Изменение проводимости металла от температуры

Содержание
  1. Сопротивление
  2. Коэффициент сопротивления
  3. Газы
  4. Жидкости
  5. Сверхпроводимость
  6. Применение
  7. Резистор
  8. Терморезистор
  9. Термометр сопротивления
  10. Газ
  11. Заключение
  12. Видео по теме
  13. Электронная проводимость металлов. Зависимость сопротивления от температуры
  14. Влияние температуры металла на его электропроводность
  15. Таблица удельных сопротивлений проводников и металлов. – Магазин "Электрик" в Рогачеве, услуги электрика
  16. Проводимость и сопротивление
  17. Проводники и диэлектрики
  18. Сопротивление провода
  19. Какое сопротивление меди и алюминия
  20. Свойства резистивных материалов
  21. Удельное сопротивление металлов, электролитов и веществ (Таблица)
  22. Удельное сопротивление металлов и изоляторов
  23. Таблица удельное сопротивление металлов
  24. Таблица удельное сопротивление изоляторов
  25. Удельное сопротивление чистых металлов при низких температурах
  26. Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К
  27. Удельное сопротивление электролитов
  28. Состав и структура железа

При проектировании электрических схем, инженеры сталкиваются с тем, что проводники обладают определенным сопротивлением, на которое оказывают влияния температурные колебания.

Статья даст подробное описание, что такое зависимость сопротивления от температуры и как температура влияет на проводимость различных веществ — металлов, газов и жидкостей.

Дополнительно будет приведена формула расчета такой зависимости.

Изменение проводимости металла от температуры

Сопротивление

Сопротивлением называется способность проводника пропускать через себя электрический ток. Единицей измерения данной физической величины является Ом. На принципиальных схемах эта величина обозначается буквой «R».

На величину сопротивления любого проводника электрическому току влияет его структура. Двигаясь внутри структуры, свободные электроны сталкиваются с атомами и электронами, которые замедляют их движение.

Чем их концентрация больше, тем выше будет само электрическое сопротивление.

Изменение проводимости металла от температуры

О способности проводников проводит электрический ток судят по величине его удельного сопротивления.

Удельное сопротивление проводника — это сопротивление протеканию тока через проводник из любого вещества с площадью поперечного сечения 1 м² и длиной один метр. Обозначается в физике данная величина буквой «ρ».

Данный параметр является табличной величиной и измеряется в системе СИ как Ом×м (может также измеряться в Ом×см и Ом×мм²/м).

Изменение проводимости металла от температуры

Коэффициент сопротивления

Во время работы электрических цепей прослеживается прямая зависимость сопротивления металлов от температуры. Это явление называют коэффициентом температурного сопротивления. Оно определяет соотношение сопротивления к температурным изменениям.

Объясняется это явление следующим образом: с повышением температуры структура проводника получает долю тепловой энергии, вследствие чего эта энергия увеличивает скорость движения атомов. В результате повышается вероятность их столкновения со свободными электронами.

Чем чаще происходят эти столкновения, тем ниже будет проводимость.

Можно провести простой опыт: в электрическую схему из аккумулятора и омметра подключим кусок медной проволоки. При таком подключении схема будет иметь строго определенное значение сопротивления.

Далее надо будет нагреть медную проволоку. В момент нагрева можно заметить, что сопротивление всей схемы растет, а после остывания проводника оно наоборот уменьшается.

На основании такого опыта довольно просто прослеживается температурная зависимость сопротивления проводника.

Изменение проводимости металла от температуры

Температурный коэффициент отображает увеличение сопротивления при изменении температуры вещества на 1 градус. Для максимально чистого металла это значение равняется 0.004 °С-1.

То есть, при увеличении температуры на 10 градусов, электрическая проводимость в металлах изменится на 4 % в большую сторону. Данная величина обозначается буквой «α».

