Co2 взаимодействие с оксидом металла

Углерод — неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.

Co2 взаимодействие с оксидом металла

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец — металлы.

Co2 взаимодействие с оксидом металла

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np2:

  • C — 2s22p2
  • Si — 3s23p2
  • Ge — 4s24p2
  • Sn — 5s25p2
  • Pb — 6s26p2

Co2 взаимодействие с оксидом металла

Природные соединения

В природе углерод встречается в виде следующих соединений:

  • Аллотропных модификаций — графит, алмаз, фуллерен
  • MgCO3 — магнезит
  • CaCO3 — кальцит (мел, мрамор)
  • CaCO3*MgCO3 — доломит

Co2 взаимодействие с оксидом металла

Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз — нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.

C2H6 → (t) C + H2 (пиролиз этана)

Co2 взаимодействие с оксидом металла

Химические свойства

  • Реакции с неметаллами
    • При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.
    • C + H2 → (t) CH4 (метан)
    • 2С + O2 → (t) 2CO (угарный газ — продукт неполного окисления углерода, образуется при недостатке кислорода)
    • С + O2 → (t) CO2 (углекислый газ — продукт полного окисления углерода, образуется при достаточном количестве кислорода)
    • С + F2 → (t) CF4
  • Реакции с металлами
  • При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.

    1. Ca + C → CaC2 (карбид кальция, СО углерода = -1)
    2. Al + C → Al4C3 (карбид алюминий, СО углерода -4)
    3. Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

    Co2 взаимодействие с оксидом металла

  • Восстановительные свойства
    • Углерод — хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:
    • Fe2O3 + C → Fe + CO2
    • ZnO + C → Zn + CO
    • FeO + C → Fe + CO
    • Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:
    • SiO2 + C → (t) Si + CO
    • Может восстановить и собственный оксид:
    • CO2 + C → CO

    Co2 взаимодействие с оксидом металла

  • Реакция с водой
  • Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца — крайне важна в промышленности:

    C + H2O → CO↑ + H2↑

  • Реакции с кислотами
    1. В реакциях с кислотами углерод проявляет себя как восстановитель:
    2. C + HNO3(конц.) → (t) CO2 + NO2 + H2O
    3. C + HNO3 → CO2 + NO + H2O
    4. C + H2SO4(конц.) → CO2 + SO2 + H2O

    Co2 взаимодействие с оксидом металла

Оксид углерода II — СO

Оксид углерода II — продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

  • Получение
  • В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).
  • CO2 + C → (t) CO
  • C + H2O → (t) CO + H2
  • В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:
  • HCOOH → (H2SO4) CO + H2O
  • Химические свойства
  • Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.
  • CO + O2 → CO2
  • Fe2O3 + CO → Fe + CO2
  • FeO + CO → Fe + CO2
  • Образование карбонилов — чрезвычайно токсичных веществ.
  • Fe + CO → (t) Fe(CO)5

Co2 взаимодействие с оксидом металла

Оксид углерода IV — CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.

  1. Получение
  2. В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.
  3. CaCO3 → (t) CaO + CO2↑
  4. C6H12O6 → C2H5OH + CO2↑
  5. В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.
  6. CaCO3 + HCl → CaCl2 + H2O + CO2↑
  7. Углекислый газ образуется при горении органических веществ:
  8. C3H8 + O2 → CO2 + H2O

Co2 взаимодействие с оксидом металла

Химические свойства

  • Реакция с водой
  • В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ. CO2 + H2O ⇄ H2CO3

  • Реакции с основными оксидами и основаниями
    • В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние — карбонаты (при избытке основания), кислые — гидрокарбонаты (при избытке кислотного оксида).
    • 2KOH + CO2 → K2CO3 + H2O (соотношение основание — кислотный оксид 2:1)
    • KOH + CO2 → KHCO3 (соотношение основание — кислотный оксид 1:1)
    • Na2O + CO2 → Na2CO3
  • Окислительные свойства
  • При нагревании способен окислять металлы до их оксидов.

    Zn + CO2 → (t) ZnO + CO

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Химические свойства

  • Качественная реакция
  • Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается «закипанием» — появлением пузырьков бесцветного газа без запаха. MgCO3 + HCl → MgCl2 + CO2↑ + H2O Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа — помутнение исчезало.

    1. Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.
    2. Ca(OH)2 + CO2 → CaCO3 (осадок выпадает)
    3. CaCO3 + H2O + CO2 → Ca(HCO3)2 (осадок растворяется)
  • Средние и кислые соли
  • Чтобы сделать из средней соли (карбоната) — кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 — ошибка. Ее следует записать в виде воды и углекислого газа.

    • Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)
    • Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.
    • LiHCO3 + LiOH → Li2CO3 + H2O
  • Нагревание солей угольной кислоты
    1. При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты — на карбонат металла, углекислый газ и воду.
    2. MgCO3 → (t) MgO + CO2
    3. KHCO3 → (t) K2CO3 + CO2↑ + H2O

Химические свойства углекислого газа, реакции с другими веществами

Общие химические свойства углекислого газа: CO2 инертен, то есть химически не активен; при попадании в водный раствор легко вступает в реакции.
Большинство кислотных оксидов устойчивы к высоким температурам, но углекислота при их воздействии восстанавливается.

Взаимодействие с другими веществами:

1) Углекислота относится к кислотным оксидам, то есть в сочетании с водой образуется кислота. Однако угольная кислота неустойчива и распадается сразу. Эта реакция имеет обратимый характер:

СО2 + H2O ↔ CO2 × H2O (растворение) ↔ Н2СО3

Диоксид углерода + вода ↔ угольная кислота

Co2 взаимодействие с оксидом металлаМолекула угольной кислоты

2) При взаимодействии углекислого газа и соединений азота с водородом (аммиаком) в водном растворе происходит разложение до углеаммонийной соли.

2NH3 + CO2 + H2O = NH4HCO3

Аммиак + углекислота = гидрокарбонат аммония

Co2 взаимодействие с оксидом металлаУглеаммонийная соль

Полученное вещество часто используется в приготовлении хлеба и различных кондитерских изделий.

3) Ход некоторых реакций должен поддерживаться высокими температурами. Примером является производство мочевины при 130 °C и давлении 200 атм., схематически изображаемое так:

2NH3 + СО2 → (NH2)2СО + H2O

Аммиак + диоксид углерода → карбамид + вода

Также под воздействием температуры около 800 градусов протекает реакция образования оксида цинка:

Zn + CO2 → ZnO + CO

Co2 взаимодействие с оксидом металлаОксид цинка

Цинк + двуокись углерода → оксид цинка + оксид углерода

4) Возможно уравнение с гидроксидом бария, при котором выделяется средняя соль.

Ba(OH)2+CO2 = BaCO3 + H2O

Гидроксид бария + углекислота = карбонат бария + оксид водорода.

Применяется для регулировки калориметров по теплоемкости. Также вещество используют в промышленности для производства красных кирпичей, синтетических тканей, фейерверков, гончарных изделий, плитки для ванн и туалетов.

5) Углекислый газ выделяется при реакциях горения.

Горение метана.

CH4 + 2O2 → CO2 + 2H2O + 891кДж

Co2 взаимодействие с оксидом металлаГорение газа на плите

Метан + кислород = углекислота + вода (в газообразном состоянии) + энергия

Горение этилена

C2H4 + 3O2 → 2CO2 + 2H2O + Q

Этилен + кислород = диоксид углерода + оксид водорода + энергия

Горение этана

2С2Н6 + 7О2 → 4CO2 + 6H2O + Q

Этан + кислород = двуокись углерода + вода + энергия

Горение этанола

C2H5OH + 3O2 = 3H2O + 2CO2 + Q

Co2 взаимодействие с оксидом металлаМолекула этанола

Этанол + кислород = вода + углекислота + энергия

6) Газ не поддерживает горения, этот процесс возможен только с некоторыми активными металлами, например, магнием.

2Mg + CO2 = C + 2MgO

Магний + углекислота = углерод + оксид магния.

MgO активно применяется при производстве косметических средств. Вещество используют в пищевой промышленности как пищевую добавку.

7) Двуокись углерода реагирует с гидроксидами с получением солей, которые существуют в двух формах, как карбонаты и бикарбонаты. Например, углекислый газ и гидроксид натрия, согласно формуле, образуют гидрокарбонат Na:

CO2 + NaOH → NaHCO3

диоксид углерода + гидроксид натрия → гидрокарбонат натрия.

Или же при большем количестве NaOH образуется карбонат Na с образованием воды:

CO2 + 2 NaOH → Na2CO3 + H2O

Диоксид углерода + гидроксид натрия → карбонат натрия + вода

Кислотно-щелочные реакции углекислоты используются на протяжении веков для затвердевания известкового раствора, что может быть выражено простым уравнением:

Ca(OH)2 + CO2 → CaCO3 + H2O

Гидроксид кальция + двуокись углерода → карбонат кальция + оксид водорода

В зелёных растениях играет важную роль в процессе фотосинтеза:

6CO2 + 6H2O → C6H12O6 + 6O2

Co2 взаимодействие с оксидом металлаОбразование глюкозы

Диоксид углерода + вода → глюкоза + кислород.

