- Что такое модуль упругости стали: определение + назначение
- 1) Модуль упругости: что это такое?
- А) Терминология по модулю упругости
- Б) Предел прочности и допускаемое механическое напряжение
- В) Связь модуля упругости с другими физическими величинами
- 2) Пару слов о стали
- Как посчитать модуль упругости стали?
- Способы определения и контроля показателей прочности металлов
- Виды нагрузок
- Таблица 1: Модуль упругости для металлов и сплавов
- Модуль упругости для разных марок стали
- Таблица 2: Упругость сталей
- Модули прочности
- Таблица 3: Модули прочности для сталей
- Модуль Юнга (упругости)
- Основные сведения
- Физический смысл модуля Юнга
- Значения модуля юнга для некоторых материалов
- Предел прочности материала
- Допускаемое механическое напряжение в некоторых материалах при растяжении
- Коэффициент запаса прочности
- Связь с другими модулями упругости
- Модуль упругости стали: таблица, характеристики
- Модуль упругости стали
- Модуль упругости разных марок стали
- Таблица модулей прочности марок стали
- Модуль упругости для металлов и сплавов
- Упругость сталей
- Предел прочности
Вспомните школьное время, когда вопрос «Где это нам пригодится в жизни?» звучал чуть ли не на каждом занятии. Для людей, связавших собственную жизнь напрямую/косвенно с металлургией, физика стала неотъемлемой частью практики.
Чтобы качественно выполнить сооружение конструкции, базовых основ может быть недостаточно, и придется протаптывать более тонкие пути направления. Модуль упругости стали – один из моментов, который пригодится инженерам проектирования.
Что именно из себя представляет термин, его расчеты в отношении стали и прочие нюансы вопроса будут рассмотрены далее.
Что такое модуль упругости стали: определение + назначение
Предположим, инженер производит сооружение массивной конструкции. Выбор материала крайне важен, ибо от результата принятого решения будет зависеть прочность всего проекта.
Тип материала и сечение профиля выбирается на основании показателя модуля упругости.
Задача человека – подобрать оптимальный размер элемента, параметры которого смогут сдержать статическую/динамическую нагрузку + не выгребут из кармана застройщика последние деньги.
1) Модуль упругости: что это такое?
В природе 100% физических тел имеют свойство менять форму при использовании на них силы давления. Вопрос в том, насколько сильно тело восстановит свою форму после изначальной деформации, и случится ли это вообще.
Калькулятор веса стального круга
А) Терминология по модулю упругости
Давайте обратимся к повседневным объектам. Нажмите на буханку мягкого хлеба с качественной муки, и вы увидите близкое к полному восстановление формы. Другой пример – антистресс игрушка на основании полиуретана. Сжимайте ее, как пожелаете, за 30-60 секунд игрушка полностью вернет свою формы к изначальной. В сравнение, брусок пластилина считается полностью неупругим телом.
Важно: у каждого тела имеется точка невозврата деформации, когда приложенные усилия достигают своего предела. В таком случае искажается кристаллическая структура материала, и оно либо разрушается, либо остается в деформированной форме навсегда.
Впервые о модуле упругости завели речь еще в 17 веке. Труды шли от имени, известного в научных кругах физиков, ученого – Юнги. Помощником в разработке теории был Гук. Именно связка данных двух личностей привела к возникновению взаимосвязанных понятий – Закон Гука и модуль Юнга. Применяемость оговоренных законов крайне широка в инженерном деле, при определении прочности конструкции/изделия.
Модуль упругости стали (модуль Юнга) – характеристика металлического элемента. В основе меры лежит сопротивляемость деформации растяжения. По-простому, цифра дает понять на сколько металл перед глазами инженера пластичен.
Обозначается модуль Юнги через латинскую букву «Е». Единица измерения – ньютоны на метры в квадрате или Паскали. В инженерной практике больше устоялся именно второй вариант размерности. Для расчета модуля упругости используется обобщенная формула, которую можете лицезреть на рисунке ниже.
Физический смысл модуля упругости – напряжение, что вызывается при вытягивании исследуемого образца на длину, в два раза большую от первоначальной. В процессе эксперимента, предмет исследования обязан оставаться целым, но из-за сложности выполнения данного условия, модуль Юнга рассчитывают косвенным путем, через применение малых деформаций.