При расчете сопротивления через удельное сопротивление используется такая формула:

В данной зависимости:

  1. «R» — сопротивление, Ом;
  2. «l» — длина проводника, м;
  3. «s» — поперечное сечение проводника, м²;
  4. «ρ» — значение удельного сопротивления, Ом×м.

Зависимость проводимости металлического проводника от температуры можно проследить с помощью таких выражений:

Изменение проводимости металла от температуры

Для металлов все предельно просто — изменение температуры приводит к увеличению его сопротивления. Ниже будет дано описание этой зависимости для газов, которые по своей природе являются диэлектриками.

Для закрепления материала, решим следующую задачу:

Имеется стальной проводник, диаметр которого равен один миллиметр, а длина его составляет 100 метров. Определите сопротивление такого проводника из стали, если величина удельного сопротивления стального проводника составляет 12×10-8 Ом×м.

  • Решение:
  • d=1 мм;
  • l=100 м;
  • ρ=13×10-8 Ом×м;
  • R–?
  • Определяем сопротивление проводника по формуле:
  • R=ρ(l/S)
  • где S является площадью поперечного сечения. Определить площадь можно с помощью формулы:

S= π×r2= π×d2/22=3.14×(1×10-3)2/4=3.14×10-6/4=0.785×10-6м2

После этого можно определить сопротивление:

R=12×10-8×100/(0.785×10-6)=15.287 Ом

Газы

Газы не являются проводниками, но их проводимость так же зависит от температуры. Происходит это за счет так называемого эффекта ионизации. Ионизация в газах происходит за счет насыщения их жидкостью или иными веществами, которые способны проводить электрический ток. Проследить то, как увеличивается сопротивление при повышении температуры газа можно на таком опыте.

Изменение проводимости металла от температуры

К схеме с амперметром и аккумулятором добавим 2 металлические пластины, которые не соприкасаются друг с другом. Такая электрическая цепь является разомкнутой. Между пластинами поместим зажженную горелку. При нагреве происходит смещение стрелки амперметра в сторону увеличения. То есть такую цепь можно считать замкнутой.

На основании этого можно сделать вывод, что с ростом температуры воздух ионизируется, происходит снижение его сопротивления и увеличение проводимости заряженных электронов. Данный эффект называют пробоем изоляционного слоя газа, зависящий от степени их ионизации и величины протекающего напряжения.

Подобное явление знакомо каждому из нас — это грозовой разряд.

Жидкости

В жидкостях прослеживается обратная зависимость. С увеличением температуры, сопротивление жидкого проводника уменьшается. Для электролита свойственно правило отрицательного значения температурного коэффициента — а˂0. Удельное сопротивление электролита рассчитывается следующим образом:

ρ= ρ0(1+ αt) или R=R0(1+ αt), где а˂0.

При этом увеличившееся значение температуры электролита сопровождается уменьшением сопротивления и ростом его проводимости.

Изменение проводимости металла от температуры

Сверхпроводимость

Снижение температуры металлических проводников сильно увеличивает их проводимость.

Это связано с тем, что в структуре вещества замедляется движение атомов и электронов, благодаря чему снижается вероятность их столкновения со свободными электронами.

При температуре абсолютного 0 (–273 градуса Цельсия) возникает явление падения до нуля сопротивления проводника. Зависимость сопротивления проводника от температуры при абсолютном 0 — сверхпроводимость.

Температура, при которой обычный проводник становится сверхпроводником, называется критической. Она будет разной для различных чистых металлов и сплавов. Все будет зависеть от их структуры, химического состава и структуры кристаллов.

Например, серое олово с алмазной структурой является полупроводником. Но белое олово при своей тетрагональной кристаллической ячейке, мягкости и плавкости, переходит в состояние сверхпроводника при температуре 3.70 К.

Также при критической температуре прослеживается целый ряд других способностей:

  1. Повышение частоты переменного тока вызывает рост сопротивления, значение гармоник с периодом световой волны.
  2. Способность удерживать величину силы тока ранее приложенного, а затем отключенного источника.