9) Химические свойства углекислоты используются в промышленности при производстве соды, суть этого процесса можно выразить суммарным уравнением:

NaCl + CO2 + NH3 + H2O → NaHCO3 + NH4Cl

Хлорид натрия + Диоксид углерода + аммиак + вода → гидрокарбонат натрия + хлорид аммония

10) Фенолят Na разлагается при взаимодействии с углекислым газом, при этом малорастворимый фенол выпадает в осадок:

C6H5ONa + CO2 + H2O = C6H5OH + NaHCO3

Фенолят натрия + двуокись углерода + оксид водорода = фенол + гидрокарбонат натрия

11) Пероксид натрия и углекислый газ, взаимодействуя, образуют среднюю соль карбоната Na с выделением кислорода.

2Na2O2 + 2CO2 → 2N2CO3 + O2

Пероксид натрия + углекислота → карбонат натрия + кислород

Co2 взаимодействие с оксидом металлаКолба с пероксидом натрия

Образование углекислоты происходит при растворении в воде кальцинированной соды (стиральной соды).

NaHCO3 + H2O → CO2 + H2O + NaOH

Гидрокарбонат натрия + вода → углекислота + вода + гидроксид натрия
При этой реакции (гидролиз по катиону) образуется сильнощелочная среда.

12) CO2 вступает в реакцию с гидроксидом калия, последний образуется путем электролиза хлористого калия.

2KOH + CO2 → K2CO3 + H2O

Гидроксид калия + углекислота → карбонат калия + вода

13) Газ в силу своего строения не реагирует с благородными газами, то есть гелием, неоном, аргоном, криптоном, ксеноном, радоном, оганесоном.

Заключение

Мы привели большую часть химических реакций, в которых участвует CO2. Ученые всего мира пытаются решить проблему увеличения концентрации углекислоты в воздухе, не без помощи реакций с другими веществами, которые известны химикам. А какие химические формулы взаимодействия углекислого газа знаете вы?

Оксиды углерода — урок. Химия, 9 класс

Оксид углерода((II)), или угарный газ

Оксид углерода((II)) CO образуется при неполном сгорании топлива. Это бесцветный газ без запаха. Он плохо растворяется в воде ((2,3) см³ в (100) см³ при (20) °С). Оксид углерода((II)) очень ядовит. При вдыхании его молекулы связываются с гемоглобином крови и препятствуют переносу кислорода.

Оксид углерода((II)) относится к несолеобразующим оксидам. При обычных условиях он не реагирует с водой, кислотами и основаниями.

Является сильным восстановителем. Восстановительные свойства проявляет в реакциях с оксидами металлов и кислородом. Оксид углерода((II)) отнимает кислород от оксидов металлов. В результате реакции образуются металл и углекислый газ:

  • Cu+2O+C+2O=tCu0+C+4O2.
  • Оксид углерода((II)) горит на воздухе голубым пламенем:
  • 2C+2O+O02=t2C+4O−22.
  • В реакции выделяется большое количество тепла.

Оксид углерода((IV)), или углекислый газ

Оксид углерода((IV)) CO2 — бесцветный газ без запаха. Он примерно в (1,5) раза тяжелее воздуха.

Малорастворим в воде (при комнатной температуре в (1) объёме воды растворяется (0,88) объёма CO2).

При охлаждении и повышенном давлении углекислый газ превращается в твёрдое вещество — «сухой лёд», который способен возгоняться, т. е. из твёрдого состояния переходить сразу в газообразное.

Co2 взаимодействие с оксидом металла

Рис. (1). Сухой лёд

Оксид углерода((IV)) — типичный кислотный оксид. Он взаимодействует с водой, основными оксидами и щелочами. В реакции с водой образуется неустойчивая угольная кислота:

  1. CO2+H2O⇄H2CO3.
  2. В реакциях с основными оксидами и щелочами образуются карбонаты:
  3. CO2+CaO=CaCO3,
  4. CO2+2NaOH=Na2CO3+H2O.
  5. При взаимодействии щёлочи с избытком углекислого газа образуются гидрокарбонаты:
  6. CO2+NaOH=NaHCO3.
  7. В углекислом газе степень окисления углерода максимальная, поэтому он может проявлять окислительные свойства. Так, магний горит в атмосфере углекислого газа:
  8. C+4O2+2Mg0=t2Mg+2O+C0.
  9. Получение:
  • в лаборатории углекислый газ получают действием кислот на карбонаты:

CaCO3+2HCl=CaCl2+H2O+CO2↑.

