Смесь для сварки полуавтоматом черного металла какая лучше

Содержание
  1. Разновидности
  2. Аргон и углекислый газ
  3. Аргон в сочетании с кислородом
  4. Углекислота и кислород
  5. Особенности аргоновых и углекислотных соединений
  6. Для полуавтоматов
  7. Какая сварочная газовая смесь лучше?
  8. Свойства и назначение
  9. Смеси газов
  10. Аргон и углекислый газ
  11. Аргон и кислород
  12. Аргон и гелий
  13. Аргон и водород
  14. Аргон и активные газы
  15. Что лучше: сварочная смесь или углекислота?
  16. Подбор сварочной смеси для полуавтомата
  17. Применение смесей
  18. Самостоятельное смешивание газов
  19. Газ для сварки полуавтоматом – выбор газа для сварочных работ
  20. Какой газ нужен для механизированной сварки
  21. Критерии выбора газа или смеси для полуавтомата
  22. Технология сварки в полуавтоматическом режиме
  23. Особенности выполнения сварки под газом
  24. Основные преимущества сварки с газовой защитой
  25. Газовые смеси для сварки полуавтоматом: аргон, углекислота, гелий и другие, их свойства и расход
  26. Какие газовые смеси используются для сварки полуавтоматом
  27. Краткое описание газов, применяемых при создании смесей
  28. Аргон, углекислота и кислород
  29. Аргон и гелий
  30. Аргон и водород
  31. От чего зависит расход газа при сварке
  32. Маркировка баллонов
  33. Какой газ необходим для сварки полуавтоматом черного металла?
  34. Влияние на процесс
  35. Область применения
  36. Какой газ нужен
  37. Ацетилен
  38. Водород
  39. Коксовый
  40. Природные
  41. Пиролизный
  42. Чистые
  43. Газы, используемые как компоненты смеси
  44. Критерии выбора
  45. Особенности выполнения
  46. Преимущества
  47. Для автомобильного ремонта
  48. Заключение

Технологические особенности сварки металлов с привлечением инертных газов предусматривают использование специальных газовых смесей. Благодаря им качество сварочного шва существенно возрастает. Газовые смеси для сварки изготавливаются на основе таких известных составляющих, как гелий, кислород, аргон и углекислота.

Разновидности

Взятые в установленном техническими нормативами соотношении, перечисленные выше составляющие могут образовывать следующие смеси газов:

Смесь для сварки полуавтоматом черного металла какая лучше

  • аргон плюс углекислота;
  • аргон в соединении с гелием и кислородом (водородом);
  • соединение углекислоты и кислорода.

Некоторые из этих комбинаций оптимально подходят для полуавтомата, в конструкции которого уже предусмотрена возможность их эффективного использования. Однако к рассмотрению этого вопроса удобнее будет перейти после более подробного ознакомления с основными сварочными смесями.

Аргон и углекислый газ

Подготовленная в определённой пропорции эта смесь газов наиболее продуктивна при работе с углеродистыми и низколегированными сталями. При сравнении эффективности данной комбинации с аналогичными показателями сварки на чистых газах обнаруживается, что этот сварочный состав облегчает струйный перенос вещества электрода.

Кроме того, швы на готовом изделии, в отличие от сваривания на чистой углекислоте, получаются более ровными и пластичными. При работе с указанной смесью газов заметно снижается возможность образования пор.

Аргон в сочетании с кислородом

Аргонокислородная смесь очень часто требуется для эффективного сплавления легированных и низколегированных сталей. Небольшая добавка кислорода в рабочую комбинацию позволяет не только исключить образование пор, но и заметно расширить возможности сварочных процедур.

Прежде всего, это касается изменения пределов регулировки токов, а также применения более широкого набора разновидностей сварочной проволоки. Естественно, что качество образуемого при этом сварочного шва заметно возрастает, вследствие чего смеси этого состава пользуются повышенным спросом.

Углекислота и кислород

Применение этой сварочной смеси газов позволяет получить требуемый положительный эффект, проявляющийся в следующем:

  • наблюдающееся во время сварки разбрызгивание металла ощутимо снижается;
  • вследствие этого улучшается качество формируемого шва;
  • повышается температура в рабочей зоне, что определённым образом влияет на эффективность проводимых работ (их производительность резко возрастает).

Однако у этого сварочного реагента имеется один существенный недостаток, связанный с повышенным окислением металла в зоне сварки. Как следствие, заметно ухудшаются механические параметры формируемого соединения. К тому же при данном соединении образуется вредный для человека угарный газ.

Особенности аргоновых и углекислотных соединений

Перед тем как определиться, какой газ использовать в смеси, надо рассмотреть особенности применения каждого их них.

Согласно ТУ 2114-001-99210100-09 все перечисленные выше составы могут формироваться в самых различных пропорциях, отличающихся процентным содержанием каждой из составляющих.

В подавляющем большинстве таких пропорций аргон или кислород содержится в объёмах, составляющих основную массу вещества (от 88 до 98%).

Дополняющие их добавки (углекислый газ, в частности) редко превышают в объёмном исчислении 5-15 %.

Аргон в пропорциональном соотношении с гелием чаще всего применяется с целью обработки цветных металлов и их производных. Основные типы заготовок, для обработки которых используется аргонодуговая сварка – это медные, алюминиевые, никелевые, а также хромоникелевые сплавы.

Сварочные смеси из сочетания аргона с углекислым газом нередко применяются с целью подогрева металла перед сваркой или постепенного его охлаждения по окончании работ. Как правило, такая процедура организуется в случаях крайней необходимости.

