Например полоний относят к металлам

Этот химический элемент открыт случайно – при исследовании радиоактивного сырья. Полоний – один из самых токсичных, опасных химических веществ. Но ценим ядерщиками.

Например полоний относят к металлам

Что представляет собой

Полоний – это химический элемент №84 таблицы Менделеева, белый с серебристостью – мягкий металл.

Тонкая плёнка металлического полония на диске из нержавеющей стали

Радиоактивен. По составу это конгломерат четырех десятков изотопов:

  • Среди них стабильные единицы отсутствуют. Полоний – первый среди элементов таблицы Менделеева с таким свойством.
  • Изотопы-«долгожители» – 208 и 209 (полураспадаются три и 102 года).
  • Изотопам, завязанные на уране и тории, присвоены названия. На сегодня устаревшие.

Международное обозначение – Po (Polonium).

Как был открыт

Полоний как элемент получен супругами Кюри к 1898 году при исследовании урановой смолки:

  • Ученые обнаружили, что отходы, оставшиеся после извлечения урана, «фонят» сильнее исходного материала. Так были открыты радий и полоний.
  • Образец с 0,11 мг полония удалось выделить через 12 лет – после обработки вручную десятков тонн урановых руд.
  • Название элемента предложила Мария Кюри, в девичестве Склодовска.

В историю науки элемент вошел как полоний, в честь Польши (Polonia) – родины Марии Кюри.

Супруги придумали единицу измерения для нового элемента – беккерель (Бк). Так они отдали дань уважения французскому коллеге, вдохновившему Марию на исследования.

Физико-химические характеристики

Для физика или химика это небанальный материал:

  • Полоний в виде металла окисляется на воздухе, образуя моно- и диоксид. Искусственно получен триоксид.
  • Формирует соединения с галогенами.
  • Результат воздействия «дуэта» соляная кислота плюс магний – полоноводород. При температурах от минус 36 до плюс 35°C это жидкость.
  • Взаимодействие с калием и кислородом дает полонаты.
  • Еще один тип соединений – полониды – продукт взаимодействия с металлами.
Свойства атома
Название, символ, номер Атомная масса
(молярная масса) Электронная конфигурация Радиус атома Химические свойства
Ковалентный радиус Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации
(первый электрон) Термодинамические свойства простого вещества
Плотность (при н. у.) Температура плавления Температура кипения Уд. теплота плавления Уд. теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества
Структура решётки Параметры решётки Номер CAS
Поло́ний / Polonium (Po), 84
208,9824 а. е. м. (г/моль)
[Xe] 4f14 5d10 6s2 6p4
176 пм
146 пм
(+6e) 67 пм
2,3 (шкала Полинга)
Po ← Po3+ 0,56 В
Po ← Po2+ 0,65 В
−2, +2, +4, +6
 813,1 (8,43) кДж/моль (эВ)
9,196 г/см³
527 K (254 °C)
1235 K (962 °C)]
10 кДж/моль
102,9 кДж/моль
26,4 Дж/(K·моль)
22,7 см³/моль
кубическая
a = 3,35 Å
7440-08-6

Полоний – единственный химический элемент, кристалл которого формирует решетку-куб из одного атома при малых температурах.

Как представлен в природе

Тонна земной коры содержит 0,00002 мкг полония. Элемент извлекают из минералов тория и урана. Здесь его концентрация на три-четыре порядка выше.

Полониевый изотоп 210 замечен в табаке. Попытки избавить растительное сырье от данного элемента успехом не увенчались.

Изотоп
Название
Обозначение
Радиоактивный ряд
210Po Радий F RaF 238U
211Po Актиний C’ AcC’ 235U
212Po Торий C’ ThC’ 232Th
214Po Радий C’ RaC’ 238U
215Po Актиний A AcA 235U
216Po Торий A ThA 232Th
218Po Радий A RaA 238U

Технология получения

Источник радиоактивного элемента – урановые руды. Но концентрация ничтожна: на 100 триллионов частиц урана приходится одна частица полония.

Например полоний относят к металлам

Поэтому сегодня львиную долю вещества получают на ядерных реакторах:

  • Металлический висмут бомбардируют нейтронами.
  • Энергия бета-распада превращает изотоп висмута в полоний-210.
  • Облучение его же протонами создает полониевый изотоп-долгожитель.

Металлическую форму вещества получают, разлагая сульфид либо диоксид полония (495°C в вакууме).

Микродозы элемента извлекают из уранового шлама. Применяют ионный обмен, хроматографию, другие методы.

Где используется

В научном, оборонном, гражданском секторе нашлось применение изотопу вещества-210:

  • Полониево-боро-бериллиевый сплав приноситпользу как материал источников нейтронов. Выпускается в виде шайбочек из карбида бора либо бериллия, покрытых полонием. Отпускаются в запаянных емкостях. Продукт безопасен, надежен, портативен, легок.
  • Элемент (соло либо со свинцом, иттрием) используют в производстве источников тепла для агрегатов, работающих автономно. Например, луно- или марсоходов.
  • Компонент сплавов электродов свечей зажигания.

В дуэте с изотопом лития элемент становится ядерным детонатором, кратно понижая критическую массу заряда.

Полоний признают стратегическим сырьем и органы власти государств, и террористические группировки. Учитывается с пристрастием.

Влияние на человека

Данные о влиянии элемента на организм человека базируются на результатах опытов с животными (на людях вещество не тестировалось).

Фатальная для взрослого доза полония – 0,6-2 мкг при вдыхании. При попадании с пищей или водой – на порядок больше.

  • Полоний отнесен к веществам первого класса опасности: запредельная токсичность дополняется радиоактивностью.
  • Этим обусловлены правила работы с материалом:
  1. Манипуляции проводятся только в изолированных боксах.
  2. Брать запрещено даже надев перчатки: кожа и сопредельные внутренние области облучатся.

В организм человека вещество попадает с воздухом, пищей, водой, табачным дымом. Локализуется мозгом, печенью, селезенкой, почками.

