др.
Легированая сталь
Некоторые присадки и виды обработки повышают плотность материала, а другие – снижают, например:
Метод обработки или присадка | Изменение плотности |
углерод | снижается |
хром, алюминий, марганец | снижается |
кобальт, вольфрам, медь | растет |
волочение | растет в пределах трех процентов |
Плотность металлов и сплавов
В таблице представлена плотность металлов и сплавов, а также коэффициент К отношения их плотности к плотности стали. Плотность металлов и сплавов в таблице указана в размерности г/см3 для интервала температуры от 0 до 50°С.
Дана плотность металлов, таких как: бериллий Be, ванадий V, висмут Bi, вольфрам W, галлий Ga, гафний Hf, германий Ge, золото Au, индий In, кадмий Cd, кобальт Co, литий Li, марганец Mn, магний Mg, медь Cu, молибден Mo, натрий Na, никель Ni, олово Sn, палладий Pd, платина Pt, рений Re, родий Rh, ртуть Hg, рубидий Rb, рутений Ru, свинец Pb, серебро Ag, стронций Sr, сурьма Sb, таллий Tl, тантал Ta, теллур Te, титан Ti, хром Cr, цинк Zn, цирконий Zr.
Плотность алюминиевых сплавов и металлической стружки: алюминиевые сплавы: АЛ1, АЛ2, АЛ3, АЛ4, АЛ5, АЛ7, АЛ8, АЛ9, АЛ11, АЛ13, АЛ21, АЛ22, АЛ24, АЛ25. Насыпная плотность стружки: стружка алюминиевая мелкая дробленая, стальная мелкая, стальная крупная, чугунная. Примечание: плотность стружки в таблице дана в размерности т/м3.
- Плотность сплавов магния и меди: магниевые сплавы деформируемые: МА1, МА2, МА2-1, МА8, МА14; магниевые сплавы литейные: МЛ3, МЛ4, МЛ6, МЛ10, МЛ11, МЛ12; медно-цинковые сплавы (латуни) литейные: ЛЦ16К4, ЛЦ23А6Ж3Мц2, ЛЦ30А3, ЛЦ38Мц2С2, ЛЦ40Сд, ЛЦ40С, ЛЦ40 Мц3Ж, ЛЦ25С2; медно-цинковые сплавы, обрабатываемые давлением: Л96, Л90, Л85, Л80, Л70, Л68, Л63, Л60, ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2, ЛЖМц59-1-1, ЛН65-5, ЛМ-58-2, ЛМ-А57-3-1.
- Плотность бронзы различных марок: бронзы безоловянные, обрабатываемые давлением: БрА5, 7, БрАМц9-2, БрАЖ9-4, БрАЖМц10-3-1,5, БрАЖН10-4-4, БрКМц3,1, БрКН1-3, БрМц5; бронзы бериллиевые: БрБ2, БрБНТ1,9, БрБНТ1,7; бронзы оловянные деформируемые: Бр0Ф8,0-0,3, Бр0Ф7-0,2, Бр0Ф6,5-0,4, Бр0Ф6,5-0,15, Бр0Ф4-0,25, Бр0Ц4-3, Бр0ЦС4-4-2,5, Бр0ЦС4-4-4; бронзы оловянные литейные: Бр03Ц12С5, Бр03Ц7С5Н1, Бр05Ц5С5; бронзы безоловянные литейные: БрА9Мц2Л, БрА9Ж3Л, БрА10Ж4Н4Л, БрС30.
- Плотность сплавов никеля и цинка: никелевые и медно-никелевые сплавы, обрабатываемые давлением: НК0,2, НМц2,5, НМц5, НМцАК2-2-1, НХ9,5, МНМц43-0,5, НМЦ-40-1,5, МНЖМц30-1-1, МНЖ5-1, МН19, 16, МНЦ15-20, МНА 13-3, МНА6-1,5, МНМц3-12; цинковые сплавы антифрикционные: ЦАМ9-1,5Л, ЦАМ9-1,5, ЦАМ10-5Л, ЦАМ10-5.
- Плотность стали, чугуна и баббитов: сталь конструкционная, стальное литье, сталь быстрорежущая с содержанием вольфрама 5…18%; чугун антифрикционный, ковкий и высокопрочный, чугун серый; баббиты оловянные и свинцовые: Б88, 83, 83С, Б16, БН, БС6.