Этот газообразный состав достаточно взрывоопасен, так что работа в среде СО2 требует от оператора соблюдения мер безопасности при его подготовке и использовании.

Особого внимания требует процесс сваривания металлических заготовок в смесях с высоким содержанием углекислого газа. Дело в том, что при его соединении с кислородом воздуха образуется опасный для здоровья человека угарный газ, для защиты от которого оператор должен работать в специальной маске.

Таким образом, аргон и углекислота в сочетании с рядом активных добавок относятся к универсальным сварочным смесям газов, применяемым при работе с большинством марок чёрных и цветных металлов. Их сочетание наряду с высокой эффективностью использования отличается сравнительно низкой ценой.

Для полуавтоматов

При рассмотрении этого вопроса надо акцентировать внимание на соединениях аргона с водородом и гелием, которые широко применяются для сварки никеля, высоколегированных и нержавеющих сталей и их сплавов. Каждая из этих смесей классифицируется именно как газ для сварки на полуавтомате, однако, в определённых ситуациях они могут использоваться и просто для формовки.

Ещё одним вариантом сварочной смеси, рассчитанной на сваривание в полуавтоматическом режиме, является сочетание аргона и СО2 (углекислоты). В основу применения этого комбинированного состава заложен принцип максимальной защиты металла и сведения к минимуму вредных для него побочных эффектов.

В начале работы с этим составом, прежде всего, поджигается горелка, через сопло которой сварочную смесь из аргона и углекислоты подают в рабочую зону.

Обратите внимание, что эта же струя может предназначаться для подогрева металла, если этого требуют технические условия на сварку.

После запуска горелки и подогрева материала с помощью неплавкого электрода с вольфрамовым покрытием поджигается электрическая дуга. В то же самое время специальной кнопкой включается подача плавильной проволоки, для защиты которой и применяется данная смесь газов.

Качественная сварка всеми перечисленными методами предполагает грамотный расчёт объёмов требуемого газа, а также выбор оптимальной скорости подачи сварочной плавильной проволоки. С этой целью разработаны графики и типовые режимы обработки металлов, рассчитанные для каждого вида газообразной смеси индивидуально.

  • Температура горения сварочной смеси выбирается с тем расчётом, чтобы сам металл и проволока не плавились от неё, так что отключать горелку при разовом удалении от ванны совсем не обязательно.
  • По завершении формирования шва для его постепенного остывания нередко используют приём кратковременного подогрева тем же горючим составом (по необходимости).
  • С данными таблицы по сварочным смесям, рекомендуемым для работы с полуавтоматом, можно ознакомиться в таблице:
Исходный материал Толщина, мм Рекомендуемая смесь Диаметр сварочной проволоки, мм Скорость сварки, мм/мин Ток сваркиIсв, А Напряжение дуги Uд, В Скорость подачи проволоки, м/мин Расход газа, л/мин
Углеродистые конструкционные стали 1,0 К-3.1 0,8 350-600 45-65 14-15 3,5-4,0 12
1,6 К-3.1 0,8 400-600 70-80 15-16 4,0-5,3 14
3,0 К-3.2 1,0 280-520 120-160 17-19 4,0-5,2 15
6,0 К-3.2 1,0 300-450 140-160 17-18 4,0-5,0 15
6,0 К-3.2 1,2 420-530 250-270 26-28 6,6-7,3 16
10,0 К-3.2 1,2 300-450 140-160 17-18 3,2-4,0 15
10,0 К-2 1,2 400-480 270-310 26-28 7,0-7,8 16
10,0 К-2 1,2 300-450 140-160 17-18 3,2-4,0 15
10,0 К-3.3 1,2 370-440 290-330 26-31 10,0-12,0 17
Легированные стали 1,6 НП-1 0,8 410-600 70-85 19-20 6,5-7,1 12
3,0 НП-2 1,0 400-600 100-125 16-19 5,0-6,0 13
6,0 НП-2 1,0 280-520 120-150 16-19 4,0-6,0 14
6,0 НП-2 1,2 500-650 220-250 25-29 7,0-9,0 14
10,0 НП-3 1,2 250-450 120-150 16-19 4,0-6,0 14
10,0 НП-3 1,2 450-600 260-280 26-30 8,0-9,5 14
10,0 НП-3 1,2 220-400 120-150 16-19 4,0-6,0 15
10,0 НП-3 1,2 400-600 270-310 28-31 9,0-10,5 15
Алюминиевые сплавы 1,6 НП-1 1,0 450-600 70-100 17-18 4,0-6,0 14
3,0 НП-1 1,2 500-700 105-120 17-20 5,0-7,0 14
6,0 НП-1 1,2 450-600 120-140 20-24 6,5-8,5 14
6,0 НП-2 1,2 550-800 160-200 27-30 8,0-10,0 14
10,0 НП-2 1,2 450-600 120-140 20-24 6,5-8,5 16
10,0 НП-2 1,6 500-700 240-300 29-32 7,0-10,0 16
10,0 НП-2 1,2-1,6 400-500 130-200 20-26 6,5-8,0 18
10,0 НП-3 1,6-2,4 450-700 300-500 32-40 9,0-14,0 18

В заключение надо напомнить, что газовые смеси – это неотъемлемая составляющая некоторых видов сварочных работ, которая согласно спецификации относится к категории расходных материалов.

При их применении очень важно установить точное соотношение компонентов, благодаря которому удаётся добиться высоких показателей сварочного процесса. Это правило справедливо как для начинающих сварщиков, так и для профессионалов, располагающих богатым опытом работы в газовых средах.

Какая сварочная газовая смесь лучше?