  • В промышленности для его получения используют прокаливание известняка:
  • CaCO3=tCaO+CO2↑.
  • В природе углекислый газ образуется при дыхании и сгорании топлива, при гниении и тлении органических веществ, а поглощается растениями в процессе фотосинтеза.
  • Угарный газ используется:
  • в качестве топлива;
  • как восстановитель в производстве чугуна;
  • для получения метанола.

Углекислый газ применяется:

  • в производстве газированных напитков;
  • для тушения пожаров;
  • для охлаждения пищевых продуктов («сухой лёд»).

Источники:

Рис. 1. Сухой лёд © ЯКласс

Формула – СО2. Молярная масса – 44 г/моль.

Химические свойства углекислого газа

Углекислый газ относится к классу кислотных оксидов, т.е. при взаимодействии с водой он образует кислоту, которая называется угольная. Угольная кислота химически неустойчива и в момент образования сразу же распадается на составляющие, т.е. реакция взаимодействия углекислого газа с водой носит обратимый характер:

  • CO2 + H2O ↔ CO2×H2O(solution) ↔ H2CO3.
  • При нагревании углекислый газ распадается на угарный газ и кислород:
  • 2CO2 = 2CO + O2.
  • Как и для всех кислотных оксидов, для углекислого газа характерны реакции взаимодействия с основными оксидами (образованными только активными металлами) и основаниями:
  • CaO + CO2 = CaCO3;
  • Al2O3 + 3CO2 = Al2(CO3)3;
  • CO2 + NaOH(dilute) = NaHCO3;
  • CO2 + 2NaOH(conc) = Na2CO3 + H2O.
  • Углекислый газ не поддерживает горения, в нем горят только активные металлы:
  • CO2 + 2Mg = C + 2MgO (t);
  • CO2 + 2Ca = C + 2CaO (t).
  • Углекислый газ вступает в реакции взаимодействия с простыми веществами, такими как водород и углерод:
  • CO2 + 4H2 = CH4 + 2H2O (t, kat = Cu2O);
  • CO2 + C = 2CO (t).
  • При взаимодействии углекислого газа с пероксидами активных металлов образуются карбонаты и выделяется кислород:
  • 2CO2 + 2Na2O2 = 2Na2CO3 + O2↑.

Качественной реакцией на углекислый газ является реакция его взаимодействия с известковой водой (молоком), т.е. с гидроксидом кальция, в которой образуется осадок белого цвета – карбонат кальция:

CO2 + Ca(OH)2 = CaCO3↓ + H2O.

Физические свойства углекислого газа

Углекислый газ – газообразное вещество без цвета и запаха. Тяжелее воздуха. Термически устойчив. При сжатии и охлаждении легко переходит в жидкое и твердое состояния. Углекислый газ в твердом агрегатном состоянии носит название «сухой лед» и легко возгоняется при комнатной температуре. Углекислый газ плохо растворим в воде, частично реагирует с ней. Плотность – 1,977 г/л.

Получение и применение углекислого газа

  1. Выделяют промышленные и лабораторные способы получения углекислого газа.

    Так, в промышленности его получают обжигом известняка (1), а в лаборатории – действием сильных кислот на соли угольной кислоты (2):

  2. CaCO3 = CaO + CO2 (t) (1);
  3. CaCO3 + 2HCl = CaCl2 + CO2↑ + H2O (2).

  4. Углекислый газ используется в пищевой (газирование лимонада), химической (регулировка температур при производстве синтетических волокон), металлургической (защита окружающей среды, например, осаждение бурого газа) и других отраслях промышленности.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Реакции с участием оксида и диоксида углерода

Диоксид углерода в смысле доступности и опасности отличается от CO радикально. Колоссальные количества этого вещества находятся в атмосфере и ежесекундно вырабатываются при сжигании топлива и жизнедеятельности живых организмов. Проблема глобального потепления как раз и связана с значительным повышением концентрации диоксида углерода в атмосфере по причине деятельности человека.

Любители спорить с этим как-то совершенно не учитывают тот очевидный факт, что человечество за сто с небольшим лет достало из недр земли и вернуло в атмосферу то, что в этих недрах накапливалось миллионами лет, уходя как раз из атмосферы за счёт фотосинтеза и захоронения растительных остатков на больших глубинах.

Тут как раз неплохо бы не доказывать, почему в атмосфере так сильно возрос уровень углекислоты, а желающим это опровергнуть – попробовать объяснить, куда подевался такой чудовищный объём возвращённого в атмосферу углекислого газа, и как может такое быть, что такое кратковременное изменение состава атмосферы вообще не имеет последствий.