Симптомы отравления схожи с таллием: выпадение волос, судороги, онкология.

Из организма выводится наполовину через месяц-два.

Конспирология

Свойства вещества создали ему репутацию идеального яда:

  • Его не «видят» детекторы радиации в аэропортах, на таможне, других гражданских объектах.
  • Можно перевозить кристаллы, порошок, бутылочку с растворенным веществом.
  • Доза, достаточная для убийства человека, ничтожна. Поэтому не меняет цвета, запаха, вкуса напитка.
  • Для обнаружения требуется время, специальное оборудование и опытные сотрудники.

Крупинка полония размером полмиллиметра способна убить 3,5 тысячи человек.

Однако «достоинства» перечеркиваются недостатками: полоний оставляет радиационную «метку» на всем, с чем соприкасался. Убийца тоже может погибнуть.

Тема вещества как яда актуализировалась в начале тысячелетия:

  • В 2004 году ему приписали смерть лидера государства Палестина Ясира Арафата.
  • Через два года – отравление экс-сотрудника спецслужб РФ Александра Литвиненко.

Для последнего случая «железобетонных» доказательств не нашлось.

Проверить совместимость мужчины и женщины по Знаку Зодиака

Полоний

84 Полоний
4f145d106s26p4

Полоний — радиоактивный химический элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), 6-го периода в периодической системе Д. И. Менделеева, с атомным номером 84, обозначается символом Po (лат. Polonium). Относится к группе халькогенов. При нормальных условиях представляет собой мягкий радиоактивный металл серебристо-белого цвета.

Элемент открыт в 1898 году супругами Пьером Кюри и Марией Склодовской-Кюри в урановой смоляной руде. Об открытии они впервые сообщили 18 июля на заседании Парижской академии наук в докладе под названием «О новом радиоактивном веществе, содержащемся в смоляной обманке». Элемент был назван в честь родины Марии Склодовской-Кюри — Польши (лат. Polonia).

В 1902 году немецкий учёный Вильгельм Марквальд открыл новый элемент. Он назвал его радиотеллур. Кюри, прочтя заметку об открытии, сообщила, что это — элемент полоний, открытый ими четырьмя годами ранее.

Марквальд не согласился с такой оценкой, заявив, что полоний и радиотеллур — разные элементы. После ряда экспериментов с элементом супруги Кюри доказали, что полоний и радиотеллур обладают одним и тем же периодом полураспада.

Марквальд был вынужден признать свою ошибку.

Первый образец полония, содержащий 0,1 мг этого элемента, был выделен в 1910 году.

Нахождение в природе

  • Радионуклиды полония входят в состав естественных радиоактивных рядов:
  • 210Po (Т1/2 = 138,376 суток), 218Po (Т1/2 = 3,10 мин) и 214Po (Т1/2 = 1,643⋅10−4 с) — в ряд 238U;
  • 216Po (Т1/2 = 0,145 с) и 212Po (Т1/2 = 2,99⋅10−7 с) — в ряд Th;
  • 215Po (Т1/2 = 1,781⋅10−3 с) и 211Po(Т1/2 = 0,516 с) — в ряд 235U.

Поэтому полоний всегда присутствует в урановых и ториевых минералах. Равновесное содержание полония в земной коре — около 2⋅10−14% по массе.

Свойства

Полоний — мягкий серебристо-белый радиоактивный металл.

Металлический полоний быстро окисляется на воздухе. Известны диоксид полония (PoO2)x и монооксид полония PoO. С галогенами образует тетрагалогениды. При действии кислот переходит в раствор с образованием катионов Ро2+ розового цвета:

 Po + 2HCl → PoCl2 + H2↑ 

При растворении полония в соляной кислоте в присутствии магния образуется полоноводород:

 Po + Mg + 2HCl → MgCl2 + H2Po 

который при комнатной температуре находится в жидком состоянии (от −36,1 до 35,3 °C)

В индикаторных количествах получены кислотный триоксид полония PoO3 и соли полониевой кислоты, не существующей в свободном состоянии — полонаты K2PoO4. Образует галогениды состава PoX2, PoX4 и PoX6. Подобно теллуру полоний способен с рядом металлов образовывать химические соединения — полониды.

Полоний является единственным химическим элементом, который при низкой температуре образует одноатомную простую кубическую кристаллическую решётку.

Изотопы

Основная статья: Изотопы полония

На начало 2006 года известны 33 изотопа полония в диапазоне массовых чисел от 188 до 220. Кроме того, известны 10 метастабильных возбуждённых состояний изотопов полония. Стабильных изотопов не имеет.

Наиболее долгоживущие изотопы, 209Po и 208Po имеют периоды полураспада 125 и 2,9 года соответственно.

Некоторые изотопы полония, входящие в радиоактивные ряды урана и тория, имеют собственные наименования, которые сейчас в основном рассматриваются как устаревшие:

ИзотопНазваниеОбозначениеРадиоактивный ряд
210Po Радий F RaF 238U
211Po Актиний C' AcC' 235U
212Po Торий C' ThC' 232Th
214Po Радий C' RaC' 238U
215Po Актиний A AcA 235U
216Po Торий A ThA 232Th
218Po Радий A RaA 238U

Получение

На практике в граммовых количествах нуклид полония 210Po синтезируют искусственно, облучая металлический 209Bi тепловыми нейтронами в ядерных реакторах. Получившийся 210Bi за счёт β-распада превращается в 210Po. При облучении того же изотопа висмута протонами по реакции

209Bi + p → 209Po + n

образуется самый долгоживущий изотоп полония 209Po.

В реакторах с жидкометаллическим носителем в качестве теплоносителя может применяться эвтектика свинец-висмут. Такой реактор, в частности, был установлен на подводной лодке К-27. В активной зоне реактора висмут может переходить в полоний.

Микроколичества полония извлекают из отходов переработки урановых руд. Выделяют полоний экстракцией, ионным обменом, хроматографией и возгонкой.