Б) Предел прочности и допускаемое механическое напряжение
Предел прочности – неотъемлемая часть модуля Юнга. Расчет данного показателя производится на специализированных устройствах опытным путем. Как правило, машины-разрушители работают на гидравлике + в их комплектации идет встроенный динамометр и измеритель давления.
Выделяют два типа предела прочности:
- статический. На объект анализа производится длительное усилие с постепенно усиливающимся показателем давления;
- динамический. Точечное резкое приложение силы. Чаще всего, — это удар.
Таблица веса квадрата стального
Различные вещества имеют свои особенности сопротивления деформациям. Для твёрдых тел важную роль отыгрывает прочность межатомных связей. При усилиях в сторону растяжения, расстояние между атомами внутри стали и других веществ увеличивается. Пропорционально возрастает и сопротивление прилагаемым усилиям.
Обратите внимание: существует так называемая теоретическая прочность стали – 1/10 от модуля упругости тестируемого вещества. Актуально для всех твердых веществ на основе железа. При достижении оговоренного значения, межатомные связи начинают разрушаться.
В реальных условиях сталь имеет неоднородную структуру, из-за чего разрывы распределяются по всей длине элемента неравномерно. Первым рушатся те участки, где межатомное напряжение выше всего.
В связи с оговоренным выше, в строительстве введено такое понятие как «запас прочности». То бишь, если человек занимается производством стальных тросов, он обязан вкладывать по ГОСТу не менее десятикратного запаса прочности от максимально допустимого теоретического предела. Если речь идет о каркасе здания, необходимо закладывать еще больший запас прочности от минимального.
Все расчеты по запасу прочности в промышленных масштабах производятся на специализированном оборудовании при использовании сложных математических формул. Для домашнего просчета имеются более доступные способы расчета показателей. К примеру, онлайн-калькуляторы инженерного типа.
В) Связь модуля упругости с другими физическими величинами
В инженерном деле одного лишь модуля упругости стали будет недостаточно. На конструкцию действует множество других сил. Соответственно, обеспечить полную безопасность проекта можно лишь при учете всех возможных рисков возведения сооружения. Давайте детальнее взглянем на вспомогательные показатели, используемые в строительной практике.
10 самых крепких металлов в мире
Жесткость | По сути, — это перемножение модуля Юнги на поперечное сечение объекта. Результатом подсчета станет общий показатель пластичности узлового элемента конструкции, а не ее отдельной детали. Жесткость измеряется в килограммах силы | ★★★★ |
Продольное относительное удлинение | Высчитывается как результат деления абсолютного значения удлинения стали и общей длины. Например, имеется брусок стали с показателем длины в 10 сантиметров. Прилагая усилия на сжатие, длина бруска уменьшилась на 2 миллиметра. Тогда продольное относительное удлинение будет 2/10*10=0.02. У параметра не имеется определенной размерности, потому для удобства его измеряют в процентах. | ★★★★ |
Поперечное относительное удлинение | Значение рассчитывается аналогично вышеописанному, только вместо длины объект берётся его поперечка по сечению. За десятки лет опытных расчетов было установлено, что коэффициент разницы между продольным и поперечным составляет ¼. | ★★★★ |
Значение Пуассона | Высчитывается как деление продольной и поперечной относительной деформации объекта. Благодаря оговоренному показателю, человек может спрогнозировать возможность изменения формы стального элемента под воздействием статической и динамической нагрузок. | ★★★ |
Модуль по сдвигу | Значение описывает взаимосвязь вязкости и деформации. Для определения значения на предмет исследования опускается движущая сила под прямым углом. Простым примером проверки модуля по сдвигу может служить удар молотком по шляпке гвоздя. Переломный момент наступает при сгибании стержня. | ★★★★ |
Объемный модуль упругости | Привносит характеристику смены объема предмета исследования, при равномерном давлении со всех сторон. Простым примером может служить помещение пластичного материала на большую глубину. Что происходит с объектом в таких случаях большинство знает из художественных фильмов. | ★★★ |
Выделяют и менее значимые показатели деформации объектов. Пример таких — параметры Ламе, которые являются константами материального типа, отображающие характеристики по упругим деформациям твердых тел.
Кроме того, существуют изотропные и анизотропные материалы. Первые меняют механические свойства в зависимости от прилагаемой нагрузки, а вторые остаются неизменными.