Эффективность высокотемпературной обработки металлов повышают сварочные смеси защитных газов, используемых для создания защитного облака над расплавленным металлом. Специальные газосмеси использовать при сварке гораздо выгоднее, чем чистые газы. Разработано несколько стандартизированных составов, применяемых для углеродистых, низко- и высоколегированных сталей и цветных металлов.

Смесь для сварки полуавтоматом черного металла какая лучше

Экспериментально доказано, что смеси повышают качество расплава, снижают количество металлических брызг, увеличивают производительность работы сварщика. Сварочные швы становятся пластичными, заметно стабилизируется горение дуги. Влияние вредных факторов снижается за счет уменьшения задымленности, улучшаются условия труда.

Свойства и назначение

Сварочная смесь, создающая защитное облако над ванной расплава способна оказывать на процесс сварки как положительное, так и отрицательное воздействие. Инертные газы ведут себя по-разному:

  • Аргон за счет ионизации воздуха поддерживает дугу и обеспечивает качественный перенос металла. При работе с толстостенными заготовками, прокатом из металлов, имеющих высокую теплопроводность, аргон, характеризующийся слабой отдачей энергии, малоэффективен.
  • Гелий с этой точки зрения предпочтительнее, но меньше влияет на стабильность горения дуги и не улучшает перенос металла присадки на поверхность заготовок.
  • Углекислый газ обеспечивает хорошую защиту за счет высокой плотности, снижает разбрызгивание жидкого металла.

Каждый отдельный газ обладает уникальными свойствами, в смеси они нивелируют отрицательное воздействие отдельных компонентов, усиливают положительное влияние. Составы подбирались методом проб и ошибок с целью повышения качества швов и скорости сварки.

Читайте также:  Плоскошлифовальный станок по металлу: конструктивные особенности, параметры выбора, методы обработки металла

В смеси защитные газы намного эффективнее защищают ванну расплава, снижают вероятность образования дефектов.

Смеси газов

Для сварки используют 4 газообразных бесцветных вещества, вытесняющие из рабочей зоны:

  • водород, способствующий охрупчиванию металлов;
  • азот, образующий твердые шлаковые соединения;
  • кислород, активно окисляющий металлы.

Вытеснение газовоздушных компонентов происходит за счет высокой плотности защитных газов, они формируют малоподвижное облако. У всех сварочных смесей газов удельный вес больше, чем у воздуха.

Концентрация компонентов подбиралась экспериментальным путем, учитывалось влияние газов на режим сварки. Смеси на основе аргона значительно расширяют возможности сварки, повышают эффективность работы сварщиков.

Минимизируют риски образования дефектов в сварочных швах.

Аргон и углекислый газ

Для сваривания цветных металлов, профиля и проката из высоколегированных сталей используется сварочная смесь аргона и углекислоты. Аргон снижает активность углекислоты, а CO2 увеличивает теплопередачу аргона.

Сварка углеродистых и низколегированных сталей в защитном облаке Ar+CO2 намного эффективнее, чем в каждом отдельном газе.

При концентрации углекислоты в пределах 20% толстостенные металлические конструкции провариваются даже при сильной загрязненности поверхности.

Аргон и кислород

Состав применяют для сваривания низколегированных и легированных никелем сталей. При небольшой концентрации кислорода удается избежать пористости швов, аргон препятствует образованию окислов.

Комбинация Ar+O2 применяется с различными видами сварочной проволоки, расширяет возможности сварочного процесса за счет повышения энергии дуги, стабильного горения. Металл быстрее проваривается. Формируются ровные шовные валики при равномерном прогреве присадочного прутка.

Прочность соединения увеличивается за счет расширения диффузионного слоя.

Аргон и гелий

Инертные газы сочетают в разных пропорциях. Самые распространенные составы 7:3 и 1:1. Композиция Ar+He используется при работе с различными металлами:

  • чугуном различной плотности;
  • с низколегированными и легированными сталями с высоким содержанием никеля и хрома;
  • цветными сплавами на основе меди, алюминия;
  • тугоплавкими заготовками.

  Холодная сварка Abro Steel: применение и характеристики

Смесь инертных газов исключает образование окалины, трещин, раковин. Часто применяется в наукоемких отраслях для автоматической сварки, где требуется высокое качество швов.

Аргон и водород

Комбинация Ar+H разрабатывалась для соединения сталей с аустенитной структурой, обладающих жаропрочностью. Смесь обеспечивает эластичность швов, процент водорода зависит от марки стали, львиную долю композиций составляет аргон, формирующий плотное защитное облако.

Аргон и активные газы

Концентрация углекислого газа в подобных газосмесях не превышает 20%, кислорода – 2%.

При работе с тонкими видами проката и профиля снижают концентрацию углекислого газа, увеличивают содержание кислорода для быстрого прогрева заготовок в месте соединения.

При работе с толстыми деталями  повышают содержание углекислого газа. Для работы с медными сплавами в композицию вводят незначительное количество азота.

Что лучше: сварочная смесь или углекислота?

Чем лучше варить, специалисты решают самостоятельно, учитывая прочность соединений, затраты на расходные материалы.

Для изоляции расплава, образуемого в процессе сварки, можно использовать инертные газы аргон и гелий, углекислоту или сварочную смесь.

С введением инертных газов, которые не взаимодействуют с расплавом, в активные, снижается способность углерода растворяться в жидком металле. СО2 – активный газ, при использовании в чистом виде он насыщает стали и цветные металлы.