  1. Металлический Po получают термическим разложением в вакууме сульфида PoS или диоксида (PoO2)x при 500 °C.
  2. Более 95 % мирового производства полония-210 приходится на Россию, однако практически весь он поставляется в США, где используется в основном для производства промышленных и бытовых антистатических ионизаторов воздуха.
  3. На 2006 год, по утверждению британского учёного и писателя Джона Эмсли, в год производилось около 100 грамм 210Po.

Стоимость

По данным британских экспертов, микроскопические дозы полония-210 стоят миллионы долларов США. С другой стороны, согласно утверждению радиохимика, д.х.н. Б.Жуйкова, получаемый из висмута полоний-210 очень дешёв.

Согласно данным на 2006 год за производство 9,6 граммов полония-210 заводу «Авангард» платили порядка 10 миллионов рублей, что сопоставимо со стоимостью трития.

Однако, американская компания United Nuclear, получающая изотоп из России, на 2006 год продавала образцы по цене $69, утверждая, что для накопления смертельной дозы потребовалось бы более $1 миллиона.

Читайте также:  Описание сварочного карандаша, его принцип работы, достоинства и недостатки

Применение

Полоний-210 в сплавах с бериллием и бором применяется для изготовления компактных и очень мощных нейтронных источников, практически не создающих γ-излучения (но короткоживущих ввиду малого времени жизни 210Po: Т1/2 = 138,376 суток) — альфа-частицы полония-210 рождают нейтроны на ядрах бериллия или бора в (α, n)-реакции.

Это герметичные металлические ампулы, в которые заключена покрытая полонием-210 керамическая таблетка из карбида бора или карбида бериллия. Такие нейтронные источники легки и портативны, совершенно безопасны в работе и очень надёжны.

Например, советский нейтронный источник ВНИ-2 представляет собой латунную ампулу диаметром два и высотой четыре сантиметра, ежесекундно излучающую до 90 миллионов нейтронов.

Полоний-210 часто применяется для ионизации газов (в частности, воздуха). В первую очередь ионизация воздуха необходима для борьбы со статическим электричеством (на производстве, при обращении с особо чувствительной аппаратурой). Например, для прецизионной оптики изготавливаются кисточки удаления пыли.

Для окраски автомобилей в гаражах используются пульверизаторы с подачей воздуха, проходящего через антистатический ионизатор с полонием («ионную пушку»).

Другое, уже ушедшее в прошлое применение эффекта ионизации газа — в электродных сплавах автомобильных свечей зажигания для уменьшения напряжения возникновения искры.

Важной областью применения полония-210 является его использование в виде сплавов со свинцом, иттрием или самостоятельно для производства мощных и весьма компактных источников тепла для автономных установок, например, космических.

Один кубический сантиметр полония-210 выделяет около 1320 Вт тепла. Эта мощность весьма велика, она легко приводит полоний в расплавленное состояние, поэтому его сплавляют, например, со свинцом.

Хотя эти сплавы имеют заметно меньшую энергоплотность (150 Вт/см³), тем не менее, они более удобны к применению и безопасны, так как полоний-210 испускает почти исключительно альфа-частицы, а их проникающая способность и длина пробега в плотном веществе минимальны.

Например, у советских самоходных аппаратов космической программы «Луноход» для обогрева приборного отсека применялся полониевый обогреватель.

Полоний-210 может послужить в сплаве с лёгким изотопом лития (6Li) веществом, которое способно существенно снизить критическую массу ядерного заряда и послужить своего рода ядерным детонатором.

Кроме того, полоний пригоден для создания компактных «грязных бомб» и удобен для скрытной транспортировки, так как практически не испускает гамма-излучения.

Изотоп испускает гамма-кванты с энергией 803 кэВ с выходом только 0,001 % на распад.

Полоний является стратегическим металлом, должен очень строго учитываться, и его хранение должно быть под контролем государства ввиду угрозы ядерного терроризма.

Токсичность

Полоний-210 чрезвычайно токсичен, радиотоксичен и канцерогенен, имеет период полураспада 138 дней и 9 часов. В 4 триллиона раз токсичнее синильной кислоты.

Его удельная активность (166 ТБк/г) настолько велика, что, хотя он излучает только альфа-частицы, брать его руками нельзя, поскольку результатом будет лучевое поражение кожи и, возможно, всего организма: полоний довольно легко проникает внутрь сквозь кожные покровы.

Он опасен и на расстоянии, превышающем длину пробега альфа-частиц, так как его соединения саморазогреваются и переходят в аэрозольное состояние. ПДК в водоёмах и в воздухе рабочих помещений 11,1⋅10−3 Бк/л и 7,41⋅10−3 Бк/м³. Поэтому работают с полонием-210 только в герметичных боксах.

Положительно заряженные альфа-частицы, излучаемые полонием, не проходят через кожу, однако при попадании полония внутрь организма, — если его проглотить или вдохнуть, — альфа-частицы необратимо разрушают внутренние органы и ткани, что зачастую приводит к гибели организма.

По оценке специалистов летальная доза полония-210 для взрослого человека — оценивается в пределах от 0,1—0,3 ГБк (0,6—2 мкг) при попадании изотопа в организм через лёгкие, до 1—3 ГБк (6—18 мкг) при попадании в организм через пищеварительный тракт.

Более долгоживущие полоний-208 (период полураспада 2,898 года) и полоний-209 (период полураспада 103 года) обладают несколько меньшей радиотоксичностью на единицу веса, обратно пропорционально периоду полураспада.

Сведений о радиотоксичности других, короткоживущих изотопов полония мало. В организме человека полоний ведёт себя подобно своим химическим гомологам, селену и теллуру, концентрируется в печени, почках, селезёнке и костном мозге.

Период полувыведения из организма − от 30 до 50 дней, выделяется в основном через почки.

Есть сообщения об успешном использовании 2,3-димеркаптопропанола для выведения полония из организма крыс — 90 % животных, которым внутривенно вводилась смертельная доза полония-210 (9 нг/кг веса), выжили, тогда как в контрольной группе все крысы погибли в течение полутора месяцев.