Сталь и прочие металлические сплавы относятся к изотропным материалам.
2) Пару слов о стали
Рассказа столько о модуле упругости, было бы неправильно обойти стороной сам материал. Профаны в металлургии часто путают сталь с железом. Следует понимать, что сталь – это сплав из железа+ углерода с процентным содержанием второго до 2.2%. Углерод является неотъемлемой частью стальных сплав, хоть его содержание бывает и крайне мало.
Важно: рост доли углерода в сплаве стали приводит к повышению характеристик прочности материала в строительстве, но у данного момента имеется и отрицательная сторона – снижение пластичности (сталь становится хрупкой) и меньшая восприимчивость к сварочным работам.
Обращаясь к практической стороне вопроса, среднее содержание углерода в 85%+ марок стали находится в пределах 1% (колебания в пару десятых). В зависимости от вспомогательных добавок цветных металлов и прочих веществ, вхождение чистого железа может падать до 45% от общего объема.
Картинка выше отображает распространенные маркировки конструкционных типов стали в зависимости от количества добавок в сплаве и соответствию ГОСТам. В основе маркировки лежит один из двух признаков – химический состав сплава или перечисление уровней базовых свойств. По территории нашего государства большее распространение приобрела именно первая разновидность классификации.
2 подразделения удельной теплоемкости стали с учетом марок
Базовые показатели стальных сплавов:
- прочность – на сколько сталь устойчива к образованию дефектов/разрушений. Часто приравнивают к пластичности стального сплава;
- плотность – удельный вес, иными словами. Качественная сталь имеет значения в промежутке между 7.6-7.9;
- твёрдость – на сколько сталь может сопротивляться внешним нагрузкам без существенного изменения формы. Единица измерения – ножи по шкале Роквелла;
- износостойкость – на сколько хорошо сталь сохраняет форму при трении и в процессе эксплуатации в общем;
- коррозийная стойкость – на сколько хорошо марка стали может противостоять воздействию внешней среды в отношении окисления. Высоколегированные марки стали с цинком и другими антикоррозийными элементами могут служить от 50+ лет без существенных изменений во внешнем виде;
- упругость – то, о чем речь в сегодняшней статье.
В зависимости от количества вредных примесей в стальном сплаве, те классифицируют по степени чистоты на обыкновенно качественные, качественные, высококачественные и особовысококачественные. Основными «вредными» добавками здесь выступают фосфор и сера. Детальнее о классификациях марок стали по их свойствам, методам изготовления и прочим параметрам можно прочитать в ГОСТах РФ.
Разъяснение понятия о модуле упругости, как физической величине:
Как посчитать модуль упругости стали?
Важно понимать, что модуль упругости Юнга не относится к постоянным величинам. Даже одна и та же марка стали может менять значения в зависимости от точечного применения силы на предмет (колебания незначительные, но они все же есть). Если говорить о более-менее точных показателях, то ими в мире металлов может похвастаться только алюминий, сталь и медь.
Пример выше для строительных материалов взят из справочника, но цифры на бумаге не всегда отображают на 100% верные данные. Куда правильнее будет обратиться к онлайн-расчётам, или воспользоваться специализированным софтом.
Как узнать модуль упругости стали:
- Онлайн-калькуляторов для расчета найти не проблема в сети. Наш выбор пал на сайт из первой десятки поисковика. Переходим по ссылке — http://www.stresscalc.ru/ex.php и сразу попадаем на вкладку инженерного калькулятора для просчета модуля упругости для разнообразных марок стали. Если этого не произошло, то клацаем на главную страницу, а уже оттуда выбираем кнопку, выделенную на скрине ниже.
- Чтобы изучить весь ассортимент по маркам, можно нажать ссылку «марка стали».
- Пользователя перенаправит на страницу, где расписаны все имеющиеся марки стали по ГОСТам РФ порядком на 2020 год. Информация обновляется каждые полгода, потому, здесь можно найти даже недавно разработанные сплавы на основе железа и легирующих добавок.
- Чтобы добавить необходимую марку стали в окно ввода данных, потребуется выбрать смежную гиперссылку, расположенную в скобках.
- При наведении на марку стали, она будет подсвечиваться красным цветом. Выбираем нужное наименование и просто нажимаем.
- Далее, потребуется ввести температуру, в которой будет эксплуатироваться материал.