Приведем показательные примеры плотности различных металлов и сплавов.
По данным таблицы видно, что наименьшую плотность имеет металл литий, он считается самым легким металлом, плотность которого даже меньше плотности воды — плотность этого металла равна 0,53 г/см3 или 530 кг/м3.
А у какого металла наибольшая плотность? Металл, обладающий наибольшей плотностью — это осмий. Плотность этого редкого металла равна 22,59 г/см3 или 22590 кг/м3.
Следует также отметить достаточно высокую плотность драгоценных металлов. Например, плотность таких тяжелых металлов, как платина и золото, соответственно равна 21,5 и 19,3 г/см3. Дополнительная информация по плотности и температуре плавления металлов представлена в этой таблице.
Сплавы также обладают широким диапазоном значений плотности. К легким сплавам относятся магниевые сплавы и сплавы алюминия. Плотность алюминиевых сплавов выше. К сплавам с высокой плотностью можно отнести медные сплавы такие, как латуни и бронзы, а также баббиты.
Источник: Цветные металлы и сплавы. Справочник. Издательство «Вента-2». НН., 2001 — 279 с.
Таблицы плотности металлов и сплавов
Наименование материала, марка | Плотность ρ, кг/м3 |
Алюминий | 2700 |
Бериллий | 1840 |
Ванадий | 6500-7100 |
Висмут | 9800 |
Вольфрам | 19300 |
Галлий | 5910 |
Гафний | 13090 |
Германий | 5330 |
Золото | 19320 |
Индий | 7360 |
Иридий | 22400 |
Кадмий | 8640 |
Кобальт | 8900 |
Кремний | 2550 |
Литий | 530 |
Магний | 1740 |
Медь | 8940 |
Молибден | 10300 |
Марганец | 7200-7400 |
Натрий | 970 |
Никель | 8900 |
Олово | 7300 |
Палладий | 12000 |
Платина | 21200-21500 |
Рений | 21000 |
Родий | 12480 |
Ртуть | 13600 |
Рубидий | 1520 |
Рутений | 12450 |
Свинец | 11370 |
Серебро | 10500 |
Талий | 11850 |
Тантал | 16600 |
Теллур | 6250 |
Титан | 4500 |
Хром | 7140 |
Цинк | 7130 |
Цирконий | 6530 |
Особенности применяемой таблицы
Для того чтобы рассчитать вес будущего изделия, которое будет получено из чугуна, следует знать его размеры и показатель плотности. Линейные размеры определяются для того, чтобы рассчитать объем. Применяется расчетный метод определения веса изделия в том случае, когда нет возможности провести его взвешивание.
Рассматривая методические таблицы, стоит уделить внимание таким моментам:
- Все металлы разделены на несколько групп.
- Для каждого материала указывается наименование, а также ГОСТ.
- В зависимости от температуры плавления указывается значение плотности.
- Для определения физического значения удельной плотности в килограммах или других изменениях проводится перевод единиц изменения. К примеру, если нужно перевести граммы в килограммы, то проводится умножение табличного значения на 1000.
Определение удельного веса зачастую делается в специальных лабораториях. Это значение редко используется при проведении реальных расчетов во время изготовления изделий или строительства сооружений.
Плотность черных металлов
Наименование материала, марка | Плотность ρ, кг/м3 |
Сталь 10 ГОСТ 1050-88 | 7856 |
Сталь 20 ГОСТ 1050-88 | 7859 |
Сталь 40 ГОСТ 1050-88 | 7850 |
Сталь 60 ГОСТ 1050-88 | 7800 |
С235-С375 ГОСТ 27772-88 | 7850 |
Ст3пс ГОСТ 380-2005 | 7850 |
Чугун ковкий КЧ 70-2 ГОСТ 1215-79 | 7000 |
Чугун высокопрочный ВЧ35 ГОСТ 7293-85 | 7200 |
Чугун серый СЧ10 ГОСТ 1412-85 | 6800 |
Чугун серый СЧ20 ГОСТ 1412-85 | 7100 |
Чугун серый СЧ30 ГОСТ 1412-85 | 7300 |
Таблица удельного веса чугуна
Так как, чугун является сложным материалом, рассчитать его удельный вес в полевых условиях самостоятельно не представляется возможным. Эти вычисления проводят в специальных химических лабораториях. Однако, при этом его средний удельный вес известен. Этот параметр составляет: для серого чугуна от 6,6 до 7,8 г/см3, для белого от 7,0 до 7,8 г/см3.