Случаи отравления полонием-210

  • Смерть Александра Литвиненко в 2006 году, который скончался в результате отравления полонием-210.
  • Полоний был обнаружен в личных вещах Ясира Арафата, который скончался в 2004 году. Проведена эксгумация тела. Первоначально швейцарская сторона международной комиссии подтвердила факт отравления полонием. Однако позже согласилась с выводами российской и французской стороны об отсутствии доказательств отравления.

Содержание полония в продуктах

Полоний-210 в небольших количествах находится в природе и накапливается табаком, вследствие чего является одним из заметных факторов, который наносит вред здоровью курильщика.

Другие природные изотопы полония распадаются очень быстро, поэтому не успевают накапливаться в табаке.

«Производители табака обнаружили этот элемент более 40 лет назад, попытки удалить его были безуспешны», — говорится в статье 2008 года исследователей из американского Стэнфордского университета и клиники Майо в Рочестере.

Полоний | это… Что такое Полоний?

84 Полоний
4f145d106s26p4

Поло́ний (лат. Polonium) — химический элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы, халькогены), 6-го периода в периодической системе, имеет атомный номер 84, обозначается символом Po. Радиоактивный полуметалл серебристо-белого цвета. Не имеет стабильных изотопов.

История и происхождение названия

Элемент открыт в 1898 году супругами Пьером Кюри и Марией Склодовской-Кюри в смоляной обманке[2]. Элемент был назван в честь родины Марии Склодовской-Кюри — Польши (лат. Polonia).

В 1902 году немецкий учёный Вильгельм Марквальд открыл новый элемент. Он назвал его радиотеллур. Кюри, прочтя заметку об открытии, сообщила, что это элемент полоний, открытый ими четырьмя годами ранее.

Марквальд не согласился с такой оценкой, заявив, что полоний и радиотеллур — разные элементы. После ряда экспериментов с элементом супруги Кюри доказали, что полоний и радиотеллур обладают одним и тем же периодом полураспада.

Марквальд был вынужден отступить.

Первый образец полония, содержащий 0,1 мг этого элемента, был выделен в 1910 г.

Нахождение в природе

  • Радионуклиды полония входят в состав естественных радиоактивных рядов:
  • 210Po (Т1/2 = 138,376 суток), 218Po (Т1/2 = 3,10 мин) и 214Po (Т1/2 = 1,643·10−4 с) — в ряд 238U;
  • 216Po (Т1/2 = 0,145 с) и 212Po (Т1/2 = 2,99·10−7 с) — в ряд Th;
  • 215Po (Т1/2 = 1,781·10−3 с) и 211Po(Т1/2 = 0,516 с) — в ряд 235U.

Поэтому полоний всегда присутствует в урановых и ториевых минералах. Равновесное содержание полония в земной коре 2·10−14% по массе.

Свойства

Полоний — мягкий серебристо-белый радиоактивный металл.

Металлический полоний быстро окисляется на воздухе. Известны диоксид полония (РоО2)x и монооксид полония РоО. С галогенами образует тетрагалогениды. При действии кислот переходит в раствор с образованием катионов Ро2+ розового цвета:

При растворении полония в соляной кислоте в присутствии магния образуется полоноводород:

который при комнатной температуре находится в жидком состоянии (от −36,1 до 35,3 °C)

В индикаторных количествах получены кислотный триоксид полония РоО3 и соли полониевой кислоты, не существующей в свободном состоянии — полонаты К2РоО4. Образует галогениды состава PoX2, PoX4 и PoX6. Подобно теллуру полоний способен с рядом металлов образовывать химические соединения — полониды.

Полоний является единственным химическим элементом, который при низкой температуре образует одноатомную простую кубическую кристаллическую решётку[3].

Изотопы

Основная статья: Изотопы полония

На начало 2006 года известны 33 изотопа полония в диапазоне массовых чисел от 188 до 220. Кроме того, известны 10 метастабильных возбуждённых состояний изотопов полония. Стабильных изотопов не имеет[1].

Наиболее долгоживущие изотопы, 209Po и 208Po имеют периоды полураспада 102 и 2,9 года соответственно.

Некоторые изотопы полония, входящие в радиоактивные ряды урана и тория, имеют собственные наименования, которые сейчас в основном рассматриваются как устаревшие:

Изотоп
Название
Обозначение
Радиоактивный ряд
210Po Радий F RaF 238U
211Po Актиний C' AcC' 235U
212Po Торий C' ThC' 232Th
214Po Радий C' RaC' 238U
215Po Актиний A AcA 235U
216Po Торий A ThA 232Th
218Po Радий A RaA 238U

Получение

На практике в граммовых количествах нуклид полония 210Ро синтезируют искусственно, облучая металлический 209Bi тепловыми нейтронами в ядерных реакторах. Получившийся 210Bi за счёт β-распада превращается в 210Po. При облучении того же изотопа висмута протонами по реакции

209Bi + p → 209Po + n

образуется самый долгоживущий изотоп полония 209Po.

В реакторах с жидкометаллическим носителем в качестве теплоносителя может применяться эвтектика свинец-висмут. Такой реактор, в частности, был установлен на подводной лодке К-27. В активной зоне реактора висмут может переходить в полоний.

Микроколичества полония извлекают из отходов переработки урановых руд. Выделяют полоний экстракцией, ионным обменом, хроматографией и возгонкой.

Металлический Po получают термическим разложением в вакууме сульфида PoS или диоксида (PoO2)x при 500 °C.

98 % мирового производства полония приходится на Россию.

Применение

Полоний-210 в сплавах с бериллием и бором применяется для изготовления компактных и очень мощных нейтронных источников, практически не создающих γ-излучения (но короткоживущих ввиду малого времени жизни 210Po: Т1/2 = 138,376 суток) — альфа-частицы полония-210 рождают нейтроны на ядрах бериллия или бора в (α, n)-реакции.