Изменение проводимости металла от температуры

Металл или сплав может перейти в состояние сверхпроводника и при нагревании. Такое явление называют высокотемпературной проводимостью. Ответ на вопрос, почему от высокой температуры сопротивление металлов снижается, может довольно просто объяснить их кристаллическая структура.

В момент нагрева до критических значений, электроны перестают хаотично перемещаться внутри структуры вещества. Они выстраиваются в цепочку. Такое построение не мешает движению свободных электронов, а значит падает общее сопротивление.

Переход в состояние высокотемпературной проводимости начинается с порога 1000К и этот показатель выше, чем точка кипения азота.

Применение

Свойство проводников изменять сопротивление при определённой температуре используют для создания различных элементов электрических схем и измерительных приборов. О них будет рассказано далее в данной статье.

Резистор

Сопротивление устройств старого типа сильно зависело от их нагрева. При нагревании проводимость резистора пропорционально изменялась в меньшую сторону.

Для электрических цепей требуется идеальный резистор, который обладает наивысшим коэффициентом проводимости.

Для снижения нагрева при производстве данных устройств теперь используется материал, имеющий малую зависимость сопротивления от температуры нагрева. Это позволило применять резисторы с малым сопротивлением для цепей с большим напряжением.

Терморезистор

Существует отдельная группа резисторов, которые применяют для измерения температуры. Особенностью такого устройства является то, что он может снижать свою проводимость при нагреве. При этом он отключает цепь при достижении определенного порогового значения.

Термометр сопротивления

Это прибор был разработан для измерения температуры среды. Он состоит из тонкой платиновой проволоки, защитного чехла и корпуса. Прибор имеет стабильную реакцию на перепады температуры. Измеряемой величиной в данном устройстве служит сопротивление этой проволоки из платины. Чем выше будет температура, тем сопротивление соответственно будет больше.

Понижение сопротивления так же фиксируется, так как в этот момент меняются проводимость и сопротивление. Для измерения температуры термометром сопротивления, в настоящее время применяются проволочные индикаторы из разнообразных металлов. В зависимости от свойств используемого металла, погрешность устройства может составлять не более 0.1 %.

Благодаря этому достигается очень высокая точность измерения температуры.

Газ

Самый известный нам газовый проводник — это люминесцентная лампа. Газ нагревается за счет увеличения напряжения между анодом и катодом лампы.

Известным жидкостным проводником является щелочной аккумулятор. При понижении температуры нарушается структура жидкости и изменяется ее сопротивление.

Нагрев провоцирует движение атомов и электронов, увеличивая сопротивление и зарядный ток устройства.

Заключение

В данной статье мы рассмотрели, как зависит сопротивление от температуры. Металлы, газы и жидкости имеют свойства изменять свою проводимость и сопротивление при температурных перепадах.

Это свойство изменения электрического сопротивления используются для измерения температуры среды.

Читайте также:  Проверочная работа по химии 9 класс общая характеристика металлов

Наибольшая точность измерений температуры в настоящее время достигается за счет применения современных материалов, даже в бытовой технике.

Видео по теме

Электронная проводимость металлов. Зависимость сопротивления от температуры

Как вы знаете, электрический ток могут проводить и твердые, и жидкие, и газообразные тела. На практике, чаще всего применяются металлические проводники. Можно привести много примеров: линии электропередач, обеспечивающие передачу энергии от различных источников тока к потребителям.

Изменение проводимости металла от температуры

Генераторы, электронагревательные приборы и так далее. Как мы уже говорили ранее, хорошими проводниками являются некоторые растворы. Наиболее распространенный пример — это батарейка, в которой используется электролит. Примеров использования батарей и аккумуляторов тоже достаточно: они используются в автомобилях, ноутбуках, мобильных телефонах, планшетах и так далее.