Сталь марки С255 — расшифровка, характеристики и состав
Для упрощения подсчетов ниже представлена таблица с значениями таких параметров, как вес чугуна, удельный вес чугуна, а также эти значения в зависимости от единиц исчисления. Удельный вес и вес 1 м3 чугуна в зависимости от единиц измерения
Материал | Удельный вес (г/см3) | Вес 1 м3 (кг) |
Чугун белого типа | От 7 до 7,8 | От 7000 до 7800 |
Чугун серого типа | От 6,6 до 7,8 | От 6600 до 7800 |
Плотность нержавеющих сталей
Наименование материала, марка | Плотность ρ, кг/м3 |
04Х18Н10 | 7900 |
08Х13 | 7700 |
08Х17Т | 7700 |
08Х20Н14С2 | 7700 |
08Х18Н10 | 7900 |
08Х18Н10Т | 7900 |
08Х18Н12Т | 7950 |
08Х17Н15М3Т | 8100 |
08Х22Н6Т | 7600 |
08Х18Н12Б | 7900 |
10Х17Н13М2Т | 8000 |
10Х23Н18 | 7950 |
12Х13 | 7700 |
12Х17 | 7700 |
12Х18Н10Т | 7900 |
12Х18Н12Т | 7900 |
12Х18Н9 | 7900 |
15Х25Т | 7600 |
Определение и характеристика плотности
Плотность — физическая величина, определяющая соотношение массы к объему. Подобным физико-механическим показателем характеризуются практически все материалы. Стоит учитывать, что соответствующий показатель плотности алюминия, меди и чугуна существенно отличаются.
Рассматриваемое физико-механическое качество определяет:
- Некоторые физико-механические свойства. В большинстве случаев повышение плотности связано с уменьшением зернистости структуры. Чем меньше расстояние между отдельными частицами, тем более прочная образуется связь между ними, повышается твердость и снижается пластичность.
- С уменьшением расстояния между частицами увеличивается их количество и вес материала. Поэтому при создании автомобилей, самолетов и другой техники выбирается материал, который обладает легкостью и достаточной прочностью. Например, плотность алюминия кг м3 составляет около 2 700, в то время как плотность металла кг м3 более, чем в два раза больше.
Существуют специальные таблицы плотности металлов, в которых указывается рассматриваемый показатель для стали и цветных сплавов, а также чугуна.
Плотность сплавов цветных металлов
Наименование материала, марка | Плотность ρ, кг/м3 |
АЛ1 | 2750 |
АЛ2 | 2650 |
АЛ3 | 2700 |
АЛ4 | 2650 |
АЛ5 | 2680 |
АЛ7 | 2800 |
АЛ8 | 2550 |
АЛ9 (АК7ч) | 2660 |
АЛ11 (АК7Ц9) | 2940 |
АЛ13 (АМг5К) | 2600 |
АЛ19 (АМ5) | 2780 |
АЛ21 | 2830 |
АЛ22 (АМг11) | 2500 |
АЛ24 (АЦ4Мг) | 2740 |
АЛ25 | 2720 |
Б88 | 7350 |
Б83 | 7380 |
Б83С | 7400 |
БН | 9500 |
Б16 | 9290 |
БС6 | 10050 |
БрАмц9-2Л | 7600 |
БрАЖ9-4Л | 7600 |
БрАМЖ10-4-4Л | 7600 |
БрС30 | 9400 |
БрА5 | 8200 |
БрА7 | 7800 |
БрАмц9-2 | 7600 |
БрАЖ9-4 | 7600 |
БрАЖМц10-3-1,5 | 7500 |
БрАЖН10-4-4 | 7500 |
БрБ2 | 8200 |
БрБНТ1,7 | 8200 |
БрБНТ1,9 | 8200 |
