- Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов
- Структура Периодической системы элементов
- Свойства Периодической системы элементов
- Элементы Периодической таблицы Менделеева
- Щелочные металлы
- Учите химию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду CHEMISTRY892021 вы получите бесплатный недельный доступ к курсам химии за 8 класс и 9 класс
- Щелочноземельные металлы
- Лантаноиды и актиноиды
- Переходные металлы
- Неметаллы
- Подгруппа углерода
- Подгруппа азота
- Подгруппа кислорода
- Галогены
- Инертные газы
- Металлы и неметаллы в таблице Менделеева: таблица, как определять металлические свойства и отличать элементы
- Периодическая таблица Менделеева
- Таблица химических элементов Менделеева, металлы, неметаллы
- Историческая справка
- Как ищутся металлы и неметаллы
- Определение металлов теоретическим методом
- Теоретическое определение неметаллов
- Химические способы определения
- Заключение
- Видео
- Как определить металл: виды проверок, использование химии
- Проверка магнитом
- Проверка теплом
- Проверка йодом
- Проверка уксусом
- Проверка «на зуб»
- Применение химических веществ
- Аммиак
- Кислоты азотная и соляная
- Проверка по плотности
- Металлы — Химия
К середине XIX века учёные располагали множеством сведений о физических и химических свойствах разных элементов и их соединений. Появилась необходимость упорядочить эти знания и представить их в наглядном виде.
Исследователи из разных стран пытались создать классификацию, объединяя элементы по сходству состава и свойств веществ, которые они образуют. Однако ни одна из предложенных систем не охватывала все известные элементы.
Пытался решить эту задачу и молодой русский профессор Д.И. Менделеев. Он собирал и классифицировал информацию о свойствах элементов и их соединений, а затем уточнял её в ходе многочисленных экспериментов.
Собрав данные, Дмитрий Иванович записал сведения о каждом элементе на карточки, раскладывал их на столе и многократно перемещал, пытаясь выстроить логическую систему.
Долгие научные изыскания привели его к выводу, что свойства элементов и их соединений изменяются с возрастанием атомной массы, однако не монотонно, а периодически.
Так был открыт периодический закон, который учёный сформулировал следующим образом: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
Своё открытие Менделеев совершил почти за 30 лет до того, как учёным удалось понять структуру атома. Открытия в области атомной физики позволили установить, что свойства элементов определяются не атомной массой, а зависят от количества электронов, содержащихся в нём. Поэтому современная формулировка закона звучит так:
Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов
Этот принцип Менделеев проиллюстрировал в таблице, в которой были представлены все 63 известных на тот момент химических элемента. При её создании учёный предпринял ряд весьма смелых шагов.
- Во-первых, многочисленные эксперименты позволили Менделееву сделать вывод, что атомные массы некоторых элементов ранее были вычислены неправильно, и он изменил их в соответствии со своей системой.
- Во-вторых, в таблице были оставлены места для новых элементов, открытие которых учёный предсказал, подробно описав их свойства.
Первый вариант Периодической таблицы элементов, составленной Д.И. Менделеевым.
Мировое научное сообщество поначалу скептически отнеслось к открытию русского химика. Однако вскоре были открыты предсказанные им химические элементы: галлий, скандий и германий.
Это разрушило сомнения в правильности системы Менделеева, которая навсегда изменила науку.
Там, где раньше учёному требовалось провести ряд сложнейших (и даже не всегда возможных в реальности) опытов — теперь стало достаточно одного взгляда в таблицу.
Существует легенда, якобы знаменитая таблица явилась Менделееву во сне. Но сам Дмитрий Иванович эту информацию не подтвердил.
Он действительно нередко засиживался над работой до поздней ночи и засыпал, продолжая размышлять над решением задачи, однако факт мистического озарения во сне учёный отрицал: «Я над ней, может быть, двадцать лет думал, а вы думаете, сел и вдруг — готово!».
Теперь расскажем, как устроена Периодическая таблица элементов Менделеева и как ею пользоваться.
Структура Периодической системы элементов
Периодическая таблица химических элементов
На настоящий момент Периодическая таблица Менделеева содержит 118 химических элементов. Каждый из них занимает своё место в зависимости от атомного числа. Оно показывает, сколько протонов содержит ядро атома элемента и сколько электронов в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий.
Периоды — это строки таблицы. На данный момент их семь. У всех элементов одного периода одинаковое количество заполненных электронами энергетических уровней.