- После ввода всех сопутствующих данных и нажатия кнопки «Определить», перед глазами появится полоска с синей заливкой, в которой будет указан модуль упругости («Е»), выбранной марки стали при оговорённой температуре.
Здесь же можно прочесть условные обозначения. Все физические характеристики материалов приняты по ПНАЭ Г-7-002-86, а промежуточные значения расчетных данных модуля упругости стали определяются методом линейной интерполяции.
Перед непосредственным использованием полученной информации на практике, следует провести сверку с ГОСТами. Неофициальные источники информации могут использоваться лишь для прикидочных расчетов и домашнем строительстве.
При возведении масштабных объектов, модуль Юнга нужно проверять по несколько раз, ведь от выбранных элементов будет зависеть крепость конструкции в целом.
Способы определения и контроля показателей прочности металлов
Развитие металлургии и других сопутствующих направлений по изготовлению предметов из металла обязано созданию оружия. Сначала научились выплавлять цветные металлы, но прочность изделий была относительно невысокой. Только с появлением железа и его сплавов началось изучение их свойств.
Первые мечи для придания им твердости и прочности делали довольно тяжелыми. Воинам приходилось брать их в обе руки, чтобы управляться с ними.
Со временем появились новые сплавы, разрабатывались технологии производства. Легкие сабли и шпаги пришли на замену тяжеловесному оружию. Параллельно создавались орудия труда.
С повышением прочностных характеристик совершенствовались инструменты и способы производства.
Виды нагрузок
При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.
- Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.
- Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.
- Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.
- Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.
- Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.
В середине XVII века одновременно в нескольких странах начались исследования материалов. Предлагались самые разные методики по определению прочностных характеристик. Английский исследователь Роберт Гук (1660 г.) сформулировал основные положения закона по удлинению упругих тел в результате приложения нагрузки (закона Гука). Введены и понятия:
- Напряжения σ, которое в механике измеряется в виде нагрузки, приложенной к определенной площади (кгс/см², Н/м², Па).
- Модуля упругости Е, который определяет способность твердого тела деформироваться под действием нагружения (приложения силы в заданном направлении). Единицы измерения также определяются в кгс/см² (Н/м², Па).
Формула по закону Гука записывается в виде ε = σz/E, где:
- ε – относительное удлинение;
- σz – нормальное напряжение.
Демонстрация закона Гука для упругих тел:
- Из приведенной зависимости выводится значение Е для определенного материала опытным путем, Е = σz/ε.
- Модуль упругости – это постоянная величина, характеризующая сопротивление тела и его конструкционного материала при нормальной растягивающей или сжимающей нагрузке.
В теории прочности принято понятие модуль упругости Юнга. Это английский исследователь дал более конкретное описание способам изменения прочностных показателей при нормальных нагружениях.
Значения модуля упругости для некоторых материалов приведены в таблице 1.
Таблица 1: Модуль упругости для металлов и сплавов
Наименование материала | Значение модуля упругости, 10¹²·Па |
Алюминий | 65…72 |
Дюралюминий | 69…76 |
Железо, содержание углерода менее 0,08 % | 165…186 |
Латунь | 88…99 |
Медь (Cu, 99 %) | 107…110 |
Никель | 200…210 |
Олово | 32…38 |
Свинец | 14…19 |
Серебро | 78…84 |
Серый чугун | 110…130 |
Сталь | 190…210 |
Стекло | 65…72 |
Титан | 112…120 |
Хром | 300…310 |
Модуль упругости для разных марок стали
Металлурги разработали несколько сотен марок сталей. Им свойственны разные значения прочности. В таблице 2 показаны характеристики для наиболее распространенных сталей.
Таблица 2: Упругость сталей
Наименование стали | Значение модуля упругости, 10¹²·Па |
Сталь низкоуглеродистая | 165…180 |
Сталь 3 | 179…189 |
Сталь 30 | 194…205 |
Сталь 45 | 211…223 |
Сталь 40Х | 240…260 |
65Г | 235…275 |
Х12МФ | 310…320 |
9ХС, ХВГ | 275…302 |
4Х5МФС | 305…315 |
3Х3М3Ф | 285…310 |
Р6М5 | 305…320 |
Р9 | 320…330 |
Р18 | 325…340 |
Р12МФ5 | 297…310 |
У7, У8 | 302…315 |
У9, У10 | 320…330 |
У11 | 325…340 |
У12, У13 | 310…315 |
- Видео: закон Гука, модуль упругости.