Это герметичные металлические ампулы, в которые заключена покрытая полонием-210 керамическая таблетка из карбида бора или карбида бериллия. Такие нейтронные источники легки и портативны, совершенно безопасны в работе и очень надёжны.

Например, советский нейтронный источник ВНИ-2 представляет собой латунную ампулу диаметром два и высотой четыре сантиметра, ежесекундно излучающую до 90 миллионов нейтронов[4].

Полоний часто применялся раньше (иногда и в настоящее время) для ионизации газов (в частности воздуха).

В первую очередь ионизация воздуха необходима для борьбы со статическим электричеством (на производстве, при обращении с особо чувствительной аппаратурой)[5]. Например для прецизионной оптики изготавливаются кисточки удаления пыли.

Другое применение эффекта ионизации газа — в электродных сплавах автомобильных свечей зажигания для уменьшения напряжения возникновения искры[6].

Важной областью применения полония является его использование в виде сплавов со свинцом, иттрием или самостоятельно для производства мощных и весьма компактных источников тепла для автономных установок, например космических.

Один кубический сантиметр полония-210 выделяет около 1320 Вт тепла. Эта мощность весьма велика, она легко приводит полоний в расплавленное состояние, поэтому его сплавляют, например, со свинцом.

Хотя эти сплавы имеют заметно меньшую энергоплотность (150 Вт/см³), тем не менее они более удобны к применению и безопасны, так как полоний-210 испускает почти исключительно альфа-частицы, а их проникающая способность и длина пробега в плотном веществе минимальны.

Читайте также:  Лист металл оцинковка 1мм

Например, у советских самоходных аппаратов космической программы «Луноход» для обогрева приборного отсека применялся полониевый обогреватель[7].

Полоний-210 может послужить в сплаве с лёгким изотопом лития (6Li) веществом, которое способно существенно снизить критическую массу ядерного заряда и послужить своего рода ядерным детонатором.

Кроме того, полоний пригоден для создания компактных «грязных бомб» и удобен для скрытной транспортировки, так как практически не испускает гамма-излучения[4].

Поэтому полоний является стратегическим металлом, должен очень строго учитываться, и его хранение должно быть под контролем государства ввиду угрозы ядерного терроризма.

Биологическая роль

Полоний-210 высокотоксичен, имеет период полураспада 138 дней и 9 часов.

Его удельная активность (166 ТБк/г) настолько велика, что, хотя он излучает только альфа-частицы, брать его руками нельзя, результатом будет лучевое поражение кожи и, возможно, всего организма: полоний довольно легко проникает внутрь сквозь кожные покровы.

Он опасен и на расстоянии, превышающем длину пробега альфа-частиц, так как его соединения саморазогреваются и переходят в аэрозольное состояние. ПДК в водоёмах и в воздухе рабочих помещений 11,1·10−3 Бк/л и 7,41·10−3 Бк/м³. Поэтому работают с полонием-210 только в герметичных боксах.

Полоний-210 в небольших количествах находится в природе и накапливается табаком, вследствие чего является одним из заметных факторов, который наносит вред здоровью курильщика.

Другие природные изотопы полония распадаются очень быстро, поэтому не успевают накапливаться в табаке[8].

«Производители табака обнаружили этот элемент более 40 лет назад, попытки изъять его были безуспешны», — говорится в статье 2008 года исследователей из американского Стэнфордского университета и клиники Майо в Рочестере[9].

Точных сведений о воздействии радиационного отравления полонием на человека не существуют, так как опыты на человеке не проводились (проводились, однако, измерения кинетики малых доз полония в организме человека, а также наблюдения нескольких известных случаев острого или хронического отравления полонием).

По оценке специалистов, опубликованной[10] в научном журнале Journal of Radiological Protection и основанной на математической модели радиационного отравления, разработанной на основе данных по опытам над животными, летальная доза полония-210 для взрослого человека оценивается в пределах от 0,1-0,3 ГБк (0,6-2 мкг) при попадании изотопа в организм через лёгкие, до 1-3 ГБк (6-18 мкг) при попадании в организм через пищеварительный тракт.

Более долгоживущие полоний-208 (период полураспада 2,898 года) и полоний-209 (период полураспада 103 года) обладают несколько меньшей радиотоксичностью на единицу веса, обратно пропорционально периоду полураспада.

Сведений о радиотоксичности других, короткоживущих изотопов полония мало. В организме человека полоний ведет себя подобно своим химическим гомологам, селену и теллуру, концентрируется в печени, почках, селезёнке и костном мозге.

Период полувыведения из организма − от 30 до 50 дней, выделяется в основном через почки.

Есть сообщения об успешном использовании 2,3-димеркаптопропанола для выведения полония из организма крыс — 90 % животных, которым внутривенно вводилась смертельная доза полония-210 (9 нг/кг веса), выжили, тогда как в контрольной группе все крысы погибли в течение полутора месяцев.

Случаи отравления полонием-210, получившие широкое освещение

Примечания

  • Полоний на Webelements
  • Полоний в Популярной библиотеке химических элементов

Полоний: стратегический яд

В последние дни о невероятной опасности радиоактивного полония-210 узнал весь мир. Naked Science разобрался, что это за элемент, откуда берется и как действует на организм.

Открыт полоний был в 1898 году Марией Склодовской-Кюри, изучавшей смоляную урановую руду, и назван ею в честь родной Польши. В Периодической системе химических элементов он получил номер 84, разместившись почти у самой нижней ее границы, в 16-й группе, которую «возглавляют» кислород и сера.

Известно около 30 изотопов полония, ядра которых содержат 84 протона и разное количество нейтронов, что дает им массу от 194 до 218 атомных единиц. Изотопом, с которым работала Мария Склодовская-Кюри, был полоний-210 – забавно, но именно из-за него поднялся сегодня весь этот переполох.

 
 

Стратегический материал 

 
Полоний – тяжелый элемент, который в природе встречается чрезвычайно редко и в количествах, для здоровья обычного человека не представляющих никакой опасности. Он появляется в ходе радиоактивного распада урана, который на своем долгом пути, ведущем к нерадиоактивному свинцу, проходит целый ряд превращений: полоний – одна из «остановок» на этом маршруте.