Преимущества применения газосмеси:

  • облегчается струйный перенос электродной наплавки;
  • швы получаются более пластичные;
  • снижается риск образования пористости;
  • ускоряется процесс расплавления металла;
  • увеличивается прочность соединений;
  • меньше дымление, выделяемые вещества удерживаются в зоне расплава;
  • при неравномерной подаче присадочной проволоки сохраняется ритмичность работы;
  • из-за минимизации разбрызгивания снижается расход электродов и проволоки.

Достоинства сварки в атмосфере углекислого газа:

  • низкая стоимость;
  • возможность варить в любом пространственном положении;
  • хорошая проварка стыков.

Производительность сварочных работ при использовании специальных смесей, защищающих ванну расплава от окисления, повышается на 50%, при этом потребление электроэнергии не увеличивается.

Подбор сварочной смеси для полуавтомата

Присадочная проволока выпускается без защитного покрытия, в полуавтоматах предусмотрена подача защитных газов. Их смешивают с расчетом, чтобы создавалась нужная температура горения, при которой металлические заготовки и проволока не слишком быстро расплавлялись. При рациональном подборе газосмеси для полуавтоматической сварки упрощается процесс формирования швов.

Таблица выбора газосмеси для различных сплавов:

Углеродистые конструкционные стали (листовой, узкопрофильный прокат)
Размер проволоки (мм) Величина стыка (мм) Сила тока (А) влияет на скорость сварки Название смеси по ГОСТ и международному стандарту Компонентный состав смеси
Ar CO2 O2 He
0,8 1 от 45 до 65 К-3.1
(возможна маркировка Argoshield 5)
92% 6% 2%
1,6 от 70 до 80
1 3 от 120 до 160 К-3.2 (возможна маркировка Argoshield TC) 86% 12% 2%
6 от 140 до 160
1,2 6
10
от 250 до 270
от 140 до 160
1,2 10 от 270 до 310
от 140 до 160
К-2 (возможна маркировка Pureshield P31)
Универсальная смесь
82% 18%
1,2 10 от 290 до 330 К-3.3 возможна маркировка (Argoshield 20) 78% 20% 2%
Легированные стали (жаростойкие. жаропрочные, нержавеющие, кислотоустойчивые)
0,8 1.6 от 70 до 855 НП-1 (возможна маркировка Helishield HI) 13,5% 1,5% 85%
1,0 3
6
от 100 до 125
от 120 до 150
НП-2(возможна маркировка Helishield H7) 43% 2% 55%
1,2 6
10
от 220 до 250
от 120 до 150
1,2 10 от 120 до 150
от 260 до 280
от 270 до 310
НП-3 (возможна маркировка Helishield H101) 60% 2% 38,0%
Сплавы на базе алюминия
1 1,6 от 70 до 100 НП-1 (обозначается также H1 и надписью Helishield-Н1) 13,5% 1.5% 85%
1.2 3
6
от 105 до 120
от 120 до 140
1,2 6 от 160 до 200 НП-2 (обозначается также H7 и надписью
Helishield-H7)
43% 2% 55%
10 от 120 до 140
1,6
1,2-1,6 от 130 до 200
1,5-2,4 от 300 до 500 НП-3 (возможна маркировка Н101 и Helishield-H101) 60% 2% 38%

При использовании вольфрамового электрода и проволочной присадки применяют составы из двух инертных газов:

  • НН-1 (полное название Helishield-Н3), в этой смеси концентрация гелия в пределах 30%, аргона не более 70%. газосмесь обеспечивает более эффективный нагрев, увеличивается скорость плавления металла, формируется ровная поверхность шва.
  • НН-2 (международная маркировка Helishield-H5) – это в равных пропорциях смешанные два инертных газа: аргон и гелий. Универсальная смесь применяется для соединения черных и цветных заготовок практически любой толщины.

Компонентный и количественный состав оказывает влияние практически на все параметры и режим сварки металлов.

Применение смесей

Бескислородные смеси выбирают при скоростной проходке и сварке цветных металлов. Они дают великолепные чистые швы с гладким профилем, окисление поверхности незначительное, обеспечивают низкий уровень армирования и обеспечивает высокую скорость проходки. Придают стабильность электрической дуге при соединении материалов толще 9 мм, снижают вероятность появления дефектов шва.

При подаче газовой смеси полуавтоматом снижается скорость подачи проволоки, быстрее нагревается горелка. Приходится корректировать режим работы, подбирать массивные головки. Для качественной работы со смесями необходимы профессиональные навыки.

При выборе готовых сварочных газовых смесей с кислородом учитывают особенности составов. К-2 считается идеальным для черных и низколегированных сталей. Другие разрабатывались для металла различной толщины, глубокого провара и сварки тонкостенного листа, профиля без деформации.

Кислородосодержащие составы применяются для коротких и длинных швов, реставрационной наплавки изношенных деталей. Могут использоваться повсеместно: для роботов-автоматов, ручной, полуавтоматической сварки во всех пространственных положениях.

Выбирают специальные составы для профилированного проката из сортовых сталей, для наплавки.

Смесь для сварки полуавтоматом черного металла какая лучшеДля работы со сварочными смесями нужны профессиональные навыки

При ручной сварке важно соблюдать расстояние от заготовок до сопла. Необходимо постоянно поддерживать расстояние в пределах 15–20 мм от стыка, чтобы не допустить непроваров. Горелка размещается под прямым углом. Следует учитывать, что кислородные смеси увеличивают текучесть расплавленного металла, при работе в потолочном и вертикальном положении возможны проблемы.

Самостоятельное смешивание газов

Теоретически смесь можно приготовить непосредственно на рабочем месте, на сварочных участках предусмотрены специальные посты с установкой ротаметров – аппаратов, контролирующих расход компонентов за единицу времени из каждого баллона. По показателям ротаметров с помощью редукторов регулируют состав газовой смеси, подаваемой к рабочим местам сварщиков.