Модули прочности
Кроме нормального нагружения, существуют и иные силовые воздействия на материалы.
Модуль сдвига G определяет жесткость. Эта характеристика показывает предельное значение нагрузки изменению формы предмета.
Модуль объемной упругости К определяет упругие свойства материала изменить объем. При любой деформации происходит изменение формы предмета.
Коэффициент Пуассона μ определяет изменения отношение величины относительного сжатия к растяжению. Эта величина зависит только от свойств материала.
Для разных сталей значения указанных модулей приведены в таблице 3.
Таблица 3: Модули прочности для сталей
Наименование стали | Модуль упругости Юнга, 10¹²·Па | Модуль сдвига G, 10¹²·Па | Модуль объемной упругости, 10¹²·Па | Коэффициент Пуассона, 10¹²·Па |
Сталь низкоуглеродистая | 165…180 | 87…91 | 45…49 | 154…168 |
Сталь 3 | 179…189 | 93…102 | 49…52 | 164…172 |
Сталь 30 | 194…205 | 105…108 | 72…77 | 182…184 |
Сталь 45 | 211…223 | 115…130 | 76…81 | 192…197 |
Сталь 40Х | 240…260 | 118…125 | 84…87 | 210…218 |
65Г | 235…275 | 112…124 | 81…85 | 208…214 |
Х12МФ | 310…320 | 143…150 | 94…98 | 285…290 |
9ХС, ХВГ | 275…302 | 135…145 | 87…92 | 264…270 |
4Х5МФС | 305…315 | 147…160 | 96…100 | 291…295 |
3Х3М3Ф | 285…310 | 135…150 | 92…97 | 268…273 |
Р6М5 | 305…320 | 147…151 | 98…102 | 294…300 |
Р9 | 320…330 | 155…162 | 104…110 | 301…312 |
Р18 | 325…340 | 140…149 | 105…108 | 308…318 |
Р12МФ5 | 297…310 | 147…152 | 98…102 | 276…280 |
У7, У8 | 302…315 | 154…160 | 100…106 | 286…294 |
У9, У10 | 320…330 | 160…165 | 104…112 | 305…311 |
У11 | 325…340 | 162…170 | 98…104 | 306…314 |
У12, У13 | 310…315 | 155…160 | 99…106 | 298…304 |
Для других материалов значения прочностных характеристик указывают в специальной литературе. Однако, в некоторых случаях проводят индивидуальные исследования. Особенно актуальны подобные исследования для строительных материалов. На предприятиях, где выпускают железобетонные изделия, регулярно проводят испытания по определению предельных значений.
Republished by Blog Post Promoter
Модуль Юнга (упругости)
Все твердые тела, как кристаллические, так и аморфные, имеют свойство изменять свою форму под воздействие приложенной к ним силы. Другими словами, они подвергаются деформации.
Если тело возвращается к исходным размерам и форме после того, как внешнее усилие прекращает свое воздействие, то его называют упругим, а его деформацию считают упругой.
Для любого тела существует предел приложенного усилия, после которого деформация перестает быть упругой, тело не возвращается в исходную форму и к исходным размерам, а остается в деформированном состоянии или разрушается. Теория упругих деформаций тел была создана в конце 17 века британским ученым Р.
Гуком и развита в трудах его соотечественника Томаса Юнга. В их честь Гука и Юнга были названы соответственно закон и коэффициент, определяющий степень упругости тел. Он активно применяется в инженерном деле в ходе расчетов прочности конструкций и изделий.
Модуль Юнга
Основные сведения
Модуль Юнга, (называемый также модулем продольной упругости и модулем упругости первого рода) это важная механическая характеристика вещества. Он является мерой сопротивляемости продольным деформациям и определяет степень жесткости. Он обозначается как E; измеряется н/м2 или в Па.
Это важный коэффициент применяют при расчетах жесткости заготовок, узлов и конструкций, в определении их устойчивости к продольным деформациям. Вещества, применяемые для изготовления промышленных и строительных конструкций, имеют, как правило, весьма большие значения E. И поэтому на практике значения Е для них приводят в гигаПаскалях (1012Па)
Величину E для стержней поддается расчету, у более сложных конструкций она измеряется в ходе опытов.
Приближенные величины E возможно узнать из графика, построенного в ходе тестов на растяжение.