А объём действительно чудовищный, ведь львиная доля потребностей всего человечества в энергии была покрыта за счёт сжигания ископаемого топлива.

Многим приходит в голову идея, что углекислый газ нужно из атмосферы забирать. А куда девать? Самое надёжное было бы отправить обратно в глубины земли. Но как это сделать совершенно непонятно.

И поскольку человек – существо недальновидное, но промысловатое, рождаются идеи как бы не просто углекислый газ из атмосферы забирать, но ещё что-то полезное из этого делать, что можно хорошо продать и тем самым покрыть расходы на это производство, да еще и наварить немного.

Получить пока из CO2 ничего особенного не удалось, но саму эту идею удалось хорошо продать политикам разных стран и чиновникам международных организаций так, что исследования в этой области в последние 10 лет стали финансировать не просто щедро, а прямо баснословно щедро.

В научных журналах последних 10 лет просто глаза рябит от статей про новые реакции из CO2, и в начале почти каждой такой статьи будет обязательно написано про благородную цель избавить человечество от медленного поджаривания и одновременное получение ценнейших материалов, лекарств, полимеров, и т.п. Большинство таких исследований производят совершенно комическое впечатление.

Что-то полезное в них подчас действительно получается, но авторы умудряются не замечать двух вещей: мизерных потребностей человечества в предлагаемых продуктах и огромных затрат материалов и энергии на осуществление предлагаемой реакции.

Проблема в том, что CO2 из атмосферы нужно убирать в масштабах десятков гигатонн, а всё производство органической продукции химической промышленности оценивается величинами в сто раз меньшими.

Поэтому даже в совершенно фантастическом варианте, когда вообще все органические материалы будут получать из CO2, количество забранного из атмосферы на эти цели диоксида углерода было бы пренебрежимо мало и на баланс углерода серьёзного влияния бы не оказало.

Точность современных оценок этого баланса гораздо больше, чем эти количества, и титанических усилий планета наша просто не заметила бы. Но, увы, это ещё не всё. На любой химический процесс тратится очень много энергии и материалов. В расчётах все такие затраты пересчитывают на затраченную энергию, и делают простую оценку, сколько CO2 при этом будет выброшено обратно в атмосферу – это называется “углеродным следом” продукции или процесса. Проблема ведь в том, что энергию до сих пор в основном получают сжиганием ископаемого топлива. Можно просто взять энергетические и топливные балансы крупных стран, чтобы в этом убедиться. Да, когда-нибудь энергию будут получать целиком из возобновляемых источников с нулевым углеродным следом. Но тогда и выброс CO2 в атмосферу уменьшится действительно радикально, планета придёт к новому балансу, и смысла забирать из атмосферы углекислоту не будет.

Очень забавный пример уровня таких рассуждений – часто приводимый пример того, что диоксид углерода уже используется в больших масштабах в промышленности – производство карбамида, то есть мочевины из аммиака и углекислого газа. Это действительно очень крупномасштабный процесс.

И мочевина совершенно официально считается органическим соединением, и даже более того – первым органическим соединением, полученным синтезом из более простых, официально неорганических соединений. Считается, что именно с этой реакции, реакции Вёлера, идёт вся органическая химия как наука.

Это всё очень трогательно, если забыть, для чего используется получаемая таким образом мочевина. Но – это удобрение, азотное удобрение, очень хорошее. И первое, что с ним происходит, когда оно попадает в почву – расщепление микроорганизмами на ион аммония и – диоксид углерода.

Это Бог дал – Бог и взял. А у нас всё наоборот – углекислый газ взяли – углекислый газ и отдали. Ну, хоть растения растут, но CO2 вернулся в атмосферу.

На самом деле даже в гораздо больших количествах, чем взяли, потому что аммиак, необходимый для этой реакции, образуется очень энергозатратным синтезом Габера-Боша, имеющим очень большой углеродный след.  

Всё это безусловно не значит, что заниматься химией CO2 не стоит. Химией вообще заниматься стоит, но именно с целью получения полезных материалов и веществ. Если будет хороший процесс с использованием углекислоты – очень хорошо.

Пока с этим не очень хорошо, но нас должна вдохновлять Природа, которая очень хорошо справляется с CO2 – для неё это основной источник углерода (carbon feedstock) для синтеза всех органических соединений, и это не только фотосинтез, но и довольно многочисленные реакции ферментативного карбоксилирования.  