БрКМц3-1 | 8400 |
БрКН1-3 | 8600 |
БрМц5 | 8600 |
БрОФ8-0,3 | 8600 |
БрОФ7-0,2 | 8600 |
БрОФ6,5-0,4 | 8700 |
БрОФ6,5-0,15 | 8800 |
БрОФ4-0,25 | 8900 |
БрОЦ4-3 | 8800 |
БрОЦС4-4-2,5 | 8900 |
БрОЦС4-4-4 | 9100 |
БрО3Ц7С5Н1 | 8840 |
БрО3Ц12С5 | 8690 |
БрО5Ц5С5 | 8840 |
БрО4Ц4С17 | 9000 |
БрО4Ц7С5 | 8700 |
БрБ2 | 8200 |
БрБНТ1,9 | 8200 |
БрБНТ1,7 | 8200 |
ЛЦ16К4 | 8300 |
ЛЦ14К3С3 | 8600 |
ЛЦ23А6Ж3Мц2 | 8500 |
ЛЦ30А3 | 8500 |
ЛЦ38Мц2С2 | 8500 |
ЛЦ40С | 8500 |
ЛС40д | 8500 |
ЛЦ37Мц2С2К | 8500 |
ЛЦ40Мц3Ж | 8500 |
Л96 | 8850 |
Л90 | 8780 |
Л85 | 8750 |
Л80 | 8660 |
Л70 | 8610 |
Л68 | 8600 |
Л63 | 8440 |
Л60 | 8400 |
ЛА77-2 | 8600 |
ЛАЖ60-1-1 | 8200 |
ЛАН59-3-2 | 8400 |
ЛЖМц59-1-1 | 8500 |
ЛН65-5 | 8600 |
ЛМц58-2 | 8400 |
ЛМцА57-3-1 | 8100 |
Л60, Л63 | 8400 |
ЛС59-1 | 8450 |
ЛЖС58-1-1 | 8450 |
ЛС63-3, ЛМц58-2 | 8500 |
ЛЖМц59-1-1 | 8500 |
ЛАЖ60-1-1 | 8200 |
Мл3 | 1780 |
Мл4 | 1830 |
Мл5 | 1810 |
Мл6 | 1760 |
Мл10 | 1780 |
Мл11 | 1800 |
Мл12 | 1810 |
МА1 | 1760 |
МА2 | 1780 |
МА2-1 | 1790 |
МА5 | 1820 |
МА8 | 1780 |
МА14 | 1800 |
Копель МНМц43-0,5 | 8900 |
Константан МНМц40-1,5 | 8900 |
Мельхиор МнЖМц30-1-1 | 8900 |
Сплав МНЖ5-1 | 8700 |
Мельхиор МН19 | 8900 |
Сплав ТБ МН16 | 9020 |
Нейзильбер МНЦ15-20 | 8700 |
Куниаль А МНА13-3 | 8500 |
Куниаль Б МНА6-1,5 | 8700 |
Манганин МНМц3-12 | 8400 |
НК 0,2 | 8900 |
НМц2,5 | 8900 |
НМц5 | 8800 |
Алюмель НМцАК2-2-1 | 8500 |
Хромель Т НХ9,5 | 8700 |
Монель НМЖМц28-2,5-1,5 | 8800 |
ЦАМ 9-1,5Л | 6200 |
ЦАМ 9-1,5 | 6200 |
ЦАМ 10-5Л | 6300 |
ЦАМ 10-5 | 6300 |
Химический состав
Этот металл представляет собой сплав железа и углерода, который содержит небольшое количество примесей. Процентное содержание железа достигает уровня более 90%. А также присутствуют кремний, фосфор, марганец и сера. Углерода — не менее 2,14%. Он определяет свойства всего соединения.
Роль углерода
Прежде всего углерод даёт твёрдость. Именно углерод формирует прочностные характеристики сплаву, который является отличным материалом для литейного производства. Но он же снижает пластичность и ковкость.
https://www.youtube.com/watch?v=2_BiG1MKdII\u0026t=1178s
Поэтому твёрдый, но хрупкий металл имеет ограниченную область применения. В основном это металлургия, машиностроение, автомобилестроение, производство тяжёлой специальной техники, коммунальное хозяйство и промышленный дизайн.
В составе чугуна углерод присутствовать в разных формах: как цементит (Fe 3 C), или графит (пластинчатый, сферического, хлопьевидный). Графит в значительной степени определяет свойства этого материала, который в настоящее время подразделяется на следующие виды:
- Серый.
- Высокопрочный.
- Ковкий.
- Белый.