 
 
Впрочем, долго он не существует: период его полураспада в зависимости от изотопа составляет от сотен микро- и даже наносекунд до нескольких суток, за исключением полония-208 и полония-209, для которых он достигает 2,9 и 125 лет соответственно. Период полураспада полония-210 составляет 138 дней.

Этим и объясняются редкость этого элемента в естественных условиях и необходимость его искусственного синтеза для промышленных, научных и военных целей. 
 
С помощью сложнейших и опаснейших манипуляций полоний в крошечных количествах удается выделять из урановой руды.

Как правило, это долгоживущий полоний-209, который превращают в полоний-210, «обстреливая» нейтронами, образующимися в ядерных реакторах. Считается, что основным производителем его является Россия, точнее говоря, завод «Авангард» в закрытом Сарове – бывшем Арзамасе-16, хотя точные сведение о таких секретных производствах найти не так-то просто.

Не так давно производство полония было возобновлено и в США. 
 
Полоний находит применение не только в ядерных детонаторах и всевозможных неприятных бомбах. Из него делают компактные и эффективные источники нейтронного излучения, антистатические ионизаторы воздуха.

Полониевые радиоизотопные источники тепловой энергии устанавливаются, например, на аппараты долговременных космических миссий, которые отправляются в далекий космос, где света недостаточно для постоянного питания от солнечных батарей. В общем, материал этот стратегический. 

Невероятный яд 

 
В то же время полоний является одним из самых опасных веществ, известных современной токсикологии. Точная смертельная доза полония не установлена, но известно, что 250 мг его совершенно определенно приведут к гибели, что делает полоний как минимум в 250 тыс.

раз токсичнее цианидов, хотя некоторые специалисты считают, что это серьезное преуменьшение и токсичность полония выше в триллионы раз.

 
 
С другой стороны, полоний легко абсорбируется другими химическими веществами, включая воду, окружающие нас предметы и воздух, так что для настоящего отравления необходимы большие дозы, которые гарантировали бы проникновение хотя бы минимального количества в организм жертвы.

Стоит заметить, что и альфа-частицы, которые выделяются при распаде полония, также легко поглощаются даже парой листов бумаги, и это затрудняет его обнаружение детекторами радиоактивности.

 
 
Но даже если вы проглотите немножко полония, шанс выжить у вас остается: необходимо провести срочное и глубокое промывание желудка, а также принять хелатирующие препараты, которые связывают тяжелые металлы и облегчают их выведение из организма. Если эти экстренные меры не принять оперативно, шансов почти не останется.

Хотя, в отличие от тех же цианидов, полоний действует отнюдь не моментально, но из кишечника (или из легких при вдыхании его паров) он легко проникает в кровоток и уже тогда разносится по всему телу, вызывая нарушения, несовместимые с жизнью. 
 
Повреждения наносит все тот же радиоактивный распад полония-210: хотя он излучает считающиеся на самыми «проблемными» альфа-частицы, которые легко задерживаются минимальным экраном. Происходит это с такой интенсивностью, что даже брать образец в руки не рекомендуется. Кроме того, при распаде полоний сильно разогревается – с одной стороны, это и позволяет использовать его в качестве источника энергии в космосе и других изолированных обстоятельствах, а с другой, заставляет его испаряться, переходя в аэрозоль, который слишком легко вдохнуть. 

Смертельный механизм

 
Разбежавшись по организму, полоний продолжает распадаться, выделяя невероятное множество альфа-частиц. Состоящие из пары протонов и пары нейтронов, они летят подобно тяжелым ядрам, беспорядочно сталкиваясь с молекулами нашего тела и разрывая их на куски.

При этом образуются отдельные фрагменты – свободные радикалы, обладающие исключительно высокой химической активностью. Они, в свою очередь, вступают в реакцию с практически любой подвернувшейся молекулой, повреждая тонкую биохимическую машинерию клетки.

 
 
При отравлении полонием нарушения происходят повсюду и в таких количествах, что обычные биохимические механизмы уже не могут справиться с «ремонтом». Развивается лучевая болезнь, и смерть наступает обычно от полиорганной недостаточности, при которой отказывают практически все системы организма.

Однако сильнее других страдают такие жизненно важные органы, как печень, почки, селезенка. 
 
Если полоний был получен перорально, он успевает нанести повреждения и в желудочно-кишечном тракте, что выражается в сильной рвоте – первом из признаков такого отравления.

В течение нескольких дней практически погибает костный мозг, в котором происходит созревание клеток крови. Очень ярко это проявляется в резком падении числа белых кровяных телец, которые гибнут массово и становятся практически неспособны защищать организм от инфекционных агентов.

 
 
Гибнут и волосяные фолликулы, чрезвычайно чувствительные к недостатку снабжения кислородом: у обреченного выпадают волосы. Все эти симптомы наблюдались у несчастной дочери Марии Склодовской-Кюри – Ирен Жолио-Кюри, которая умерла от лейкемии, вызванной, скорее всего, контактом с этим опаснейшим ядом. Она стала первой, но, увы, не последней жертвой полония.

ПОЛОНИЙ

Содержание статьи

  • Открытие полония.
  • Свойства полония.
  • Получение полония.
  • Применение полония.

ПОЛОНИЙ – радиоактивный химический элемент VI группы периодической системы, аналог теллура. Атомный номер 84. Не имеет стабильных изотопов.

Известно 27 радиоактивных изотопов полония с массовыми числами от 192 до 218, из них семь (с массовыми числами от 210 до 218) встречаются в природе в очень малых количествах как члены радиоактивных рядов урана, тория и актиния,остальные изотопы получены искусственно.

Наиболее долгоживущие изотопы полония – искусственно полученные 209Ро (t1/2 = 102 года) и 208Ро (t1/2 = 2,9 года), а также содержащийся в радиево-урановых рудах 210Ро (t1/2 = 138,4 сут). Содержание в земной коре 210Ро составляет всего 2·10–14%; в 1 т природного урана содержится 0,34 г радия и доли миллиграмма полония-210.