При работе с несколькими баллонами одновременно состав сварочной смеси не будет идеальным. Делая газосмеси самостоятельно невозможно добиться точного процентного содержания компонентов до десятых. Обязательно увеличится расход газов и, соответственно, присадки.

Защитный сварочный газ – оптимальная смесь, используемая при термической обработке металлов. Готовые составы заказывают у специализированных поставщиков или непосредственно на заводах-изготовителях.

Газ для сварки полуавтоматом – выбор газа для сварочных работ

Сварочный полуавтомат повышает качество шва и скорость работы сварщика. Механизированная сварка не предполагает замену электродов — вместо прутков в таком аппарате используется проволока, подаваемая с катушки. Поэтому сварщику не приходиться разрывать шов, теряя время и нарушая герметичность соединения.

Кроме того, работа в полуавтоматическом режиме позволяет соединять заготовки толщиной от десятых долей миллиметра до нескольких сантиметров, причем конструкционным материалом соединяемых элементов может быть практически любой металл или сплав.

Однако эти преимущества невозможны без использования специального газа для сварки полуавтоматом, защищающего сварочную ванну.

Читайте также:  Укажите свойство не характерное для щелочных металлов

Какой газ нужен для механизированной сварки

Технология полуавтоматической сварки предполагает использование в качестве флюса активного или защитного газа. Первый меняет физико-химические характеристики шва, второй — защищает металл от окисления, что особенно актуально при соединении заготовок из алюминия или быстро окисляемых сплавов.

Типичными представителями инертной группы являются аргон (Аг) и гелий (Не). В активную группу входит азот (N), кислород (O), углекислый газ (CO2). Самыми популярными смесями являются:

  • аргоно-углекислый состав (Аг + СО2) — инертно-активная среда, снижающая разбрызгивание электрода;
  • аргоно-гелиевый состав (Аг + Не) — защитная среда, повышающая тепловую мощность дуги;
  • аргоно-кислородная газовая смесь (Аг + О2) — инертно-активная среда для низколегированных и легированных сталей;
  • углекисло-кислородная смесь (СО2 + О2) — активная среда, повышающая производительность полуавтомата.

Критерии выбора газа или смеси для полуавтомата

При выборе смеси или технически однородной среды принято обращать внимание на следующие критерии: тип конструкционного материала свариваемых заготовок, толщину формируемого шва, диаметр проволоки.

В итоге выбор смеси для сварочных работ сводится к изучению таблицы, в которой указаны составы, рекомендуемые для каждого металла или сплава, с учетом глубины ванны и других характеристик.

Кроме того, опытный сварщик учитывает «бонусный» эффект, который дает та или иная среда. Например, углекислые газы обеспечивают минимальное разбрызгивание присадочного металла (электрода), поэтому с их помощью удобно варить потолочные швы. В этом случае СО2 убережет сварщика от контакта с каплями расплавленного металла.

Технология сварки в полуавтоматическом режиме

Принцип работы сварочного полуавтомата основан на хорошо изученном электродуговом процессе.

Разница потенциалов между электродом и заготовкой позволяет сформировать электрическую дугу, температуры которой хватит на расплавление присадочного и свариваемого металла.

Застывшая присадка контактирует с металлом заготовки на атомарном уровне, образуя шов с прочностью до 90% от показателя основного конструкционного материала.

Однако в работе полуавтомата есть свои особенности. Во-первых, проволока-электрод подается в зону сварочной ванны непрерывным потоком, проходя сквозь токопроводящий мундштук.

Причем расход присадочного металла можно регулировать вручную, нажимая на кнопку подачи. Во-вторых, вместо классического «твердого» флюса, образующего газовое облако при горении дуги, полуавтомат использует газовые смеси или технически чистые среды.

Причем подача газа осуществляется непрерывно, как до появления дуги, так и после ее разрыва.

Благодаря этому уменьшается количество брызг, стабилизируются параметры дуги, повышается производительность труда сварщика, снижается общая трудоемкость любого сварочного процесса.

Особенности выполнения сварки под газом

Техника работы на полуавтомате практически не отличаются от принципов применения классических аппаратов. С помощью полуавтомата можно варить горизонтальные и вертикальные швы, выполнять прихватывание заготовок, проваривать герметичные соединения, формировать сопряжение встык и внахлест.

Способ формирования соединений полуавтоматическим сварочным аппаратом не отличается от классических методик, реализуемых с помощью ММА-оборудования. Температурные режимы и сила сварочного тока определяется по общепринятой схеме — исходя из толщины стыков и диаметра электрода.

Единственной индивидуальной особенностью, которой обладает полуавтоматический газосварочный процесс, является простота соединения тонких заготовок. Поэтому полуавтомат используется преимущественно в кузовном ремонте и во время сборки тонколистовых металлоконструкций.

Основные преимущества сварки с газовой защитой

  1. Узкая зона высокотемпературного воздействия, поэтому MIG-MAG процессы не меняют свойства свариваемых металлов.
  2. Отсутствие задымления в зоне сварочной ванны, что облегчает визуальный контроль качества шва.
  3. Универсальность применения — MIG-MAG процессы совместимы с любыми металлами: от титана или алюминия до высоколегированной или конструкционной стали.
  4. Отсутствие ограничений по пространственному положению детали — отрегулировав напор горелки, можно варить потолочные или наклонные швы, не испытывая никаких затруднений.
  5. Нет ограничений по толщине — эта технология допускает сваривание листовых заготовок с толщиной от 0,2-0,5 миллиметра. Верхняя граница толщины соединения определяется только мастерством сварщика.
  6. Отсутствие необходимости зачищать швы даже при многослойной наплавке — флюс улетучивается после прекращения подачи смеси из горелки.
  7. Максимально возможная производительность труда даже при средней квалификации сварщика.