Группы — это столбцы. В группы в Периодической таблице объединяются элементы с одинаковым числом электронов на внешнем энергетическом уровне их атомов.
В кратком варианте таблицы, используемой в школьных учебниках, элементы разделены на восемь групп.
Каждая из них делится на главную (A) и побочную (B) подгруппы, которые объединяют элементы со сходными химическими свойствами.
Каждый элемент обозначается одной или двумя латинскими буквами. Порядковый номер элемента (число протонов в его ядре) обычно пишется в левом верхнем углу.
Также в ячейке элемента указана его относительная атомная масса (сумма масс протонов и нейтронов).
Это усреднённая величина, для расчёта которой используются атомные массы всех изотопов элемента с учётом их содержания в природе. Поэтому обычно она является дробным числом.
Чтобы узнать количество нейтронов в ядре элемента, необходимо вычесть его порядковый номер из относительной атомной массы (массового числа).
Свойства Периодической системы элементов
Расположение химических элементов в таблице Менделеева позволяет сопоставлять не только их атомные массы, но и химические свойства.
Вот как они изменяются в пределах группы (сверху вниз):
- Металлические свойства усиливаются, неметаллические ослабевают.
- Увеличивается атомный радиус.
- Усиливаются основные свойства гидроксидов и кислотные свойства водородных соединений неметаллов.
В пределах периодов (слева направо) свойства элементов меняются следующим образом:
- Металлические свойства ослабевают, неметаллические усиливаются.
- Уменьшается атомный радиус.
- Возрастает электроотрицательность.
Элементы Периодической таблицы Менделеева
По положению элемента в периоде можно определить его принадлежность к металлам или неметаллам. Металлы расположены в левом нижнем углу таблицы, неметаллы — в правом верхнем углу. Между ними находятся полуметаллы. Все периоды, кроме первого, начинается щелочным металлом. Каждый период заканчивается инертным газом.
Щелочные металлы
Первая группа главная подгруппа элементов (IA) — щелочные металлы. Это серебристые вещества (кроме цезия, он золотистый), настолько мягкие, что их можно резать ножом. Поскольку на их внешнем электронном слое находится только один электрон, они очень легко вступают в реакции. Плотность щелочных металлов меньше плотности воды, поэтому они в ней не тонут, а бурно реагируют с образованием щёлочи и водорода. Реакция идёт настолько энергично, что водород может даже загореться или взорваться. Эти металлы настолько активно реагируют с кислородом в воздухе, что их приходится хранить под слоем керосина (а литий — под слоем вазелина).
Учите химию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду CHEMISTRY892021 вы получите бесплатный недельный доступ к курсам химии за 8 класс и 9 класс
Щелочноземельные металлы
Вторая группа главная подгруппа (IIА) представлена щелочноземельными металлами с двумя электронами на внешнем энергетическом уровне атома. Бериллий и магний часто не относят к щелочноземельным металлам. Они тоже имеют серебристый оттенок и легко взаимодействуют с другими элементами, хотя и не так охотно, как металлы из первой группы главной подгруппы. Температура плавления щелочноземельных металлов выше, чем у щелочных. Ионы магния и кальция обусловливают жёсткость воды.
Лантаноиды и актиноиды
В третьей группе побочной подгруппе (IIIB) шестого и седьмого периодов находятся сразу несколько металлов, сходных по строению внешнего энергетического уровня и близких по химическим свойствам. У этих элементов электроны начинают заполнять третий по счёту от внешнего электронного слоя уровень. Это лантаноиды и актиноиды. Для удобства их помещают под основной таблицей.
Лантаноиды иногда называют «редкоземельными элементами», поскольку они были обнаружены в небольшом количестве в составе редких минералов и не образуют собственных руд.
Актиноиды имеют одно важное общее свойство — радиоактивность. Все они, кроме урана, практически не встречаются в природе и синтезируются искусственно.
Переходные металлы
Элементы побочных подгрупп, кроме лантаноидов и актиноидов, называют переходными металлами. Они вполне укладываются в привычные представления о металлах — твёрдые (за исключением жидкой ртути), плотные, обладают характерным блеском, хорошо проводят тепло и электричество. Валентные электроны их атомов находятся на внешнем и предвнешнем энергетических уровнях.
Неметаллы
Правый верхний угол таблицы до инертных газов занимают неметаллы.