Самый короткоживущий из известных изотопов полония – 21ЗРо (t1/2 = 3·10–7 с). Самые легкие изотопы полония – чистые альфа-излучатели, более тяжелые одновременно испускают альфа- и гамма-лучи. Некоторые изотопы распадаются путем электронного захвата, а самые тяжелые проявляют также очень слабую бета-активность (см. РАДИОАКТИВНОСТЬ).

Разные изотопы полония имеют исторические названия, принятые еще в начале 20 в., когда их получали в результате цепочки распадов из «родительского элемента»: RaF (210Po), AcC' (211Po), ThC' (212Po), RaC' (214Po), AcA (215Po), ThA (216Po), RaA (218Po).

Читайте также:  Напишите уравнение реакции замещения при взаимодействии металла с солью другого металла алюминий

Открытие полония

Существование элемента с порядковым номером 84 было предсказано Д.И.Менделеевым в 1889 – он назвал его двителлуром (на санскрите – «второй» теллур) и предположил, что его атомная масса будет близка к 212. Конечно, Менделеев не мог предвидеть, что этот элемент окажется неустойчивым.

Полоний – первый радиоактивный элемент, открытый в 1898 супругами Кюри в поисках источника сильной радиоактивности некоторых минералов (см. РАДИЙ). Когда оказалось, что урановая смоляная руда излучает сильнее, чем чистый уран, Мария Кюри решила выделить из этого соединения химическим путем новый радиоактивный химический элемент.

До этого было известно только два слабо радиоактивных химических элемента – уран и торий. Кюри начала с традиционного качественного химического анализа минерала по стандартной схеме, которая была предложена немецким химиком-аналитиком К.Р.

Фрезениусом (1818–1897) еще в 1841 и по которой многие поколения студентов в течение почти полутора веков определяли катионы так называемым «сероводородным методом». Вначале у нее было около 100 г минерала; затем американские геологи подарили Пьеру Кюри еще 500 г. Проводя систематический анализ, М.

Кюри каждый раз проверяла отдельные фракции (осадки и растворы) на радиоактивность с помощью чувствительного электрометра, изобретенного ее мужем. Неактивные фракции отбрасывались, активные анализировались дальше. Ей помогал один из руководителей химического практикума в Школе физики и промышленной химии Густав Бемон.

Прежде всего, Кюри растворила минерал в азотной кислоте, выпарила раствор досуха, остаток растворила в воде и пропустила через раствор ток сероводорода. При этом выпал осадок сульфидов металлов; в соответствии с методикой Фрезениуса, этот осадок мог содержать нерастворимые сульфиды свинца, висмута, меди, мышьяка, сурьмы и ряда других металлов.

Осадок был радиоактивным, несмотря на то, что уран и торий остались в растворе. Она обработала черный осадок сульфидом аммония, чтобы отделить мышьяк и сурьму – они в этих условиях образуют растворимые тиосоли, например, (NH4)3AsS4 и (NH4)3SbS3. Раствор не обнаружил радиоактивности и был отброшен. В осадке остались сульфиды свинца, висмута и меди.

Не растворившуюся в сульфиде аммония часть осадка Кюри снова растворила в азотной кислоте, добавила к раствору серную кислоту и выпарила его на пламени горелки до появления густых белых паров SO3. В этих условиях летучая азотная кислота полностью удаляется, а нитраты металлов превращаются в сульфаты.

После охлаждения смеси и добавления холодной воды в осадке оказался нерастворимый сульфат свинца PbSO4 – активности в нем не было. Осадок она выбросила, а к отфильтрованному раствору добавила крепкий раствор аммиака.

При этом снова выпал осадок, на этот раз – белого цвета; он содержал смесь основного сульфата висмута (BiO)2SO4 и гидроксида висмута Bi(OH)3. В растворе же остался комплексный аммиакат меди [Cu(NH3)4]SO4 ярко-синего цвета. Белый осадок, в отличие от раствора, оказался сильно радиоактивным.

Поскольку свинец и медь были уже отделены, в белом осадке был висмут и примесь нового элемента.

Кюри снова перевела белый осадок в темно-коричневый сульфид Bi2S3, высушила его и нагрела в вакуумированной ампуле. Сульфид висмута при этом не изменился (он устойчив к нагреву и лишь при 685°С плавится), однако из осадка выделились какие-то пары, которые осели в виде черной пленки на холодной части ампулы.

Пленка была радиоактивной и, очевидно, содержала новый химический элемент – аналог висмута в периодической таблице. Это был полоний – первый после урана и тория открытый радиоактивный элемент, вписанный в периодическую таблицу (в том же 1898 году были открыты радий, а также группа благородных газов – неон, криптон и ксенон).

Как потом выяснилось, полоний при нагревании легко возгоняется – его летучесть примерно такая же, как у цинка.

Супруги Кюри не спешили назвать черный налет на стекле новым элементом. Одной радиоактивности было мало.

Коллега и друг Кюри французский химик Эжен Анатоль Демарсе (1852–1903), специалист в области спектрального анализа (в 1901 он открыл европий), исследовал спектр испускания черного налета и не обнаружил в нем новых линий, которые могли бы свидетельствовать о присутствии нового элемента.

Спектральный анализ – один из самых чувствительных методов, позволяющий обнаруживать многие вещества в микроскопических, невидимых глазом количествах.

Тем не менее, в статье, опубликованной 18 июля 1898 супруги Кюри написали: «Мы думаем, что вещество, выделенное нами из урановой смолки, содержит не известный пока металл, являющийся по аналитическим свойствам аналогом висмута.