Напомним, что помимо проводников, существуют такие тела, как полупроводники и диэлектрики. Как вы знаете, диэлектрики используются для изоляции проводки или электроприборов. Полупроводники представляют довольно большой интерес, поскольку их проводимостью достаточно легко управлять, а это открывает большие возможности.

Со всем выше перечисленным мы познакомимся по окончании курса физики десятого класса, и начнем с проводимости металлов.

Мы уже много раз говорили, что электрический ток — это упорядоченное движение заряженных частиц, и всегда утверждали, что в металлах носителями свободных зарядов являются электроны. Дело в том, что за этим утверждением стоят многочисленные опыты разных ученых. Мы рассмотрим несколько таких опытов.

В 1901 году, Эдуард Рикке провел следующий эксперимент: он подключил к электрической цепи металлические цилиндры, плотно прилегающие друг к другу. В центре находился алюминиевый цилиндр, а по краям — медные.

В течение приблизительно одного года через эти цилиндры протекал электрический ток. После окончания эксперимента, все три цилиндра были исследованы на предмет изменения химического состава.

Выяснилось, что никаких изменений не произошло, за исключением очень незначительной диффузии. Это послужило доказательством того, что ток в металлах обусловлен именно движением электронов.

Если бы в движении участвовали какие-то другие частицы (например, ионы кристаллической решетки), то это, неизбежно привело бы к изменению химического состава.

Другой опыт, был проведен в 1912 году учеными Леонидом Мандельштамом и Николаем Папалекси. К катушке, которая могла вращаться вокруг своей оси, был подключен гальванометр при помощи скользящих контактов.

При резкой остановке катушки, гальванометр регистрировал кратковременные токи. Дело в том, что при резкой остановке заряженные частицы какое-то время могли двигаться по инерции относительно проводника (то есть проволоки катушки).

Поскольку сила тока характеризуется зарядом, а инерция — массой частиц, переносимый при торможении заряд пропорционален отношению заряда частиц к их массе.

Из этого эксперимента было определено это соотношение, которое совпало с найденным до этого из других опытов отношением модуля заряда электрона к его массе:

Таким образом, эксперимент Мандельштама и Папалекси еще раз подтвердил, что ток в металлах обусловлен движением электронов. Поэтому, проводимость металлов называют электронной проводимостью.

Вы уже знаете, что электроны в металлах двигаются с постоянной скоростью из-за того, что взаимодействуют с ионами кристаллической решетки. Это приводит к тому, что скорость движения электронов пропорциональна напряженности электрического поля:

В свою очередь, напряженность пропорциональна напряжению. Из чего мы можем заключить, что скорость электронов в проводнике пропорциональна напряжению на концах этого проводника:

Напомним, что не так давно мы выяснили, что скорость также пропорциональна и силе тока:

Из этого мы можем сделать вывод, что ???? ~ ????, а это подтверждает закон Ома.

Теперь, когда мы выяснили, что электрический ток в металлах действительно обусловлен движением электронов, следует обратить внимание на одно из следствий этого явления.

Электроны взаимодействуют с ионами кристаллической решетки и, тем самым нагревают проводник. Но, чем больше проводник нагревается, тем более интенсивными становятся колебания частиц проводника и тем больше они мешают движению электронов.

Следовательно, в металлах существует определенная зависимость их электрического сопротивления от температуры.

Экспериментально была установлена зависимость сопротивления от температуры:

В формуле мы видим коэффициент пропорциональности α, который называется температурным коэффициентом сопротивления. Мы можем немного преобразовать выражение, описывающее зависимость сопротивления от температуры, чтобы дать определение температурному коэффициенту сопротивления:

Итак, температурный коэффициент сопротивления численно равен относительному изменению сопротивления при нагревании на 1 оС. Под относительным изменением сопротивления понимается отношение изменения сопротивления к конечному сопротивлению. Поскольку мы выяснили, что у металлов сопротивление увеличивается с увеличением температуры, можно сделать вывод, что для всех металлов коэффициент α > 0.