Неметаллы плохо проводят тепло и электричество и могут существовать в трёх агрегатных состояниях: твёрдом (как углерод или кремний), жидком (как бром) и газообразном (как кислород и азот).
Водород может проявлять как металлические, так и неметаллические свойства, поэтому его относят как к первой, так и к седьмой группе Периодической системы.
Подгруппа углерода
Четвёртую группу главную подгруппу (IVА) называют подгруппой углерода. Углерод и кремний обладают всеми свойствами неметаллов, германий и олово занимают промежуточную позицию, а свинец имеет выраженные металлические свойства. Углерод образует несколько аллотропных модификаций — вариантов простых веществ, отличающихся по своему строению, а именно: графит, алмаз, фуллерит и другие.
Большинство элементов подгруппы углерода — полупроводники (проводят электричество за счёт примесей, но хуже, чем металлы). Графит, германий и кремний используют при изготовлении полупроводниковых элементов (транзисторы, диоды, процессоры и так далее).
Подгруппа азота
Пятую группу главную подгруппу (VA) называют пниктогенами или подгруппой азота. В ходе реакций эти элементы могут как отдавать электроны, так и принимать их, завершая внешний энергетический уровень.
Физические свойства элементов подгруппы азота различны. Азот является бесцветным газом. Фосфор, мягкое вещество, образует несколько вариантов аллотропных модификаций — белый, красный и чёрный фосфор. Мышьяк — твёрдый полуметалл, способный проводить электрический ток. Висмут — блестящий серебристо-белый металл с радужным отливом.
Азот — основное вещество в составе атмосферы нашей планеты. Некоторые элементы подгруппы азота токсичны для человека (фосфор, мышьяк, висмут). При этом азот и фосфор являются важными элементами почвенного питания растений, поэтому они входят в состав большинства удобрений. Азот и фосфор также участвуют в формировании важнейших молекул живых организмов — белков и нуклеиновых кислот.
Подгруппа кислорода
Халькогены или подгруппа кислорода — элементы шестой группы главной подгруппы (VIA). Для завершения внешнего электронного уровня атомам этих элементов не хватает лишь двух электронов, поэтому они проявляют сильные окислительные (неметаллические) свойства. Однако, по мере продвижения от кислорода к полонию они ослабевают.
Кислород образует две аллотропные модификации — кислород и озон — тот самый газ, который образует экран в атмосфере планеты, защищающий живые организмы от жёсткого космического излучения.
Кислород и сера легко образуют прочные соединения с металлами — оксиды и сульфиды. В виде этих соединений металлы часто входят в состав руд.
Галогены
Седьмая группа главная подгруппа (VIIA) представлена галогенами — неметаллами с семью электронами на внешнем электронном слое атома. Это сильнейшие окислители, легко вступающие в реакции. Галогены («рождающие соли») назвали так потому, что они реагируют со многими металлами с образованием солей. Например, хлор входит в состав обычной поваренной соли.
Самый активный из галогенов — фтор. Он способен разрушать даже молекулы воды, за что и получил своё грозное имя (слово «фтор» переводится на русский язык как «разрушительный»). А его «близкий родственник» — иод — используется в медицине в виде спиртового раствора для обработки ран.
Инертные газы
Инертные газы, расположенные в последней, восьмой группе главной подгруппе (VIIIA) — элементы с полностью заполненным внешним электронным уровнем. Они практически не способны участвовать в реакциях. Поэтому их иногда называют «благородными», проводя параллель с представителями высшего общества, которые брезгуют контактировать с посторонними.
У инертных газов есть удивительная способность: они светятся под действием электромагнитного излучения, поэтому используются для создания ламп. Так, неон используется для создания светящихся вывесок и реклам, а ксенон — в автомобильных фарах и фотовспышках.
Гелий обладает массой всего в два раза больше массы молекулы водорода, но, в отличие от последнего, не взрывоопасен и используется для заполнения воздушных шаров.
Металлы и неметаллы в таблице Менделеева: таблица, как определять металлические свойства и отличать элементы
Дмитрий Менделеев смог создать уникальную таблицу химических элементов, главным достоинством которой была периодичность. Металлы и неметаллы в таблице Менделеева располагаются так, что их свойства изменяются периодическим образом.
Периодическая таблица Менделеева
Создание данной структурированной системы бесценно для науки и для человечества в целом. Именно это открытие дало толчок развитию всей химии на долгие годы.