График теста на растяжение
- E- это частное от деления нормальных напряжений σ на относительное удлинение ε.
- E=α/ε
- Закон Гука также можно сформулировать и с использованием модуля Юнга.
Физический смысл модуля Юнга
Во время принудительного изменения формы предметов внутри них порождаются силы, сопротивляющиеся такому изменению, и стремящиеся к восстановлению исходной формы и размеров упругих тел.
Если же тело не оказывает сопротивления изменению формы и по окончании воздействия остается в деформированном виде, то такое тело называют абсолютно неупругим, или пластичным. Характерным примером пластичного тела является брусок пластилина.
Виды деформации
Р. Гук исследовал удлинение стрежней из различных веществ, под воздействием подвешенных к свободному концу гирь. Количественным выражением степени изменения формы считают относительное удлинение, равное отношению абсолютного удлинения и исходной длины.
- В результате серии опытов было установлено, что абсолютное удлинение пропорционально с коэффициентом упругости исходной длине стрежня и деформирующей силе F и обратно пропорционально площади сечения этого стержня S:
- Δl = α * (lF) / S
- Величину, обратную α, и называют модулем Юнга:
- 1/α = E
- Относительная деформация:
- ε = (Δl) / l = α * (F/S)
- Отношение растягивающей силы F к S называют упругим напряжением σ:
- ε=α σ
- Закон Гука, записанный с использованием модуля Юнга, выглядит так:
- σ = ε/α = E ε
- Теперь можно сформулировать физический смысл модуля Юнга: он соответствует напряжению, вызываемому растягиванием стержнеобразного образца вдвое, при условии сохранения целостности.
В реальности подавляющее большинство образцов разрушаются до того, как растянутся вдвое от первоначальной длины. Значение E вычисляют с помощью косвенного метода на малых деформациях.
Коэффициент жёсткости при упругой деформации стержня вдоль его оси k = (ES) / l
Модуль Юнга определяет величину потенциальной энергии тел или сред, подвергшихся упругой деформации.
Значения модуля юнга для некоторых материалов
В таблице показаны значения E ряда распространенных веществ.
Материал | модуль Юнга E, ГПа |
Алюминий | 70 |
Бронза | 75-125 |
Вольфрам | 350 |
Графен | 1000 |
Латунь | 95 |
Лёд | 3 |
Медь | 110 |
Свинец | 18 |
Серебро | 80 |
Серый чугун | 110 |
Сталь | 200/210 |
Стекло | 70 |
Модуль продольной упругости стали вдвое больше модуля Юнга меди или чугуна. Модуль Юнга широко применяется в формулах прочностных расчетов элементов конструкций и изделий в целом.
Предел прочности материала
Это предел возникающего напряжения, после которого образец начинает разрушаться.
Статический предел прочности измеряется при продолжительном приложении деформирующего усилия, динамический — при кратковременном, ударном характере такого усилия. Для большинства веществ динамический предел больше, чем статический.
Инструмент для определения предела прочности
Кроме того, существуют пределы прочности на сжатие материала и на растяжение.
Они определяются на испытательных стенда опытным путем, при растягивании или сжатии образцов мощными гидравлическим машинами, снабженными точными динамометрами и измерителями давления.
В случае невозможности достижения требуемого давления гидравлическим способом иногда применяют направленный взрыв в герметичной капсуле.
Допускаемое механическое напряжение в некоторых материалах при растяжении
Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия.
По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.
Испытание на растяжение
Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.
Значения σраст в МПа:
Материалы | σраст | |
Бор | 5700 | 0,083 |
Графит | 2390 | 0,023 |
Сапфир | 1495 | 0,030 |
Стальная проволока | 415 | 0,01 |
Стекловолокно | 350 | 0,034 |
Конструкционная сталь | 60 | 0,003 |
Нейлон | 48 | 0,0025 |
Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.
Запасы прочности, закладываемые в ответственные конструкции, также многократны.
Коэффициент запаса прочности
Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.
Запас прочности
Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.
Связь с другими модулями упругости
Модуль Юнга связан с модулем сдвига, определяющим способность образца к сопротивлению против деформации сдвига, следующим соотношением:
E связан также и с модулем объёмной упругости, определяющим способность образца к сопротивлению против одновременного сжатия со всех сторон.