  • Вспомним, что сопротивление проводника зависит от трех величин: удельное сопротивление материала, из которого сделан проводник, площадь поперечного сечения проводника и его длина:
  • Поскольку геометрические размеры проводника при нагревании меняются ничтожно мало, можно сделать вывод, что изменяется удельное сопротивление:
  • Из полученной формулы можно сделать вывод, что удельное сопротивление металлов линейно зависит от температуры.

Эта зависимость используется в так называемых термометрах сопротивления. Термометр сопротивления представляет собой проводник, зависимость сопротивления которого от температуры хорошо известна.

Чаще всего используют платиновую проволоку. Измеряя ее сопротивление можно судить о температуре.

Преимущество подобного термометра заключается в том, что он пригоден для измерения температур в значительно более широком диапазоне, чем это возможно, используя жидкостные термометры.

Возникает вопрос: а что будет происходить при очень низких температурах? Этим вопросом еще в 1911 году задался Хейке Камерлинг-Оннес. В качестве опыта, он поместил ртуть в жидкий гелий и наблюдал, как постепенно уменьшается удельное сопротивление с падением температуры.

Однако, когда температура опустилась до четырех целых одной десятой кельвина, сопротивление резко упало до нуля. Такое явление получило название сверхпроводимости, а температура, при которой наступает это состояние, была названа критической температурой.

Явление сверхпроводимости возникает во многих металлах при достаточно низких температурах (около 25 К). Это явление можно объяснить тем, что при таких низких температурах беспорядочное движение электронов становится очень незначительным. Иными словами, они двигаются, не соударяясь с ионами кристаллической решетки, таким образом, не замедляя своего движения и не нагревая проводник.

Конечно, это объяснение существенно упрощено, но оно дает общее представление о том, как возникает явление сверхпроводимости. Тот факт, что в состоянии сверхпроводимости проводники не нагреваются, открывает большие перспективы.

Если найти способ создать явление сверхпроводимости при обычных (комнатных) температурах, то можно было бы передавать электроэнергию по проводам без всяких потерь.

Сверхпроводимость используется для создания электромагнитов, которые могут создавать магнитное поле в течение длительного времени без всяких потерь энергии.

Также, сверхпроводящие магниты используются в ускорителях элементарных частиц (таких как Большой Адронный Коллайдер). В 1986 году удалось создать некоторые соединения, переходящие в состояние сверхпроводимости при температурах около 100 К.

На сегодняшний день, нет известных соединений, в которых бы наблюдалась сверхпроводимость при температуре выше 138 К (при нормальном давлении).

Рассмотрим еще один интереснейший эффект явления сверхпроводимости, который получил название эффекта Мейснера. Поместим два керамических цилиндра в специальную емкость и зафиксируем их.

При температуре 93 К эти цилиндры становятся сверхпроводящими. Для охлаждения можно использовать жидкий азот. Если теперь поднести к цилиндрам достаточно сильный магнит, то он зависнет над ними. Как вы знаете из курса физики девятого класса, при изменении магнитного потока через контур, возникает индукционный ток.

В обычных условиях, этот ток был бы незначительным и кратковременным. Однако, в состоянии сверхпроводимости, сопротивление равно нулю, поэтому, ток продолжает течь по цилиндрам. Этот ток создает магнитное поле, которое и вызывает силы отталкивания между цилиндрами и магнитом.

Если же теперь мы поместим над цилиндрами магнит в виде колесика и раскрутим его, то он будет продолжать крутиться до тех пор, пока цилиндры находятся в состоянии сверхпроводимости. Заметим, что магнит крутится, не касаясь цилиндров и не нагреваясь, то есть никаких потерь энергии не происходит.

Тем не менее, нет возможности получить сколь угодно большой ток в сверхпроводниках, поскольку определенное критическое значение силы тока разрушает состояние сверхпроводимости.