Интересно знать! Существует легенда, что готовая система привиделась ученому во сне.
В интервью одному журналисту ученый объяснил, что работал над ней 25 лет и то, что она ему снилась – вполне естественно, но это не значит, что во сне пришли все ответы.
Созданная Менделеевым система делится на две части:
- периоды – столбики по горизонтали в одну или две строки (ряды),
- группы – вертикальные строчки, в один ряд.
Всего в системе 7 периодов, каждый следующий элемент отличен от предыдущего большим количеством электронов в ядре, т.е. заряд ядра каждого правого показателя больше левого на единицу.
Каждый период начинается с металла, а заканчивается инертным газом – именно это и есть периодичность таблицы, ведь свойства соединений меняются внутри одного периода и повторяются в следующем.
При этом, следует помнить, что 1-3 периоды неполные или малые, в них всего 2, 8 и 8 представителей. В полном периоде (т.е. оставшихся четырех) по 18 химических представителей.
Для облегчения поиска группы имеют свое название, а металлические свойства субстанций усиливаются с каждой нижней строчкой, т.е. чем ниже соединение, тем больше у него будет атомных орбит и тем слабее электронные связи. Также меняется и кристаллическая решетка – она становится ярко выраженной у элементов с большим количеством атомных орбит.
В химии используют три вида таблиц:
Урок географии: сколько на Земле всего океанов
- Короткая – актиноиды и лантаноиды вынесены за границы основного поля, а 4 и все последующие периоды занимают по 2 строчки.
- Длинная – в ней актиноиды и лантаноиды вынесены за границу основного поля.
- Сверхдлинная – каждый период занимает ровно 1 строку.
Главной считается та таблица Менделеева, которая была принята и подтверждена официально, но для удобства чаще используют короткую версию. Металлы и неметаллы в таблице Менделеева располагаются согласно строгим правилам, которые облегчают работу с ней.
Это интересно! Уроки химии: катионы и анионы – что это такое
- пластичность,
- электропроводимость,
- блеск,
- легкая отдача электронов,
- ковкость,
- теплопроводность,
- твердость (кроме ртути).
Из-за различной химической и физической сути свойства могут существенно отличаться у двух представителей этой группы, не все они похожи на типичные природные сплавы, к примеру, ртуть – это жидкая субстанция, но относится к данной группе.
Некоторые элементы такого типа могут существовать только доли секунды, а некоторые не встречаются в природе совсем – их создали в искусственных условиях лаборатории. У каждой из групп металлов в системе есть свое название и признаки, которые отличают их от других групп.
Это интересно! Уроки химии: что это такое галогены
При этом отличия у них весьма существенные. В периодической системе все металлы располагаются по количеству электронов в ядре, т.е. по увеличению атомной массы. При этом для них характерно периодическое изменение характерных свойств. Из-за этого в таблице они не размещаются аккуратно, а могут стоять неправильно.
Как определить металл в соединении? Существует простой способ определения, но для этого необходимо иметь линейку и таблицу Менделеева. Для определения надо:
Что такое телеграфный код Бодо
- Провести условную линию по местам соединения элементов от Бора до Полония (можно до Астата).
- Все материалы, которые будут слева линии и в побочных подгруппах – металл.
- Вещества справа – другого типа.
Это интересно! Что такое алканы: строение и химические свойства
Однако у способа есть изъян – он не включает в группу Германий и Сурьму и работает только в длинной таблице. Метод можно использовать в качестве шпаргалки, но чтобы точно определить вещество, следует запомнить список всех неметаллов. Сколько их всего? Мало – всего 22 вещества.
- При комнатной температуре – твердые, за исключением ртути. При этом они блестят и хорошо проводят электрический ток.
- У них на внешнем уровне ядра меньшее количество атомов.
- Состоят из кристаллической решетки (кроме ртути), а все другие элементы имеют молекулярную или ионную структуру.
- В периодической системе все неметаллы – красного цвета, металлы – черного и зеленого.
- Если двигаться слева направо в периоде, то заряд ядра вещества будет увеличиваться.
- У некоторых веществ свойства выражены слабо, но они все равно имеют характерные признаки. Такие элементы относятся к полуметаллам, например Полоний или Сурьма, они обычно располагаются на границе двух групп.