Все эти преимущества станут доступны только в случае поставки качественной смеси, подготовленной по ГОСТ и ТУ. Некачественные составы приведут к потере прочностных характеристик.

ООО «ИТЦ Промэксервис» готово предоставить заказчику высококачественный газ для сварочных работ, в любых объемах, с доставкой по Москве или Подмосковью. Мы работаем с крупными компаниями и физическими лицами, предлагая высокое качество и низкие цены. ИТЦ Промэксервис — лидер рынка с 1999 года.

Газовые смеси для сварки полуавтоматом: аргон, углекислота, гелий и другие, их свойства и расход

Выбор необходимой смеси будет зависеть от вида свариваемых материалов.

Какие газовые смеси используются для сварки полуавтоматом

Полуавтоматом чаще всего работают:

  • со стальными сплавами, чугуном;
  • с легированными сталями — нержавейка, разные виды жаропрочных;
  • с цветными металлами — алюминием, медьсодержащими: латунь, бронза.

Работа с другими материалами затруднена тем, что нет соответствующей присадочной проволоки, поставляемой в стандартных катушках. Создают смеси в соответствии с ТУ 2114-002-45905715-2011.

В качестве составных газов применяют:

  • аргон — ГОСТ 10157-79 (высшие сорта);
  • азот — ГОСТ 9293-74 (особой чистоты 1 сорта);
  • двуокись углерода — ГОСТ 8050-85 (высшие сорта);
  • кислород — ГОСТ 5583-78 (технический, первые сорта);
  • гелий — ТУ 0271-135-31323949- 2005 (марка «А»);
  • водород — ГОСТ Р 51673-2000 (первые сорта).

Допускается использование готовых смесей, однако, содержание компонентов в полученной смеси должно соответствовать техническим регламентам.

Краткое описание газов, применяемых при создании смесей

Аргон — бесцветный газ без запаха и вкуса, негорюч и нетоксичен. Однако любая смесь Ar с иными газами может вытеснить кислород из помещения, что способно привести к удушью работников, если доля кислорода упадёт ниже 19% от общего объема. Аргон тяжелее воздушной смеси и способен скапливаться в плохо проветриваемых помещениях у пола.

Азот — газ бесцветный и негорючий. Без запаха и вкуса, нетоксичен. Однако скопление газообразной смеси азота может вызвать кислородную недостаточность и даже удушье при уменьшении концентрации кислорода менее 19% от объёма.

Углекислота — газ без цвета, не воспламеняется и нетоксичен, отличается специфическим кисловатым вкусом. Максимально допустимая концентрация соединения в воздухе рабочей зоны 9 г/м3 (что равно 0,5% объёма).

Если концентрация становится больше 5%, то двуокись углерода может оказать вредное влияние на физическое состояние работников. Углекислота в полтора раза тяжелее воздушной смеси и способна скапливаться в непроветриваемых помещениях у пола, в ямах.

При снижении концентрации кислорода в воздухе ниже 19% наступает кислородное голодание, удушье.

Гелий — бесцветный газ, не имеет вкуса и запаха, нетоксичен и негорюч, легче смеси воздуха, поэтому накапливается вверху цехов.

Кислород — бесцветный негорючий газ без запаха и вкуса, хотя сам не является токсичным и взрывоопасным, однако, будучи сильным окислителем, значительно повышает предрасположенность иных материалов к горению. Если кислород накапливается в воздухе цехов, это может стать причиной возникновения возгораний и впоследствии — пожаров. Важно, что объемная доля газа в рабочих (производственных) зонах не должна быть более 23%.

Аргон, углекислота и кислород

Углекислый газ (5-20%) и аргон (80-95%) используют для создания неразъёмных соединений из сталей: конструкционных легированных и углеродистых. Плюсы: перенос осуществляется струйно или капельно. Дуга при этом горит стабильно. Если применять смесь с добавлением кислорода (2%), уменьшив содержание углекислого газа до 6%, то сварщику будет легче справиться с тонкими сплавами.

Аргон и гелий

Сочетание гелия (70%) и аргона (30%) позволит работать с любыми толстыми сплавами:

  • сталью;
  • чугуном;
  • цветными металлами.

При этом увеличится скорость сварки за счёт исключения операции по предварительному подогреву деталей. Количество дефектов — пористость швов, трещины — будет сведено к минимуму.

Минусом следует считать высокую стоимость таких смесей из-за высокого содержания редкого гелия. Поэтому используют подобные пропорции при сварке особо ответственных конструкций — при создании изделий для космоса или ВПК.

Аргон плюс гелий (по 50%) — смесь считается универсальной инертной. Благодаря этому, можно работать с большинством сплавов — как с цветными, так и чёрными.

Состав из 70% аргона и 30% гелия по сравнению с чистым аргоном лучше охлаждает зону сварки, применяется для соединения деталей средней толщины, если нужно получение швов с минимумом дефектов.

Смесь из 60% аргона, 38% гелия и 2% углекислоты используют для сварки легированных и конструкционных углеродистых сплавов. Дуга при этом получается стабильной, уменьшается количество брызг.

Аргон и водород

Применяют на производстве при работе с аустенитными (жаропрочными) сплавами. Смесь позволяет улучшить характеристики полученного шва, добиться большей эластичности. Часто применяют при работе во время создания космической и авиатехники. Процент содержания химических элементов зависит от марки сталей.