Если существование нового металла будет подтверждено, мы предлагаем назвать его полонием, по родине одного из нас» (Polonia на латыни – Польша). Это единственный случай, когда еще не идентифицированный новый химический элемент уже получил название. Однако получить весовые количества полония не удалось – его в урановой руде было слишком мало (позднее полоний был получен искусственно). И прославил супругов Кюри не этот элемент, а радий

Свойства полония

Уже теллур частично проявляет металлические свойства, полоний же – мягкий серебристо-белый металл. Из-за сильной радиоактивности светится в темноте и сильно нагревается, поэтому нужен непрерывный отвод тепла.

Температура плавления полония 254° С (чуть выше, чем у олова), температура кипения 962° С, поэтому уже при небольшом нагревании полоний возгоняется. Плотность полония почти такая же, как у меди – 9,4 г/см3.

В химических исследованиях применяется только полоний-210, более долгоживущие изотопы практически не используются ввиду трудности их получения при одинаковых химических свойствах.

Химические свойства металлического полония близки к свойствам его ближайшего аналога – теллура, он проявляет степени окисления –2, +2, +4, +6.

На воздухе полоний медленно окисляется (быстро при нагревании до 250° С) с образованием красного диоксида РоО2 (при охлаждении он становится желтым в результате перестройки кристаллической решетки).

Сероводород из растворов солей полония осаждает черный сульфид PoS.

Сильная радиоактивность полония отражается на свойствах его соединений. Так, в разбавленной соляной кислоте полоний медленно растворяется с образованием розовых растворов (цвет ионов Ро2+): Po + 2HCl ® PoCl2 + H2, однако под действием собственной радиации дихлорид превращается в желтый PoCl4.

Разбавленная азотная кислота пассивирует полоний, а концентрированная быстро его растворяет. С неметаллами VI группы полоний роднит реакция с водородом с образованием летучего гидрида РоН2 (т.пл. –35° С, т.кип.

+35° С, легко разлагается), реакция с металлами (при нагревании) с образованием твердых полонидов черного цвета (Na2Po, MgPo, CaPo, ZnPo, HgPo, PtPo и др.) и реакция с расплавленными щелочами с образованием полонидов: 3Po + 6NaOH ® 2Na2Po + Na2PoO3 + H2O.

С хлором полоний реагирует при нагревании с образованием ярко-желтых кристаллов PoCl4, с бромом получаются красные кристаллы PoBr4, с иодом уже при 40° С полоний реагирует с образованием черного летучего иодида PoI4. Известен и белый тетрафторид полония PoF4.

При нагревании тетрагалогениды разлагаются с образованием более стабильных дигалогенидов, например, PoCl4 ® PoCl2 + Cl2. В растворах полоний существует в виде катионов Ро2+, Ро4+, анионов РоО32–, РоО42–, также разнообразных комплексных ионов, например, PoCl62–.

Получение полония

Полоний-210 синтезируют путем облучения нейтронами природного висмута (он содержит только 208Bi) в ядерных реакторах (промежуточно образуется бета-активный изотоп висмута-210): 208Bi + n ® 210Bi ® 210Po + e.

При облучении висмута ускоренными протонами образуется полоний-208, его отделяют от висмута возгонкой в вакууме – как это делала М.Кюри. В нашей стране методику выделения полония разработала Зинаида Васильевна Ершова (1905–1995).

В 1937 она была командирована в Париж в Институт радия в лабораторию М.Кюри (руководимую в то время Ирэн Жолио-Кюри). В результате этой командировки коллеги стали называть ее «русской мадам Кюри». Под научным руководством З.В.

Ершовой в стране было создано постоянно действующее, экологически чистое производство полония, что позволило реализовать отечественную программу запуска луноходов, в которых полоний использовали в качестве источника тепла.

Долгоживущие изотопы полония пока не получили заметного практического применения из-за сложности их синтеза. Для их получения можно использовать ядерные реакции 207Pb + 4He ® 208Po + 3n, 208Bi + 1H ® 208Po + 2n, 208Bi + 2D ® 208Po + 3n, 208Bi + 2D ® 208Po + 2n, где 4Не – альфа-частицы, 1Н – ускоренные протоны, 2D – ускоренные дейтроны (ядра дейтерия).

Применение полония

Полоний-210 испускает альфа-лучи с энергией 5,3 МэВ, которые в твердом веществе тормозятся, проходя всего тысячные доли миллиметра и отдавая при этом свою энергию.

Время его жизни позволяет использовать полоний как источник энергии в атомных батареях космических кораблей: для получения мощности 1 кВт достаточно всего 7,5 г полония. В этом отношении он превосходит другие компактные «атомные» источники энергии.

Такой источник энергии работал, например, на «Луноходе-2», обогревая аппаратуру во время долгой лунной ночи. Конечно, мощность полониевых источников энергии со временем убывает – вдвое каждые 4,5 месяца, однако более долгоживущие изотопы полония слишком дороги.

Полоний удобно применять и для исследования воздействия альфа-излучения на различные вещества. Как альфа-излучатель, полоний в смеси с бериллием применяют для изготовления компактных источников нейтронов: 9Be + 4He ® 12C + n. Вместо бериллия в таких источниках можно использовать бор.

Сообщалось, что в 2004 инспекторы международного агентства по атомной энергии (МАГАТЭ) обнаружили в Иране программу по производству полония. Это привело к подозрению, что он может быть использован в бериллиевом источнике для «запуска» с помощью нейтронов цепной ядерной реакции в уране, приводящей к ядерному взрыву.

Полоний при попадании в организм можно считать одним из самых ядовитых веществ: для 210Ро предельно допустимое содержание в воздухе составляет всего 40 миллиардных долей микрограмма в 1 м3 воздуха, т.е. полоний в 4 триллиона раз токсичнее синильной кислоты.

Вред наносят испускаемые полонием альфа-частицы (и в меньшей мере также гамма-лучи), которые разрушают ткани и вызывают злокачественные опухоли. Атомы полония могут образоваться в легких человека в результате распада в них газообразного радона. Кроме того, металлический полоний способен легко образовывать мельчайшие частицы аэрозолей.

Поэтому все работы с полонием проводят дистанционно в герметичных боксах.

Илья Леенсон

Понравилась статья? Поделиться с друзьями:
Станок