Внимание! В левой нижней части блока в системе всегда стоят типичные металлы, а в правой верхней типичные газы и жидкости.
Важно запомнить, что при перемещении в таблице сверху вниз становятся сильнее неметаллические свойства веществ, поскольку там располагаются элементы, которые имеют отдаленные внешние оболочки. Их ядро отделено от электронов и поэтому они притягиваются слабее.
Таблица химических элементов Менделеева, металлы, неметаллы
Таблица Менделеева является одним из главных постулатов химии. С ее помощью можно найти все необходимые элементы, как щелочные, так и обычные металлы или неметаллы. В этой статье мы рассмотрим, как в такой таблице отыскать необходимые вам элементы.
Историческая справка
В середине 19 века было открыто 63 химических элемента. Первоначально предполагалось разместить элементы согласно увеличению атомной массы и поделить их на группы. Однако структурировать их не удавалось, а предложение химика Нуланда не было воспринято всерьез из-за попыток связать между собой химию и музыку.
В 1869 году Дмитрий Иванович Менделеев впервые опубликовал свою периодическую таблицу на страницах журнала Русского химического общества. Вскоре он известил о своем открытии химиков по всему миру.
Менделеев впоследствии продолжал дорабатывать и улучшать свою таблицу, пока она не приобрела современный вид. Именно Менделеев сумел расставить химические элементы таким образом, чтобы они изменялись не монотонно, а периодически.
Окончательно теория объединилась в периодический закон в 1871 году. Перейдем к рассмотрению неметаллов и металлов в таблице Менделеева.
Как ищутся металлы и неметаллы
Определение металлов теоретическим методом
Теоретический метод:
- Все металлы, за исключением ртути, находятся в твердом агрегатном состоянии. Они пластичны и без проблем гнутся. Также данные элементы отличаются хорошими тепло- и электропроводящими свойствами.
- Если вам нужно определить список металлов, то проведите диагональную линию от бора до астата, ниже которой будут располагаться металлические компоненты. К ним относятся также все элементы побочных химических групп.
- В первой группе первой подгруппе находятся щелочные, например, литий или цезий. При растворении образую щелочи, а именно гидроксиды. Обладают электронной конфигурацией вида ns1 с одним валентным электроном, который при отдаче приводит проявлению восстановительных свойств.
Во второй группе главной подгруппы находятся щелочно-земельные металлы по типу радия или кальция. При обычной температуре они обладают твердым агрегатным состоянием. Их электронная конфигурация имеет вид ns2.
Переходные металлы располагаются в побочных подгруппах. Они обладают переменными степенями окисления.
В низших степенях проявляются основные свойства, промежуточные степени выявляют кислотные свойства, а в высших степенях амфотерные.
Теоретическое определение неметаллов
В первую очередь, такие элементы обычно находятся в жидком или газообразном состоянии, иногда в твердом. При попытке согнуть их они ломаются по причине хрупкости. Неметаллы плохо проводят тепло и электрический ток.
Неметаллы находятся в верхней части диагональной линии, проведенной от бора до астата. В атомах неметаллов содержится большое количество электронов, из-за чего им выгоднее принимать дополнительные электроны, нежели отдавать. К неметаллам также относят водород и гелий.
Все неметаллы располагаются в группах со второй по шестую.
Химические способы определения
Есть несколько способов:
- Нередко приходится применять химические методы определения металлов. Например, нужно определить количество меди в сплаве. Для этого следует нанести каплю азотной кислоты на поверхность и через некоторое время пойдет пар. Промокните фильтрованную бумагу и подержите над колбой с аммиаком. Если пятно окрасилось в темно-голубой цвет, то это свидетельствует о наличии меди в сплаве.
- Предположим, что вам надо отыскать золото, но вы не хотите спутать его с латунью. Наносите на поверхность концентрированный раствор азотной кислоты в соотношении 1 к 1. Подтверждением большого количества золота в сплаве будет отсутствие реакции на раствор.
- Очень популярным металлом считается железо. Для его определения нужно нагреть кусочек металла в соляной кислоте. Если это действительно железо, то колба окрасится в желтый цвет. Если для вас химия довольно проблемная тема, то возьмите магнит. Если это действительно железо,то оно притянется к магниту. Никель определяется практически таким же методом, как и медь, только дополнительно капните диметилглиоксин на спирт. Никель подтвердит себя красным сигналом.
Похожими методами определяются и остальные металлические элементы. Просто используйте необходимые растворы и все получится.