Однако, конструкции, основанные на подобном принципе, могли бы существенно усовершенствовать электродвигатели и генераторы, значительно упростить устройства для аккумулирования энергии и многое другое. Поэтому, сегодня получение сверхпроводимости при комнатных температурах является одной из очень важных задач в физике.

Читайте также:  Как ставить арматуру для стен

Влияние температуры металла на его электропроводность

При снижении температуры утихают колебания кристаллической решётки, это облегчает прохождение электронов и электропроводность металлических проводников возрастает, а сопротивление уменьшается.

Рассмотрим график типичной зависимости удельного электрического сопротивления проводника от температуры на примере меди (рисунок 2.2).

В широком диапазоне температур увеличение сопротивления пропорционально увеличению температуры, на графике это выглядит как прямолинейный наклонный участок.

Рост сопротивления представляет собой повышение рассеяния электронов из-за усиления тепловых колебаний ионов и связанной с ними флуктуации электростатического поля кристаллической решётки.

Относительное изменение удельного электрического сопротивления при изменении температуры на один градус Кельвина называют температурным коэффициентомудельного электрического сопротивления; обозначают какТКρ или αρ, у меди αρ = 4,33 · 10–3 К–1.

Для большинства металлов ТКρ составляет несколько тысячных долей на кельвин; от 0,9 · 10–3 К–1 у ртути, до 6,7 · 10–3 К–1 у никеля.

  • В пределах прямолинейного участка температурной характеристики справедливо соотношение
  • ρ2 = ρ1[1 + αρ(Т2– Т1)],
  • где ρ1 и ρ2 – значения удельных электрических сопротивлений, соответству-
  •                ющих значениям температуры Т1 и Т2;
  •         αρ – температурный коэффициент удельного электрического
  •                 сопротивления.
Рисунок 2.2 – Зависимость удель­ного электрического сопротивле­ния меди ρ от температуры

В особо чистых металлах при сверхнизких температурах наблюдается криопроводимость, при этом сопротивление стремится к значению ρ0, называемому остаточным сопротивлением (этот участок показан на рисунке 2.

2 в увеличенном виде). Остаточное сопротивление обусловленное примесями и дефектами структуры, в тысячи раз ниже, чем сопротивление при комнатной температуре. Правило Матиссена позволяет представить удельное электрическое сопротивление проводника ρ как сумму тепловой составляющей ρт и остаточного сопротивления ρ0,

  1. ρ = ρт + ρ0,
  2. где ρт – тепловая составляющая удельного электрического сопротивления;
  3.   ρ0 – остаточное удельное электрическое сопротивление.

Тепловая составляющая сопротивления ρт растёт пропорционально значению температуры, на рисунке 2.2 она показана прямой наклонной линией. Остаточное сопротивление практически не зависит от температуры (на рисунке ρ0 – горизонтальная линия).

У некоторых металлов в области сверхнизких температур, ниже 10 К, возможна скачкообразная потеря сопротивления – сверхпроводимость.

Металлическую медь в сверхпроводящее состояние перевести не смогли, однако оксид меди является основой купратных сверхпроводников.

В правой части графика, при температурах, близких к плавлению, также возможно нарушение линейности, особенно у ферромагнитных материалов. Это связано с перегруппировками электронов в оболочках и изменением формы кристаллов, т. е. представляет собой проявление полиморфизма.

При плавлении меди, в результате уменьшения плотности и нарушения кристаллического порядка, её удельное сопротивление возрастает в 2,4 раза. Для большинства металлов такое увеличение происходит в пределах от 1,5 до 3 раз; исключение составляют галлий и висмут, плотность которых при плавлении возрастает, а удельное электрическое сопротивление уменьшается.

Влияние примесей и других структурных дефектов на электропроводность металлов

Примеси снижают электропроводность в любом случае, даже если электропроводность металла примеси выше, чем у основного металла; это вызвано нарушением правильности структуры.

Степень снижения электропроводности зависит от количества и состава примеси. Если ввести в медь серебро в количестве 0,5 %, то её электропроводность уменьшится на 1 %.