Соединения углерода

Способы получения угарного газа

В промышленности угарный газ получают:

  • при пропускании воздуха через раскаленный уголь:

C + O2 → CO2

CO2 + C → 2CO

  • паровая конверсия метана – взаимодействие перегретого водяного пара (температура – 800-900ºС) с метаном. В качестве катализаторов используют Ni, MgO, Al2O3:

СН4 + Н2O → СО + 3Н2

  • взаимодействие метана с углекислым газом (температура – 800-900ºС, кат. – Ni, MgO, Al2O3):

СН4 + CO2 → 2СО + 2Н2

  • горение углерода в недостатке кислорода (неполное окисление углерода):

2C + O2 → 2CO

  • неполное окисление метана:

2СН4 + О2 → 2СО + 4Н2

В лаборатории угарный газ можно получить:

  • Нагреванием муравьиной кислоты в присутствии концентрированной серной кислоты:

НСООН → CO + H2O

  •  Нагреванием щавелевой кислоты в присутствии концентрированной серной кислоты:
  • H2C2O4 → CO + CO2 + H2O
  • Химические свойства угарного газа
  • СО – несолеобразующий оксид
  • Формально СО
    можно рассматривать как ангидрид муравьиной кислоты, т.к. он образуется при
    дегидратации муравьиной кислоты:
  1. НСООН → CO + H2O
  2. А также
    образование формиата натрия в реакции с гидроксидом натрия при высоком
    давлении:
  3. CO + NaOH → HCOONa
  4. Однако при обычных условиях он не вступает в реакции с
    водой, кислотами и щелочами, поэтому относится к типу несолеобразующих оксидов.
  5. Является сильным восстановителем, поэтому реагирует с окислителями:
  • Горит синим пламенем в атмосфере кислорода:

2СO + O2→ 2CO2

  • Окисляется
    хлором
    в присутствии катализатора или под
    действием света с образованием ядовитого газа фосгена:

CO + Cl2 → COCl2

  • Окисляется другими сильными окислителями до углекислого газа или
    карбонатов:

CO + Na2O2→ Na2CO3

  • Восстанавливает
    металлы
    из оксидов (при Т~300 — 1500ºС):
  • СО + CuO → Cu + CO2
  • СО + NiO → Ni + CO2
  • 4CO + Fe3O4→ 3Fe + 4CO2
  • Восстановление
    водорода
    из воды в присутствии катализатора Fe, Cr при температуре 400-500 ºС:

СО + Н2О= CO2 + Н2

  • Восстановление некоторых благородных металлов из солей:

СО + PdCl2 + Н2О→ Pd + CO2 + 2HCl

  • Взаимодействие с водородом при повышенном давлении. Из синтез-газа (смеси угарного газа и водорода) при определенных условиях (P, T, kt) можно получить метанол, метан, или другие углеводороды:
  1. СО + 2Н2 → СН3ОН
  2. СО + 3Н2 → СН4 +
    Н2О
  3. nСО + (2n+1)Н2 → СnН2n+2 + nН2О
  • Образование
    карбонилов металлов
    при
    нагревании:

4СO + Ni = [Ni(СO)4]

4СO + Fe = [Fe(СO)5]

  • Образование
    карбоксигемоглобина
    при
    связывании угарного газа с гемоглобином крови подобно кислороду:

HbO2 + CO = HbCO + O2

Этим свойством СО и объясняется его
высокая токсичность для организма человека.

Диоксид углерода (углекислый газ)

Способы получения углекислого газа

  • CO2 – Конечный продукт окисления органических веществ в клетках аэробных организмов
  • Образуется
    при действии сильных
    кислот
    на карбонаты
    (
    растворимые и нерастворимые) и гидрокарбонаты
    металлов:

CaCO3 + 2HCl → CaCl2 + H2O + CO2

NaHCO3 + HBr → NaBr +H2O +CO2

  • При взаимодействии растворимых карбонатов с растворимыми солями алюминия, железа (III) и хрома (III), которые необратимо гидролизуются в водном растворе:

2AlCl3 + 3K2CO3 + 3H2O → 2Al(OH)3↓ + CO2↑ + 6KCl

  • При
    термическом разложении нерастворимых
    карбонатов
    и при разложении растворимых гидрокарбонатов:

CaCO3 → CaO + CO2

2NaHCO3 → Na2CO3 + H2O +CO2

  • При сжигании всех видов топлив:

СxHy + O2 = H2O + CO2

  • При
    спиртовом брожении глюкозы под действием ферментов:
  • С6H12O6 → 2CO2 + 2C2H5OH
  • Химические свойства углекислого газа
  • Углекислый
    газ — типичный кислотный
    оксид
    . Проявляет слабые окислительные
    свойства
  • Качественная реакция на углекислый газ — помутнение известковой воды:

Ca(OH)2 + CO2 → CaCO3 + H2O

  • Взаимодействует с водой, но реакция сильно обратима, и с водой соединяется лишь 1% молекул угольной кислоты:

CO2 + H2O ↔ H2CO3

  • С основными оксидами и сильными основаниями (щелочами), с образованием карбонатов или гидрокарбонатов. При этом возможно образование как кислых, так и средних солей:
  1. Na2O + CO2 → 2Na2CO3
  2. KOH + CO2  → KHCO3
  3. 2KOH + CO2 → K2CO3+ H2O
  • С карбонатами, с образованиемгидрокарбонатов:

Na2CO3 + CO2+ H2O → 2NaHCO3

  • С водными растворами солей, образованными кислотами, слабее угольной (очень слабые кислоты):

Na2SiO3 + CO2 + H2O = H2SiO3 + Na2CO3

C6H5OK + CO2+ H2O → C6H5OH + KHCO3

  • С
    некоторыми восстановителями:
  • CO2 + 3H2 → 2CН3OН + H2O
  • CO2 + C → 2CO
  • 2Мg +
    CO2C
    + 2MgO

Внимание! Магнийгорит в атмосфере углекислого газа, поэтому горящий магний нельзя тушить углекислотными огнетушителями.

  • В листьях растений на свету из CO2 и H2O образуются углеводы и кислород:

                                 nCO2 + mH2O = Cn(H2O)m + nO2

  • С пероксидом натрия, с образованием карбоната натрия:

2CO2 + 2Na2O2 → 2Na2CO3 + O2

  • Синтез карбамида (мочевины):

CO2 + 2NH3 = CO(NH2)2 + H2O

  • Получение питьевой соды по методу Сольвэ:

NaCl + CO2 + NH3 + H2O= NaHCO3 + NH4Cl

Угольная кислота и карбонаты

  1. Химические свойства угольной кислоты и карбонатов
  2. Угольная
    кислота –
    слабая двухосновная
    кислота
  3. Угольная кислота существует только в водном растворе, где количество ее
    молекул и анионов в сотни раз меньше, чем количество растворенных молекул
    углекислого газа CO2
  • Диссоциирует по 2-м ступеням с образованием гидрокарбонат- и карбонат ионов:
  • H2CO3 ↔ H+ + НCO3—
  • НCO3— ↔ H+ + CO32-
  • H2CO3 как индивидуальное соединение неустойчиво и не имеет практического значения, но ее соли устойчивы и нашли широкое применение.
  • Растворимыми являются карбонаты щелочных металлов. Высокая степень гидролиза является причиной щелочной реакции их водных растворов рН(0,1 М р-ра) ~ 11,7:

Na2CO3 + H2O = NaOH + NaHCO3

CO32-+ H2O = OH— + HCO3—

  • Все
    карбонаты, кроме карбонатов щелочных металлов и аммония при нагревании (более
    900ºС) разлагаются до оксида металла и оксида углерода (IV):
  1. CaCO3 → CaO + CO2
  2. Карбонат аммония при нагревании разлагается иначе:
  3. (NH4)2CO3 → 2NH3 + 2H2O + CO2
  • Качественной реакцией является взаимодействие с кислотами является на ионы СО32─ и НСО3− в результате которой происходит выделение СО2:

Na2CO3 + 2HCl → 2NaCl +
CO2 ↑ + H2O

  • при взаимодействии с разбавленными растворами соляной или серной кислот происходит выделение углекислого газа, который затем пропускают через раствор известковой воды. При этом наблюдается помутнение раствора:
  • NaHCO3 + HCl → NaCl + CO2 ↑ + H2O
  • CO2 + Сa(OH)2 = CaCO3↓ + H2O
  • При дальнейшем пропускании раствор вновь становится прозрачным,
    помутнение исчезает:
  • CaCO3 + CO2 + H2O = Сa(НCO3)2
  • Переход в гидрокарбонаты при пропускании CO2 через растворы карбонатов или постепенном добавлении кислот:

Na2CO3 + CO2 + H2O = 2NaНCO3 

Na2CO3 + HCl → NaНCO3 + NaCl

  • Гидрокарбонаты все, кроме NaНCO3 легко растворяются в воде. Водные растворы также имеют щелочную реакцию вследствие гидролиза:

НCO3—+ H2O = OH— + H2CO3

  • при нагревании гидрокарбонаты переходят в карбонаты или гидроксиды:

2NaHCO3 → Na2CO3 + CO2 ↑+ H2O

Mg(HCO3)2 = Mg(OH)2↓ + 2CO2↑+ H2O

Химические свойства оксидов для ЕГЭ 2022

добавить в закладки

Классификация оксидов:

1 группа — несолеобразующие — N2O, NO, CO, SiO.