- Половинчатый.
Влияние примесей на характеристики металла
Промышленный чугун содержит примеси. Эти примеси сильно сказываются на свойствах, характеристиках и структуре чугуна.
- Так, марганец тормозит процесс графитизации. Выделение графита приостанавливается, в результате чугун приобретает способность отбеливаться.
- Сера ухудшает литейные и механические характеристики.
- Сульфиды в основном образуются в сером чугуне.
- Фосфор улучшает литейные свойства, увеличивает износостойкость и повышает твердость. Однако на этом фоне чугун все же остается хрупким.
- Кремний больше всех влияет на структуру материала. В зависимости от количества кремня получаются белый и ферритный чугун.
Для получения определенных характеристик в чугун часто вводят специальные примеси при его изготовлении. Такие материалы получили название легированные чугуны. В зависимости от добавленного элемента чугуны могут называться алюминиевыми, хромистыми, серными. В основном элементы вводят с целю получить износостойкий, жаропрочный, немагнитный и коррозионностойкий материал.
В данном видео будет приведено сравнение свойств чугуна и стали:
Тепловые свойства чугуна
У чугуна, как и у любого металла, присутствуют следующие свойства: тепловые, физические, механические, гидродинамические, электрические, технологические, химические. Каждые свойства рассмотрим подробнее.
Это видео рассказывается о структуре и составе чугунных сплавов и зависимости их свойств от определенного состава:
Теплоемкость
Тепловую емкость чугуна определяют с помощью правила смещения. Когда теплоемкость чугуна достигает температурного периода, начало которого начинается с температуры, значение которой больше фазовых превращений и заканчивается на отметке равной температуры плавления, то теплоемкость чугуна принимает значение 0,18 кал/Го С.
Если значение температуры плавления превышает абсолютное значение, то теплоемкость равна 0,23±0,03 кал/Го С. Если происходит процесс затвердения, то тепловой эффект равняется 55±5 кал. Тепловой эффект зависит от количества перлита, когда происходит перлитное превращение. Обычно он принимает значение 21,5±1,5кал/Г.
Соответствие класса бетона (В) и марки (М) и их определение
За величину объемной теплоемкости принимают произведение удельного веса на удельную теплоемкость. Для твердого чугуна эта величина составляет 1 кал/см 3 *ºС, для жидкого – 1,5 кал/см 3 *ºС.
Удельная теплоемкость чугуна и других металлов в виде таблицы
Теплопроводность
В отличие от теплоемкости, теплопроводность не определяется по правилу смещения. Только в случае изменения величины графитизации, на теплопроводность будет влиять состав чугуна.
Температуропроводность
Значение температуропроводности твердого чугуна (при крупных расчетах) может быть принята равной его теплопроводности, а жидкого чугуна – 0, 03 см 2* /сек.
О том, какую чугуны имеют температуру плавления, читайте ниже.
Температура плавления
Чугун плавится при температуре 1200ºС. Это значение температуры ниже температуры плавления стали на 300 градусов. При повышенном содержании углерода, этот химический элемент имеет на молекулярном уровне тесную связь с атомами железа.
В процессе плавления чугуна и его кристаллизации углеродная составляющая не может полностью пронизать структурную решетку железа. Вследствие этого материал чугун примеряет на себя свойство хрупкости. Чугун используют для деталей, от которых требуется повышенная прочность. Однако чугун не применяют при изготовлении предметов, на которые будут действовать постоянные динамические нагрузки.
В таблице ниже указана температура плавления чугуна в сравнении с другими металлами.
Температура плавления чугуна и других металлов
Распространение и применение чугуна
Чугун стал обширно применяться много лет назад. Это связано с тем, что материал довольно прост в производстве и обладает довольно привлекательными эксплуатационными качествами. Выделяют следующие разновидности этого материала:
- Высокопрочный: применяется при производстве изделий, которые должны обладать повышенной прочностью. Получается подобная структура за счет добавления в состав примеси магния. Отличается высокой устойчивостью к изгибу и другому воздействию, не связанному с переменными нагрузками.
- Ковкий чугун: обладает структурой, которая легко поддается ковке за счет высокой пластичности. Процесс производства предусматривает выполнения отжига.
- Половинчатый: обладает неоднородной структурой, которая во многом и определяет основные механические качества материала.