Модуль упругости стали: таблица, характеристики
►Модуль упругости стали
►Модуль упругости разных марок стали
►Таблица модулей прочности марок стали
►Модуль упругости для металлов и сплавов
►Упругость сталей
►Предел прочности
При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.
Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции.
В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры.
Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок.
Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке.
Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.
В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках.
Модуль упругости стали
Упругость твердых тел — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:
- Упругая — последствия исчезают по окончании действия внешних сил;
- Пластическая — необратимое изменение формы.
Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго.
Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.
Сегодня определение объединяет ряд свойств физических тел:
Модуль Юнга: Вычисляется по формуле E= σ/ε, где σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.
Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.
Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.
Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.
Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.
Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.
- Соотношение жесткости и пластичности;
- Ударная вязкость;
- Предел текучести;
- Относительное сжатие и растяжение (продольное и поперечное);
- Пределы прочности при ударных, динамических и др. нагрузках.
Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.
Модуль упругости разных марок стали
Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.
Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.
Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены.
В противном случае изделие может надломиться, лопнуть или растрескаться.
Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.
В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.
Таблица модулей прочности марок стали
Наименование стали | Модуль упругости Юнга, 10¹²·Па | Модуль сдвигаG, 10¹²·Па | Модуль объемной упругости, 10¹²·Па | Коэффициент Пуассона, 10¹²·Па |
Сталь низкоуглеродистая | 165…180 | 87…91 | 45…49 | 154…168 |
Сталь 3 | 179…189 | 93…102 | 49…52 | 164…172 |
Сталь 30 | 194…205 | 105…108 | 72…77 | 182…184 |
Сталь 45 | 211…223 | 115…130 | 76…81 | 192…197 |
Сталь 40Х | 240…260 | 118…125 | 84…87 | 210…218 |
65Г | 235…275 | 112…124 | 81…85 | 208…214 |
Х12МФ | 310…320 | 143…150 | 94…98 | 285…290 |
9ХС, ХВГ | 275…302 | 135…145 | 87…92 | 264…270 |
4Х5МФС | 305…315 | 147…160 | 96…100 | 291…295 |
3Х3М3Ф | 285…310 | 135…150 | 92…97 | 268…273 |
Р6М5 | 305…320 | 147…151 | 98…102 | 294…300 |
Р9 | 320…330 | 155…162 | 104…110 | 301…312 |
Р18 | 325…340 | 140…149 | 105…108 | 308…318 |
Р12МФ5 | 297…310 | 147…152 | 98…102 | 276…280 |
У7, У8 | 302…315 | 154…160 | 100…106 | 286…294 |
У9, У10 | 320…330 | 160…165 | 104…112 | 305…311 |
У11 | 325…340 | 162…170 | 98…104 | 306…314 |
У12, У13 | 310…315 | 155…160 | 99…106 | 298…304 |
Модуль упругости для металлов и сплавов
Наименование материала | Значение модуля упругости, 10¹²·Па |
Алюминий | 65—72 |
Дюралюминий | 69—76 |
Железо, содержание углерода менее 0,08 % | 165—186 |
Латунь | 88—99 |
Медь (Cu, 99 %) | 107—110 |
Никель | 200—210 |
Олово | 32—38 |
Свинец | 14—19 |
Серебро | 78—84 |
Серый чугун | 110—130 |
Сталь | 190—210 |
Стекло | 65—72 |
Титан | 112—120 |
Хром | 300—310 |
Упругость сталей
Наименование стали | Значение модуля упругости, 10¹²·Па |
Сталь низкоуглеродистая | 165—180 |
Сталь 3 | 179—189 |
Сталь 30 | 194—205 |
Сталь 45 | 211—223 |
Сталь 40Х | 240—260 |
65Г | 235—275 |
Х12МФ | 310—320 |
9ХС, ХВГ | 275—302 |
4Х5МФС | 305—315 |
3Х3М3Ф | 285—310 |
Р6М5 | 305—320 |
Р9 | 320—330 |
Р18 | 325—340 |
Р12МФ5 | 297—310 |
У7, У8 | 302—315 |
У9, У10 | 320—330 |
У11 | 325—340 |
У12, У13 | 310—315 |
Предел прочности
Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:
- Продолжительное применение деформирующего усилия;
- Кратковременные и длительные ударные воздействия;
- Растяжение и сжатие;
- Гидравлическое давление и др.
В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.
Оцените нашу статью