2 группа — солеобразующие:

  1. Основные — это такие оксиды, которым соответствуют основания. Оксиды металлов, степень окисления которых +1, +2 : Na2O, CaO, CuO, FeO, CrO. Реагируют с избытком кислоты с образованием соли и воды. Основным оксидам соответствуют основания: 1) щелочные металлы; 2) щелочноземельные металлы; 3) некоторые — CrO, MnO, FeO. Типичные реакции основных оксидов:
    • Основный оксид + кислота → соль + вода (реакция обмена).
    • Основный оксид + кислотный оксид → соль (реакция соединения)
    • Основный оксид + вода → щелочь (реакция соединения).
  2. Кислотные— это такие оксиды, которым соответствуют кислоты.Оксиды неметаллов. Оксиды металлов, степень окисления которых > +5: SO2, SO3, P2O5, CrO3, Mn2O7. Реагируют с избытком щелочи с образованием соли и воды. Типичные реакции кислотных оксидов:
    • Кислотный оксид + основание → соль + вода (реакция обмена).
    • Кислотный оксид + основный оксид → соль (реакция соединения).
    • Кислотный оксид + вода → кислота (реакция соединения)
  3. Амфотерные — это оксиды, которые в зависимости от условий проявляют основные или кислотные свойства. Оксиды металлов, степень окисления которых +2, +3, +4: BeO, ZnO, Al2O3, Cr2O3, MnO2. Взаимодействуют как с кислотами так и с основаниями. Реагируют с основными и кислотными оксидами. Амфотерные оксиды с водой непосредственно не соединяются. Типичные реакции амфотерных оксидов:
    • Амфотерный оксид + кислота → соль + вода (реакция обмена).
    • Амфотерный оксид + основание → соль + вода или комплексное соединение.

Оксид углерода 2 и 4

Оксид углерода(II) в химическом отношении – инертное вещество. Не реагирует с водой, однако при нагревании с расплавленными щелочами образует соли муравьиной кислоты: CO + NaOH = HCOONa.

  • Взаимодействие с кислородом
  • При нагревании в кислороде сгорает красивым синим пламенем: 2СО + О2 = 2СО2.
  • Взаимодействие с водородом: СО + Н2 = С + Н2О.

Взаимодействие с другими неметаллами. При облучении и в присутствии катализатора взаимодействует с галогенами: СО + Cl2 = COCl2 (фосген). и серой СО + S = COS (карбонилсульфид).

  1. Восстановительные свойства
  2. СО – энергичный восстановитель. Восстанавливает многие металлы из их оксидов:
  3. C+2O + CuO = Сu + C+4O2.
  4. Взаимодействие с переходными металлами
  5. С переходными металлами образует карбонилы:
  • Ni + 4CO = Ni(CO)4;
  • Fe + 5CO = Fe(CO)5.

Оксид углерода (IV) (углекислый газ, диоксид углерода, двуокись углерода,угольный ангидрид) — CO2, бесцветный газ (в нормальных условиях), без запаха, со слегка кисловатым вкусом. Химически оксид углерода (IV) инертен.

Окислительные свойства

С сильными восстановителями при высоких температурах проявляет окислительные свойства. Углем восстанавливается до угарного газа: С + СО2 = 2СО.

  • Магний, зажженный на воздухе, продолжает гореть и в атмосфере углекислого газа: 2Mg + CO2 = 2MgO + C.
  • Свойства кислотного оксида
  • Типичный кислотный оксид. Реагирует с основными оксидами и основаниями, образуя соли угольной кислоты:
  • Na2O + CO2 = Na2CO3,
  • 2NaOH + CO2 = Na2CO3 + H2O,
  • NaOH + CO2 = NaHCO3.

Качественна реакция — для обнаружения углекислого газа является помутнение известковой воды:

Ca(OH)2 + CO2 = CaCO3↓ + H2O.

В начале реакции образуется белый осадок, который исчезает при длительном пропускании CO2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат: CaCO3 + H2O + CO2 = Сa(HCO3)2.

Изучай химические свойства

  • кислот,
  • металлов и неметаллов,
  • солей,
  • оснований и амфотерных гидроксидов.

Решай с ответами:

  • задание 5 по химии
  • задание 7 по химии
  • задание 10 по химии
Понравилась статья? Поделиться с друзьями:
Станок