От чего зависит расход газа при сварке

Установку силы обдува сварочной ванны следует устанавливать, учитывая:

  • тип материала — определяется опытным путём;
  • толщину заготовок — для работы с толстыми понадобится больше газа;
  • диаметр электрода (проволоки).

Также придётся принять во внимание условия в цехе или на площадке. При наличии сквозняков, открытого ветра следует либо защищать рабочее место ширмами, либо увеличивать расход газовой смеси.

Диаметр проволоки, мм Сила сварочного тока, А Средний расход, л/мин
0,8-1 60-160 7-8
1-1,2 100-250 9-12
1,2 250-320 12-15
Читайте также:  Фреза по металлу: устройство, виды, принцип работы дискового и отрезного оборудования

Для уменьшения расхода газа во время работы следует тщательно проверять соединения шлангов, исправность редукторов, элементов горелки и сварочного полуавтомата.

Маркировка баллонов

Какой газ необходим для сварки полуавтоматом черного металла?

Качество сварочного соединения зависит не только от профессиональных качеств работника, но и условий выполнения работ.

Идеальный шов требует взаимодействия присадочного материала и электрода без дополнительных элементов окружающей среды. При сварке в автоматическом режиме данную функцию выполняет флюсовое покрытие электрода.

Роль человека сводится к выбору направления движения дуги и регулировке силы тока.

Работа в полуавтоматическом режиме дает больше свободы. Сварочная проволока не имеет защитного покрытия, потому работа ведется в среде защитных газов, с ручной регулировкой скорости подачи присадочного материала.

Таким образом, полуавтоматический режим более требователен к квалификации сварщика, который, обладая необходимыми навыками, добьется лучшего качества спайки, по сравнению с автоматическим режимом.

Вот чем отличаются сварка автомат и полуавтомат.

Влияние на процесс

Газы для сварочного полуавтомата призваны защитить зону спайки от внешнего воздействия. Кроме того, применение газа положительно влияет на чистоту шва, уменьшая шлаковую составляющую и снижая вероятность появления трещин, за счет увеличения скорости и глубины проплавления.

Область применения

Применение всех видов сварочных проволок, за исключением самозащитной, подразумевает использование защитного газа. Полуавтомат – оборудование опытных специалистов.

С его помощью выполняется тонкая работа соединения цветных и черных металлов, кузовной ремонт транспортных средств и промышленное соединение тонкостенных элементов.

Какой нужен газ для сварки полуавтоматом, будет рассмотрено ниже.

Какой газ нужен

Чтобы выбрать, каким газом пользоваться при сварке полуавтоматом, необходимо иметь представление о физических и химических свойствах газа. Выделяют три основные категории:

  • инертные;
  • активные;
  • смеси газов.

Рассмотрим их подробнее.

[stextbox id=’info’]Выбор газа также зависит от характеристик сварочного аппарата и типа поверхности. Например, чистый азот идеально подходит для соединения медных деталей.[/stextbox]

Ацетилен

Данное органическое соединение получило наибольшее распространение. Газ легче воздуха, бесцветный, имеет специфический запах, отличается высокой температурой горения, из-за чего используется при газовой резке металлических изделий.

Для промышленного производства ацетилена применяют специальные генераторы, в которых карбид кальция взаимодействует с водой.

Единственный недостаток – сложность в хранении, поскольку карбид углерода легко впитывает влагу из атмосферы, что создает дополнительные неудобства.

Водород

Широко применяется для соединения алюминиевых изделий и плазменной резки нержавейки. Газ не имеет цвета и запаха. Взрывоопасен. При соединении с воздухом или водой образует гремучую смесь.

Его получают путем синтеза воды, при разделении кислорода и водорода в специальных генераторах.

Согласно нормативно-правовым актам по технике безопасности, водород запрещено хранить в баллонах под давлением, которое превышает 15 МПа.

Коксовый

Побочный продукт коксохимической промышленности, который образуется при производстве кокса. Газ бесцветный с резким запахом.

К его хранению не предъявляют таких жестких требований, как к водороду, несмотря на то, что газ относится к категории взрывоопасных. Транспортировку газа выполняют с помощью трубопроводных магистралей.

Не получил широкого распространения, ввиду специфики производства. Применяется только в промышленных районах.

Природные

Представители органической группой углеводородных соединений – метан, пропан и бутан. Отвечают всем требованиям, предъявляемым к сварочным газам.

К преимуществам относятся распространенность данного вида, а также относительно невысокая стоимость. Требования к условиям хранения не отличаются строгостью – допустимо хранение баллонов на улице, при сооружении специальной клетки с навесом.

Искусственный синтез невозможен. Добывается только из природных месторождений.

Пиролизный

Данный вид выгодно отличается от своих собратьев – его не нужно генерировать, поскольку пиролизный газ выделяется при распаде нефтепродуктов. Перед использованием его подвергают предварительной очистки, ввиду излишней химической активности, которая может привести к коррозии горелки. Подходит как для сварочных работ, так и для резки металлоконструкций.

Чистые

К данной группе относятся следующие газы:

  1. Аргон. В чистом виде используется только при аргонодуговой сварке. Входит в состав разнообразных смесей, в качестве одного из компонентов. Химическая инертность делает аргон оптимальным выбором при работе с тугоплавкими материалами. Отличается низкой теплопроводностью и потенциалом ионизации.
  2. Гелий. Еще один представитель химически инертной группы. По сравнению с аргоном, обладает большей теплопроводностью и потенциалом ионизации.