Заключение
Периодическая таблица Менделеева — важный постулат химии. Она позволяет найти все необходимые элементы, в особенности металлы и неметаллы.
Если вы изучите некоторые особенности химических элементов, то сможете выявить ряд особенностей, помогающих отыскать необходимый элемент.
Также можно воспользоваться химическими способами определения металлов и неметаллов, так как они позволяют на практике изучить данную сложную науку. Удачи при изучении химии и периодической таблицы Менделеева, это поможет вам при дальнейших научных исследованиях!
Видео
Из видео вы узнаете, как определять металлы и неметаллы по таблице Менделеева.
Как определить металл: виды проверок, использование химии
Наверное, каждому приходилось держать в руках украшение или другой предмет, ясно, что металлический.
Но как определить, какой металл использован при изготовлении? Это может быть драгоценный материал или подделка под него, а то и вовсе безделушка без претензий на ценность. Точный ответ даст экспертиза у специалистов, но она не бесплатная.
Но есть же методы приблизительного определения вида металла в домашних условиях. Ими пользовались давным-давно, но они не потеряли своей актуальности и в наше время.
Проверка магнитом
Поднести магнит к проверяемому предмету — хороший способ первичной проверки. По реакции магнита можно определить, к какой группе относится металл:
- Ферромагнетики. Магнит явно притягивается к предмету, значит, в составе изделия могут присутствовать железо, сталь или никель.
- Парамагнетики. Взаимодействие с магнитом очень слабое. К этой группе относятся алюминий, хром. Из драгоценных металлов парамагнетиком являются платина, палладий и серебро.
- Диамагнетики. Вообще, не реагируют на магнит. Такими свойствами обладают медь, цинк. Из драгоценных металлов — золото.
Проверка магнитом
Конечно, такая проверка не позволит точно установить материал, из которого изготовлена вещь. Ведь немагнитный металл может быть не в чистом виде, а в виде сплава с ферромагнетиком. Но может подтвердить или опровергнуть предположение. Например, если проверяется, золото или нет, а предмет явно магнитится, то можно утверждать, что это подделка.
При проверке ювелирных изделий следует учитывать, что в них, помимо драгоценных металлов, могут быть замочки, встроенные пружинки, изготовленные из другого материала. Проверять надо сам металл.
Проверка теплом
Определить группу металла можно также по тому, как он проводит тепло. Известно, что проводимость тепла у серебра очень высока. Она почти в пять раз выше, чем у железа или платины. Чуть хуже — у золота, меди и алюминия. Платина передает тепло даже слабее, чем железо.
Если опустить металл на 15–20 секунд в горячую воду, то по его температуре, определяемой на ощупь, можно сделать какие-то выводы.
- Золотые и серебряные предметы станут такими же горячими, как и вода, в которую их опускали.
- Платина и предметы с содержанием железа за это время станут теплыми, но не горячими.
Таким способом легко отличить платину от серебра. А вот сравнить, серебро или алюминиевый сплав, не получится.
Проверка йодом
Проверку подлинности металла можно совершить с помощью раствора йода, купленного в аптеке. На поверхность наносится капля йода и выдерживается несколько секунд. Благородным металлам — золоту, платине, серебру — йод не повредит.
Если цвет капли йода не меняется, а после ее удаления салфеткой не остается никаких следов или разводов — это свидетельствует о подлинности металла. Если на месте капли видно потемнение, то это низкопробный сплав или откровенная подделка.
Проверка йодом золота
Проверка уксусом
Бытовой раствор уксуса также не воздействует на драгоценные металлы. А для подделок он опасен. Но, в отличие от проверки йодом, уксусная кислота требует времени. Чтобы дождаться результата, надо опустить проверяемый металл в емкость с уксусом на 15–30 минут. Отсутствие следов взаимодействия металла с уксусом — признак благородности.
Если, кроме металла, в изделии содержатся драгоценные или полудрагоценные камни, то их лучше так не проверять, уксус может их испортить. Особенно это касается жемчуга.
Проверка «на зуб»
Из романов и фильмов известно, что раньше проверяли подлинность золотых монет, кусая их. Что же именно можно установить таким «дедовским» способом? Золото — мягкий металл. Поэтому даже при слабом укусе на нем остается вмятина от зубов. Поддельные сплавы не обладают таким свойством, зубами их не возьмешь.