Добавка в медь такого же количества кадмия снизит её электропроводность на 2 %, а цинка – на 5 %.

Примеси других элементов влияют на электропроводность меди гораздо заметнее.

Для снижения электропроводности меди вдвое достаточно присутствие любой из перечисленных добавок: 1,2 % никеля; 1,1 % олова; 0,8 % алюминия; 0,4 % бериллия; 0,2 % железа или кремния; 0,1 % фосфора.

Экспериментально установлено, что при малом содержании примесей удельное сопротивление металла возрастает пропорционально увеличению количества атомов каждой из примесей, таким образом, эффекты от влияния нескольких различных примесей складываются.

  • Собственные дефекты структуры металла – вакансии, атомы внедрения, дислокации, границы зёрен – также увеличивают его удельное электрическое сопротивление.
  • Для оценки химической чистоты и структурного совершенства металлов используют значение остаточного сопротивления ρ4,2, измеренное при температуре жидкого гелия (4,2 К), а также параметр β, равный отношению значений сопротивления при комнатной температуре (300 К) и при температуре жидкого гелия:
  • β = ρ300 / ρ4,2.
  • Для наиболее чистых металлов, получаемых в настоящее время (со степенью чистоты 99,99999 %), параметр β достигает порядка 105.

Заметное влияние на удельное сопротивление металлов и сплавов оказывают искажения, вызываемые напряжённым состоянием материала. Например, при всестороннем сжатии у большинства металлов удельное сопротивление уменьшается. Это объясняется сближением атомов и уменьшением амплитуды тепловых колебаний решётки.

При упругомрастяжении и кручении межатомные расстояния увеличиваются, что вызывает возрастание ρ.

Пластическая деформация и наклепвсегда повышают удельное сопротивление металлов и сплавов, однако это повышение, даже при значительном наклепе чистых металлов, составляет единицы процентов.

Термическая закалка приводит к повышению ρ, что связано с перестройкой кристаллической решётки и появлением внутренних напряжений. При рекристаллизации металлического изделия путём термической обработки (отжига) удельное электрическое сопротивление материала может быть снижено до первоначального значения за счёт снятия внутренних напряжений.

Таблица удельных сопротивлений проводников и металлов. – Магазин "Электрик" в Рогачеве, услуги электрика

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны.

На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева.

В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

  • В растворах носителями заряда являются ионы.
  • Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:
  • Читать также: Фото лесоруба с бензопилой

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Читайте также:  Как отшлифовать металл с помощью болгарки

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

где: R — сопротивление провода (Ом) ρ — удельное сопротивление металла (Ом.m) L — длина провода (м) А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Какое сопротивление меди и алюминия

Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.

Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.

В электротехнике значение имеют 2 термина:

  • Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
  • Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
  1. Вам это будет интересно Особенности мощности постоянного тока
  2. Алюминиевые кабели востребованы не меньше медных
  3. Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект. Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов.

Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов.

Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.

Источники: joyta.ru, dpva.ru

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см.

Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно.

Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы 104 ρ (ом·см) Чистые металлы 104 ρ (ом·см)
Серебро 0,016 Хром 0,131
Медь 0,017 Тантал 0,146
Золото 0,023 Бронза 1) 0,18
Алюминий 0,029 Торий 0,18
Дюралюминий 0,0335 Свинец 0,208
Магний 0,044 Платинит 2) 0,45
Кальций 0,046 Сурьма 0,405
Натрий 0,047 Аргентан 0,42
Марганец 0,05 Никелин 0,33
Иридий 0,063 Манганин 0,43
Вольфрам 0,053 Константан 0,49
Молибден 0,054 Сплав Вуда 3) 0,52 (0°)
Родий 0,047 Осмий 0,602
Цинк 0,061 Сплав Розе 4) 0,64 (0°)
Калий 0,066 Хромель 0,70-1,10
Никель 0,070
Кадмий 0,076 Инвар 0,81
Латунь 0,08 Ртуть 0,958
Кобальт 0,097 Нихром 5) 1,10
Железо 0,10 Висмут 1,19
Палладий 0,107 Фехраль 6) 1,20
Платина 0,110 Графит 8,0
Олово 0,113

Таблица удельное сопротивление изоляторов

Изоляторы ρ (ом·см) Изоляторы ρ (ом·см)
Асбест 108 Слюда 1015
Шифер 108 Миканит 1015
Дерево сухое 1010 Фарфор 2·1015
Мрамор 1010 Сургуч 5·1015
Целлулоид 2·1010 Шеллак 1016
Бакелит 1011 Канифоль 1016
Гетинакс 5·1011 Кварц _|_ оси 3·1016
Алмаз 1012 Сера 1017
Стекло натр 1012 Полистирол 1017
Стекло пирекс 2·1014 Эбонит 1018
Кварц || оси 1014 Парафин 3·1018
Кварц плавленый 2·1014 Янтарь 1019

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Чистые металлы t (°С) Удельное сопротивление, 104 ρ (ом·см)
Висмут -200 0,348
Золото -262,8 0,00018
Железо -252,7 0,00011
Медь -258,6 0,00014 1
Платина -265 0,0010
Ртуть -183,5 0,0697
Свинец -252,9 0,0059
Серебро -258,6 0,00009

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы Т (°К) RT/R0
Алюминий 77,7 1,008
20,4 0,0075
Висмут 77,8 0,3255
20,4 0,0810
Вольфрам 78,2 0,1478
20,4 0,0317
Железо 78,2 0,0741
20,4 0,0076
Золото 78,8 0,2189
20,4 0,0060
Медь 81,6 0,1440
20,4 0,0008
Молибден 77,8 0,1370
20,4 0,0448
Никель 78,8 0,0919
20,4 0,0066
Олово 79,0 0,2098
20,4 0,0116
Платина 91,4 0,2500
20,4 0,0061
Ртуть 90,1 0,2851
20,4 0,4900
Свинец 73,1 0,2321
20,5 0,0301
Серебро 78,8 0,1974
20,4 0,0100
Сурьма 77,7 0,2041
20,4 0,0319
Хром 80,0 0,1340
20,6 0,0533
Цинк 83,7 0,2351
20,4 0,0087

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

c (%) NH4Cl NaCl ZnSO4 CuSO4 КОН NaOH H2SO4
5 10,9 14,9 52,4 52,9 5,8 5,1 4,8
10 5,6 8,3 31,2 31,3 3,2 3,2 2,6
15 3,9 6,1 24,1 23,8 2,4 2,9 1,8
20 3,0 5,1 21,3 2,0 3,0 1,5
25 2,5 4,7 20,8 1,9 3,7 1,4

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.

Состав и структура железа

Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.

Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.

Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:

  • α-Fe – существует от нуля до +769 С. Имеет объемно-центрированную кубическую решетку и является ферромагнетиком, то есть, сохраняет намагниченность в отсутствие внешнего магнитного поля. +769 С – точки Кюри для металла;
  • от +769 до +917 С появляется β-Fe. От α-фазы она отличается лишь параметрами решетки. Практически все физические свойства при этом сохраняются за исключением магнитных: железо становится парамагнетиком, то есть, способность намагничиваться оно утрачивает и втягивается в магнитное поле. Металловедение β-фазу как отдельную модификацию не рассматривает. Поскольку переход не влияет на значимые физические характеристики;
  • в диапазоне от 917 до 1394 С существует γ-модификация, которой присуща гранецентрированная кубическая решетка;
  • при температуре выше +1394 С появляется δ-фаза, для которой характерна объемно-центрированная кубическая решетка.

При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.

Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.

Теперь настал черед свойств металла железа.

О структуре железа рассказывает этот видеосюжет:

( 1 оценка, среднее 5 из 5 )

Понравилась статья? Поделиться с друзьями:
Станок