[stextbox id=’warning’]Данные свойства гелия обеспечивают соединение большим тепловложением, чем аргон, увеличивая ширину сварочного профиля.[/stextbox]

  1. Углекислый газ. Самый дешевый газ, из всех перечисленных. Данное обстоятельство обеспечивает широкую популярность при проведении работ в условиях ограниченности бюджета. К положительным качеством относят глубокие проникающие способности, особенно полезные при соединении толстолистовой стали. Основной недостаток – слабая стабилизация дуги, и как следствие, достаточно большое количество брызг.

Отличительная особенность данного газа в том, что его разрешено применять без добавления инертных газов.

Газы, используемые как компоненты смеси

Наиболее известным добавочным компонентом является кислород. Высокая химическая активность влияет на процентное содержание в смеси – его массовая доля редко превышает 7-10 %. Смесь аргона и кислорода обладает специфическим характером проплавления.

Сварочный шов, выполненный с применением данной смеси известен как «шляпка гвоздя», названный за счет внешнего сходства. Известны трехкомпонентные смеси, в состав которых входит кислород, аргон и углекислота, с различными пропорциями, в зависимости от характера работ.

Азот не получил широкого распространения, в качестве защитного газа. В основном его применяют для соединения меди и нержавейки, поскольку он не вступает в реакцию с данными металлами.

Газовые сварочные смеси и рекомендуемая область их применения.

Критерии выбора

Новичку порой сложно выбрать, какой баллон нужен для полуавтомата, не говоря о газовой смеси. Опытные специалисты  рекомендуют обращать внимание на предельный показатель температуры и количество тепла, которое выделяется при горении газа. Сравнительные характеристики сварочных газов находятся в свободном доступе.

[stextbox id=’alert’]Важно! В случае приобретения газа с целью длительного хранения, рекомендуем выбрать готовые смеси промышленного производства. Не занимайтесь синтезом газа самостоятельно – это небезопасно![/stextbox]

Особенности выполнения

Сварка в среде защитного газа имеет следующие особенности, которые требуют внимания:

  1. Параметры работ. Подбираются индивидуально для каждой конкретной ситуации. Получить качественное соединение возможно только при условии грамотного сочетания следующих параметров: мощность, тип проволоки, скорость подачи, расход газа.
  2. Температурный режим. Рабочая плоскость металла нагревается и охлаждается длительный промежуток времени. При соединении некоторых типов поверхности, например, стальных или медных, возможно регулировать температурный режим, путем изменения угла наклона дуги.
  3. Выбор газа. Существует два способа выполнения работ. В первом случае необходимо использовать углекислоту без добавления каких-либо примесей. Второй вариант – применения различных смесей на базе аргона или других инертных элементов.
  4. Характер работ. Основное предназначение баллонов – стационарная работа в условиях мастерской. Использование резервуаров с высоким давлением на открытой местности сопряжено с определенными неудобствами.

Схема подключения баллона с углекислотой к газовой магистрали.

Технология работы с применением углекислого газа не имеет принципиальных отличий от деятельности, с использованием прочих газовых смесей. Самое главное – соблюдать технологические требования.

Преимущества

Не зависимо от типа газовой смеси, ее применение имеет ряд преимуществ:

  1. Качество соединения. Физические свойства шва гораздо выше, по сравнению с использованием автоматического режима. Малое количество брызг в процессе соединения.
  2. Производительность труда. Эффективность работы повышается благодаря сокращению времени нагрева металла, что в конечном итоге сокращает трудозатраты.
  3. Стабильная дуга. Существенно облегчает работу. Дополнительным преимуществом является практически полное отсутствие дыма.

Для автомобильного ремонта

Появление бытовых полуавтоматов позволило производить кузовной ремонт автомобиля практически в любом гараже с подключением к сети. Сварка в среде углекислого газа обладает следующими преимуществами:

  • Технологическая простота – основы работы с полуавтоматом доступны пониманию широкому кругу лиц;
  • Низкая цена углекислоту оказывает положительное воздействие на себестоимость работ;
  • Низкая зона температурного воздействия сваривать изделия практически любой толщины;
  • Благодаря ограниченному температурному воздействию краска вокруг шва практически не выгорает, что позволяет экономить время и средства на финишной обработке;
  • Соединяемые элементы не требуют подгонки.

Заключение

Данная технология представляет огромный интерес для широкого круга потребителей, вне зависимости от того, какой газ для полуавтоматической сварки будет выбран. Домашние мастера отдадут предпочтение углекислому газу – благодаря отличному показателю соотношения цена-качество.

На промышленных предприятиях во главе угла стоит повышение качества и надежности соединения, не считаясь с затратами. Помните, что сварка в среде защитного газа – это работа повышенной опасности. Не забывайте о необходимости применения средств индивидуальной защиты.

[stextbox id=’info’]Отзыв: «Со сваркой углекислотой я познакомился еще в 2002 году. До этого опыт работы со сварочным оборудованием был ограничен использованием простенького трансформатора для работы во дворе.

Необходимость в полуавтомате возникла после небольшой аварии – просто не было средств и желания обращаться на СТО. После нескольких неудачных попыток получилось добиться приемлемого результата, правда, с помощью советов опытного специалиста.

После этого прошел курс обучения и занимаюсь кузовным ремонтом в свободное от работы время. Подводя итог скажу, что при наличии базовых навыков сварки можно без особых проблем научиться работе с полуавтоматом.

В качестве защитного газа беру исключительно углекислоту, о чем ни разу не пожалел – для гаражного пользования она идеальна».[/stextbox]

Понравилась статья? Поделиться с друзьями:
Станок