Подобная проверка дает хорошие результаты для изделий высокой пробы. Чем выше содержание чистого золота, тем оно мягче. Золото пробы 900 и выше настолько мягкое, что ценные изделия из него стараются не подвергать контактам с другими предметами.
Так можно сравнивать платину и серебро. Последнее не обладает мягкостью золота, но при сильном укусе может остаться небольшая вмятинка. На настоящей платине следы зубами оставить невозможно.
Применение химических веществ
Проверку активными химическими реагентами следует оставлять на крайний случай. При неумелом обращении они повредят даже подлинному драгоценному металлу. И для здоровья проверяющего они могут быть опасны.
Аммиак
Чистое золото на аммиак не реагирует. Но из золота 900 и 999 пробы практически не делают изделий, предназначенных к употреблению, только для коллекций. А на драгметалле меньшей пробы аммиак может оставить неустранимый след. Раствор его в сочетании с другими веществами применяют для чистки золотых изделий. Поэтому определять золотые и серебряные изделия посредством аммиака не стоит.
Платиновые изделия обычно выпускаются с высокой пробой. Поэтому проверить подлинность платины аммиаком можно. На ней этот химикат не оставит следа.
Кислоты азотная и соляная
По отдельности эти кислоты не воздействуют на высокопробное золото и платину. А если смешать их концентрированные растворы в пропорции 1:3, то получится смесь, называемая царской водкой. Она способна растворять даже золото. Платину царская водка не «берет», будучи холодной. В нагретой смеси постепенно растворится и этот драгоценный металл.
Как ни странно, но подлинному серебру царская водка не страшна. Оно реагирует на нее образованием серебряного хлорида в виде тонкой пленки на поверхности. Последняя защищает само изделие от разрушения.
Проверка по плотности
Одним из надежных способов установления вида металла или сплава является определение его плотности. У чистого золота она в два раза выше, чем у меди и почти в три раза — чем у железа. Платина еще тяжелее золота. Даже сплав золота 585 пробы ощутимо тяжелее неблагородных металлов.
Конечно, для определения точной плотности небольшого изделия понадобятся аптекарские весы, расчет объема (закон Архимеда в помощь) и табличные данные о плотности основных металлов.
Но для решения вопроса, из чего в основном сделан сплав, из золота или другого металла, достаточно и грубых прикидок.
Если же под рукой есть предмет из заведомо подлинного металла примерно равного объема, то могут не понадобиться даже весы. Разницу веса в два-три раза уловить не так трудно.
По отдельности каждый из рассмотренных способов не даст точного ответа на вопрос, из какого металла сделано изделие. Но если несколько разных проверок покажут совпадающие результаты, можно быть уверенным в правильном определении. Если же нет, то придется обратиться к профессионалам.
Металлы — Химия
Металлы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.
- Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:
- 6 элементов в группе щелочных металлов,
- 6 в группе щёлочноземельных металлов,
- 38 в группе переходных металлов,
- 11 в группе лёгких металлов,
- 7 в группе полуметаллов,
- 14 в группе лантаноиды + лантан,
- 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
- вне определённых групп бериллий и магний.
- Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.
- В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия
- Характерные свойства металлов
- Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
- Хорошая электропроводность
- Возможность лёгкой механической обработки
- Высокая плотность (обычно металлы тяжелее неметаллов)
- Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
- Большая теплопроводность
- В реакциях чаще всего являются восстановителями.
Физические свойства металлов
Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.
Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.
В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³).
Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.
6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.
Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь.
Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются.
Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым.
Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.
Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов.
Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием.
Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.
Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
- Химические свойства металлов
- На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)
- Реакции с простыми веществами
- С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:
оксид лития пероксид натрия надпероксид калия
Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:
Со средними и малоактивными металлами реакция происходит при нагревании:
- С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:
При нагревании:
- С серой реагируют все металлы, кроме золота и платины:
Железо взаимодействует с серой при нагревании, образуя сульфид:
- С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
- С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.
- Взаимодействие кислот с металлами
- Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода
- Происходит реакция замещения, которая также является окислительно-восстановительной:
Взаимодействие серной кислоты H2SO4 с металлами
Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода:
Очень разбавленная кислота реагирует с металлом по классической схеме:
При увеличении концентрации кислоты образуются различные продукты:
Реакции для азотной кислоты (HNO3)
При взаимодействии с активными металлами вариантов реакций ещё больше: