Восстановительные свойства атомов металлов это способность атомов

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением периодического закона.

Восстановительные свойства атомов металлов это способность атомов

В периодической таблице элементы расположены в порядке увеличения атомного заряда, группируются в «строки и столбцы» — периоды и группы.

Период — ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов. 4, 5, 6 — называются большими периодами, они состоят из двух рядов химических элементов.

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Восстановительные свойства атомов металлов это способность атомов

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.

Восстановительные свойства атомов металлов это способность атомов

В группе радиус атома увеличивается с увеличением заряда атомных ядер — сверху вниз «↓». Чем больше период, тем больше электронных орбиталей вокруг атома, соответственно, и больше его радиус.

С уменьшением заряда атома в группе радиус атома уменьшается — снизу вверх «↑». Это связано с уменьшением количества электронных орбиталей вокруг атома. Для примера возьмем атомы бора и алюминия, элементов, расположенных в одной группе.

Восстановительные свойства атомов металлов это способность атомов

Период, группа и электронная конфигурация

Обратите внимание еще раз на важную деталь: элементы, находящиеся в одной группе (главной подгруппе!), имеют сходную конфигурацию внешнего уровня. Так у бора на внешнем уровне расположены 3 электрона, у алюминия — тоже 3. Оба они в III группе.

Такая закономерность иногда может сильно облегчить жизнь, однако у элементов побочных подгрупп она отсутствует — там нужно считать электроны «вручную», располагая их на электронных орбиталях.

Раз уж мы повели речь об электронных конфигурациях, давайте запишем их для бора и алюминия, чтобы лучше представлять их внешний уровень и увидеть то самое «сходство»:

  • B5 — 1s22s22p1
  • Al13 — 1s22s22p63s23p1

Общую электронную конфигурацию для элементов III группы главной подгруппы можно записать ns2np1. Это будет работать для бора, внешний уровень которого 2s22p1, алюминия — 3s23p1, галия — 4s24p1, индия — 5s25p1 и таллия — 6s26p1. За «n» мы принимаем номер периода.

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы, то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Вам остается только распределить известное число электронов по s и p ячейкам, а затем подставить номер периода — и вот быстро получена конфигурация внешнего уровня. Предлагаю посмотреть на примере ниже 🙂

Восстановительные свойства атомов металлов это способность атомов

Очень надеюсь, что теперь вы знаете: только глядя на положение элемента в периодической таблице, на группу и период, в которых он расположен, вы уже можете составить конфигурацию его внешнего уровня. Безусловно, это для элементов главных подгрупп. Повторюсь: у побочных — только «вручную».

Длина связи

Длина связи — расстояние между атомами химически связанных элементов. Очевидно, что понятия длины связи и атомного радиуса взаимосвязаны напрямую. Чем больше радиус атома, тем больше длина связи.

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Восстановительные свойства атомов металлов это способность атомов

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

В периоде с увеличением заряда атома металлические свойства ослабевают, неметаллические — усиливаются (слева направо «→»). В группе с увеличением заряда атома металлические свойства усиливаются, а неметаллические — ослабевают (сверху вниз «↓»).

Восстановительные свойства атомов металлов это способность атомов

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Таким образом, самые сильные металлические свойства проявляет рубидий, но с другой стороны — у него самые слабые неметаллические свойства. Сера обладает самыми слабыми металлическими свойствами, но, если посмотреть по-другому, сера — самый сильный неметалл.

Распределение металлов и неметаллов в периодической таблице также является наглядным отображением этого правила. Если провести условную линию, проходящую от бора до астата, то справа окажутся неметаллы, а слева — металлы.

Восстановительные свойства атомов металлов это способность атомов

Основные и кислотные свойства

Основные свойства в периоде с увеличением заряда атома уменьшаются, кислотные — возрастают. В группе с увеличением заряда атома основные свойства усиливаются, а кислотные — ослабевают.

Кислотные и основные свойства противопоставлены друг другу, как противопоставлены металлические и неметаллические. Где первые усиливаются, вторые — убывают. Все аналогично, поэтому смело ассоциируйте одни с другими, так будет гораздо легче запомнить.

Восстановительные свойства атомов металлов это способность атомов

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Это можно объяснить в темах диссоциации и химических связей. Когда мы дойдем до соответствующей темы, я напомню про HF и водородные связи между молекулами, которые делают эту кислоту самой слабой. Сейчас воспринимайте это как исключение: HF — самая слабая из этих кислот, а HI — самая сильная.

Восстановительные свойства атомов металлов это способность атомов

Восстановительные и окислительные свойства

Восстановительные свойства в периоде с увеличением заряда атома ослабевают, окислительные — усиливаются. В группе с увеличением заряда атома восстановительные свойства усиливаются, а окислительные — ослабевают.

Ассоциируйте восстановительные свойства с металлическими и основными, а окислительные — с неметаллическими и кислотными. Так гораздо проще запомнить 😉

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Электроотрицательность — способность атома, связанного с другими, приобретать отрицательный заряд (притягивать к себе электроны). Мы уже касались ее в статье, посвященной степени окисления. Это важное свойство, ведь более ЭО-ый атом притягивает к себе электроны и уходит в отрицательную степень окисления со знаком минус «-«.

Все перечисленные в подзаголовке свойства вместе с ЭО усиливаются в периоде с увеличением заряда атома, в группе с увеличением заряда атома они ослабевают. Таким образом, самый электроотрицательный элемент расположен справа вверху таблицы Д.И. Менделеева — это фтор.

Читайте также:  Опухоли у собаки на грудной железе

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Понятию ЭО-ости «синонимичны» также понятия сродства к электрону — энергии, выделяющейся при присоединении электрона к атому, и энергии ионизации — количеству энергии, которое необходимо для отщепления электрона от атома. И то, и другое возрастают с увеличением электроотрицательности.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды, ниже строка с летучими водородными соединениями.

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру, для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

В таблице видно, что для VIa группы формула высшего оксида RO3, а, к примеру, для IIIa группы — R2O3. Напишем высшие оксиды для веществ из VIa : SO3, SeO3, TeO3 и IIIa группы: B2O3, Al2O3, Ga2O3.

На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим, что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене. Я расскажу вам, как легко их запомнить.

ЛВС характерны для IV, V, VI и VII группы. Элементы этих групп более электроотрицательны, чем водород, поэтому ходят в «-» отрицательную СО. Минимальная степень окисления для элементов главных подгрупп, начиная с IV группы, может быть рассчитана так: номер группы — 8.

Например, для углерода минимальная СО = 4-8 = -4; для азота 5-8 = -3; для кислорода 6-8 = -2; для фтора 7-8 = -1. Для того, чтобы запомнить ЛВС, вы должны ассоциировать IV, V, VI и VII группы с хорошо известными вам веществами: метаном, аммиаком, водой и фтороводородом.

Так как общее строение ЛВС в пределах одной группы сходно, то, вспомнив например H2O для кислорода в VI группе, вы легко найдете формулы других ЛВС VI группы: серы — H2S, H2Se, H2Te, H2Po.

Периодический закон

Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.

В формулировке Дмитрия Ивановича Менделеева периодический закон звучал так: «Свойства элементов, формы и свойства образуемых ими соединений находятся в периодической зависимости от величины их атомной массы.

» Периодическое изменение свойств элементов Менделеев связывал с атомной массой.

Понимание периодичности изменения многих свойств позволило Дмитрию Ивановичу определить и описать свойства веществ, образованных еще не открытыми химическими элементами, предсказать природные рудные источники и даже места их залегания.

Восстановительные свойства атомов металлов это способность атомов

Более поздние исследования показали, что свойства атомов и их соединений зависят в первую очередь от электронного строения атома. А электронное строение определяется свойствами атомного ядра. В частности, зарядом ядра атома.

Поэтому современная формулировка периодического закона звучит так:

«Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов«.

Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.

Периоды – это горизонтальные ряды элементов с одинаковым количеством заполняемых электронных уровней. Номер периода обозначает число энергетических уровней в атоме элемента. Все периоды (кроме первого) начинаются щелочным металлом (s-элементом), а заканчиваются благородным газом.

Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.

1. Периодическая система химических элементов Д.И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра. 

  • Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.
  • В периодах слева направо возрастает число электронов на внешнем уровне.
  • Как следствие,
  • В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.
Пример. Выберите три элемента малых периодов и расположите эти элементы в порядке уменьшения  металлических свойств.
1) Li       2) Ca     3) Cs     4) N     5) S
Ответ: 154
Пример. Выберите три элемента одного периода и расположите эти элементы в порядке уменьшения  неметаллических свойств.
1) Be    2) Ba     3) Mg     4) N     5) F
Ответ: 541

В первом периоде имеются два элемента – водород и гелий. При этом водород условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами.

Как и щелочные металлы, водород является восстановителем. Отдавая один электрон, водород образует однозарядный катион H+.

Как и галогены, водород – неметалл, образует двухатомную молекулу H2 и может проявлять окислительные свойства при взаимодействии с активными металлами:

2Na + H2  →  2NaH

В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до ртути Hg), а после первого переходного элемента лантана La следуют 14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

В Периодической системе каждый элемент расположен в строго определенном месте, которое соответствует его порядковому номеру.

Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппыглавные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

  1. Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:
  2. В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.
  3. В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.
Читайте также:  Гофрированный оцинкованный лист: описание и характеристики гофролиста

У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп (литий, бериллий, натрий и др.).

У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-VIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Из строения атомов и электронных оболочек вытекают следующие закономерности:

Номер периода соответствует числу заполняемых энергетических уровней.

Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).

Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе?

Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.

2. Радиус атома

Рассмотрим, как меняется атомный радиус. Вообще, атомный радиус – понятие довольно сложное и неоднозначное. Различают радиусы атомов металлов и ковалентные радиусы неметаллов.

Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.

  • Мы говорим про орбитальный радиус изолированного атома .
  • Орбитальный радиус – это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов.
  • Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.
  • Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.
  • Например, в ряду атомов: F – Cl – Br – I количество заполненных энергетических уровней увеличивается, следовательно, орбитальный радиус также увеличивается.
  • Восстановительные свойства атомов металлов это способность атомов
  • Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.
  • Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.
  • Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:
  • Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.
  • Например, в ряду Li – Be – B – C количество заполненных энергетических уровней, заряд ядра увеличивается, следовательно, орбитальный радиус также уменьшается.
  • Восстановительные свойства атомов металлов это способность атомов

В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.

В периодах слева направо орбитальный радиус атомов уменьшается.

Восстановительные свойства атомов металлов это способность атомов

Пример. Выберите три элемента, которые в Периодической системе находятся в одной группе, и расположите эти элементы в порядке увеличения радиуса  атома
  1) O         2) Se       3) F       4) S       5) Na
 Решение: 
В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.
В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.
Ответ: 142

Рассмотрим закономерности изменения радиусов ионов: катионов и анионов.

Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.

Например, радиус иона Na+ меньше радиуса атома натрия Na:

Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.

  1.  Радиус аниона больше радиуса соответствующего атома.
  2. Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.
  3. Например, радиус иона Cl– больше радиуса атома хлора Cl.

Изоэлектронные ионы – это  ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.

Например: частицы Na+ и F‒ содержат по 10 электронов. Но заряд ядра натрия +11, а у фтора только +9. Следовательно, радиус иона Na+ меньше радиуса иона F ‒.

Еще одно очень важное свойство атомов – электроотрицательность (ЭО)

Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.

По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).

  • В главных подгруппах сверху вниз уменьшается электроотрицательность.
  • В периодах слева направо электроотрицательность увеличивается.
  • 1) Mg   2) P   3) N   4) O   5) Ti

Химические свойства простых веществ определяются не только электроотрицательностью, но и особенностями строения (химической связью, кристаллической решеткой и др.). Поэтому лишь с некоторой степенью упрощения можно сказать, что электроотрицательность определяет окислительные и восстановительные свойства простых веществ.

  1. Окислительные свойства — это способность принимать электроны.
  2. В главных подгруппах сверху вниз уменьшаются окислительные свойства простых веществ.
  3. В периодах слева направо окислительные свойства простых веществ увеличиваются.
  4. Важно отметить, что эти закономерности работают только в некоторых рядах, чаще всего для похожих по строению веществ.
  5. Восстановительные свойства — это способность отдавать электроны.
  6. В главных подгруппах сверху вниз увеличиваются восстановительные свойства простых веществ.
  7. В периодах слева направо восстановительные свойства простых веществ уменьшаются.

А что насчет побочных подгрупп? В них расположены металлы. И как сравнивать восстановительные свойства металлов в главных подгруппах и в побочных подгруппах? Примерно сравнить восстановительные свойства простых веществ-металлов позволяет ряд активности металлов. 

Слева направо восстановительные свойства металлов уменьшаются.

Итак, резюмируем свойства элементов и простых веществ.

Периодически меняются не только свойства элементов и простых веществ, но и свойства сложных соединений. Рассмотрим закономерности изменения свойств высших оксидов и гидроксидов химических элементов 3 периода.

  • основные свойства высших оксидов и гидроксидов химических элементов увеличиваются справа налево в периоде
  • кислотные свойства высших оксидов и гидроксидов химических элементов увеличиваются справа налево в периоде
  •  Аналогично изменяются свойства в главных подгруппах.
  • основные свойства высших оксидов и гидроксидов химических элементов увеличиваются сверху вниз в главных подгруппах
  • кислотные свойства высших оксидов и гидроксидов химических элементов увеличиваются снизу вверх в главных подгруппах
  • Водород образует два типа бинарных соединений — солеобразные гидриды с металлами и летучие водородные соединения с неметаллами. 
  • Все летучие водородные соединения — газы (кроме воды) при нормальных условиях.
  • Свойства летучих водородных соединений изменяются нетипично.
  • Кислотные свойства водородных соединений неметаллов усиливаются от NH3 к HI
  • Основные свойства водородных соединений усиливаются от HI к аммиаку NH3
  • Тренажер по теме «Периодический закон» —  10 вопросов, при каждом прохождении новые.

Химические свойства металлов — с чем реагируют? Свойства и таблица

Металлы — это химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.

В окислительно-восстановительных реакциях металлы способны только отдавать электроны, являясь сильными восстановителями. В роли окислителей выступают простые вещества — неметаллы (кислород, фосфор) и сложные вещества (кислоты, соли и т. д.).

Металлы в природе встречаются в виде простых веществ и соединений. Активность металла в химических реакциях определяют, используя электрохимический ряд, который предложил русский ученый Н. Н. Бекетов. По химической активности выделяют три группы металлов.

Ряд активности металлов

Активные металлы
Металлы средней активности

Неактивные металлы

Li, K, Na, Ca, Ba Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb H2 Cu, Hg, Ag, Pt, Au
  • Все металлы I A и IIA группы реагируют с водой, в результате образуются растворимые основания и выделяется H2. Литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:
  • 2Li + 2H2O = 2LiOH + H2
  • Ca + 2H2O = Ca(OH)2 + H2

Металлы средней активности реагируют с водой только при условии, что металл нагрет до высоких температур. Результат данной реакции — образование оксида.

  1. Cr + H2O = Cr2O3 + H2
  2. Zn + H2O = ZnO + H2
  3. Неактивные металлы с водой не взаимодействуют.

Взаимодействие с кислотами

Если металл расположен в ряду активности левее водорода, то происходит вытеснение водорода из разбавленных кислот. Данное правило работает в том случае, если в реакции с кислотой образуется растворимая соль.

2Na + 2HCl = 2NaCl + H2

При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно.

Восстановительные свойства атомов металлов это способность атомов
Восстановительные свойства атомов металлов это способность атомов

  • Металлы IА группы:
  • 2K + H2SO4 (раствор) = K2SO4 + H2
  • 8K + 5H2SO4 (конц) = 4K2SO4 + H2S + 4H2O
  • 8Na + 10HNO3 (раствор) = 8NaNO3 + NH4NO3 + 3H2O
  • 3Na + 4HNO3 (конц) = 3NaNO3 + NO + 2H2О
  • Металлы IIА группы
  • Mg + H2SO4 (раствор) = MgSO4 + H2
  • 4Mg + 5H2SO4 (конц) = 4MgSO4 + H2S + 4H2O
  • Mg+ 4HNO3 (конц) = Mg(NO3)2 + 2NO2 + 2H2O
  • 4Mg + 10HNO3 (раствор) = 4Mg(NO3)2 + 2N2O + 5H2O
  • Такие металлы, как железо, хром, никель, кобальт на холоде не взаимодействуют с серной кислотой, но при нагревании реакция возможна.

Взаимодействие с солями

  1. Металлы способны вытеснять из растворов солей другие металлы, стоящие в ряду напряжений правее, и могут быть вытеснены металлами, расположенными левее:
  2. Zn + CuSO4 = ZnSO4 + Cu
  3. На металлы IА и IIА группы это правило не распространяется, так как они реагируют с водой.
  4. Реакция между металлом и солью менее активного металла возможна в том случае, если соли — как вступающие в реакцию, так и образующиеся в результате — растворимы в воде.

Взаимодействие с аммиаком

Щелочные металлы реагируют с аммиаком с образованием амида натрия:

2Li + 2NH3 = 2LiNH2 + H2

Взаимодействие с органическими веществами

  • Металлы IА группы реагируют со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:
  • 2Na + 2C2H5OH = 2C2H5ONa + H2
  • 2K + 2C6H5OH = 2C6H5OK + H2
  • Также они могут вступать в реакции с галогеналканами, галогенпроизводными аренов и другими органическими веществами.

Взаимодействие металлов с оксидами

  1. Для металлов при высокой температуре характерно восстановление неметаллов или менее активных металлов из их оксидов.
  2. 8Al + 3Fe3O4 = 4Al2O3 + 9Fe (алюмотермия)
  3. 3Са + Cr2O3 = 3СаО + 2Cr (кальциетермия)

Вопросы для самоконтроля

  1. С чем реагируют неактивные металлы?

  2. С чем связаны восстановительные свойства металлов?

  3. Верно ли утверждение, что щелочные и щелочноземельные металлы легко реагируют с водой, образуя щелочи?

  4. Методом электронного баланса расставьте коэффициенты в уравнении реакции по схеме:

    Mg + HNO3 → Mg(NO3)2 + NH4NO3 + Н2O

  5. Как металлы реагируют с кислотами?

Подведем итоги

От активности металлов зависит их химические свойства. Простые вещества — металлы в окислительно-восстановительных реакциях являются восстановителями. По положению металла в электрохимическом ряду можно судить о том, насколько активно он способен вступать в химические реакции (т. е. насколько сильно у металла проявляются восстановительные свойства).

Напоследок поделимся таблицей, которая поможет запомнить, с чем реагируют металлы, и подготовиться к контрольной работе по химии.

Таблица «Химические свойства металлов»

Li, K,Ca, Na,

Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb

H2

Cu, Hg, Ag, Pt, Au

Восстановительная способность металлов в свободном состоянии

Возрастает справа налево

Взаимодействие металлов с кислородом

Быстро окисляются при обычной температуре

Медленно окисляются при обычной температуре или при нагревании

Не окисляются

Взаимодействие с водой

Выделяется водород и образуется гидроксид

При нагревании выделяется водород и образуются оксиды

Водород из воды не вытесняют

Взаимодействие с кислотами

Вытесняют водород из разбавленных кислот (кроме HNO3)

Не вытесняют водород из разбавленных кислот

Реагируют с концентрированными азотной и серной кислотами

С кислотами не реагируют, растворяются в царской водке

Взаимодействие с солями

Не могут вытеснять металлы из солей

Более активные металлы (кроме щелочных и щелочноземельных) вытесняют менее активные из их солей

Взаимодействие с оксидами

Для металлов (при высокой температуре) характерно восстановление неметаллов или менее активных металлов из их оксидов

Все репетиторы Skysmart

Каталог проверенных преподавателей, которые помогут ребёнку влюбиться в предмет и достичь поставленных целей

В зависимости от строения их атомов

Изменение окислительно–восстановительных свойств элементов

Способность химических элементов присоединять или отдавать электроны связана со строением атомов и положением их в периодической системе элементов Д.И. Менделеева.

Атомы металлов в химических реакциях способны лишь отдавать электроны и быть восстановителями. Наиболее активными восстановителями являются щелочные и щелочноземельные металлы.

  • Атомы неметаллов (за исключением фтора) в зависимости от
  • свойств партнеров, с которыми они взаимодействуют, могут
  • проявлять как окислительные, так и восстановительные свойства.
  • Например:
  • Fe0 + S0 = Fe+2S-2 и S0 + O2 = S+4O2-2.

Однако, у химически активных неметаллов проявляются преимущественно окислительные свойства. Их часто используют на практике в качестве окислителей (кислород, Cl2).

Атомы водорода в зависимости от свойств партнера могут проявлять как окислительные, так восстановительные свойства. Например, в реакции

Cl20 + H20 = 2H+1Cl-1

водород восстановитель, так как в молекуле HCl электронная пара сильно смещена в сторону ядра атома хлора. При нагревании натрия в струе водорода образуется гидрид натрия (2Na0 + H20 = 2Na+1H-1).

Электронная пара, обусловливающая химическую связь, сильно смещена в сторону водорода. СО водорода в этом соединении равна -1. Таким образом, водород в этой реакции является окислителем.

Однако для водорода более характерна тенденция к отдаче электронов. Чаще всего водород используют как восстановитель.

Одноатомные молекулы благородных газов (Не, Nе, Ar…) практически не проявляют ни окислительных, ни восстановительных свойств, что находится в согласии со строением их атомов (внешний энергетический уровень полностью заполнен электронами).

У ионов металлов и неметаллов в высших степенях окисления восстановительные свойства отсутствуют. Такие частицы в окислительно–восстановительных реакциях могут проявлять только окислительные свойства (присоединять электроны). В связи с этим соединения, в состав которых входят частицы (ионы) в высшей СО, используются в качестве окислителей (KMnO4, HNO3, K2CrO4, K2Cr2O7 и т.д.).

Положительные ионы промежуточных СО в зависимости от свойств партнеров могут выступать как в роли восстановителей, так и в роли окислителей:

2Fe+2Сl2 + Cl20 = 2Fe+3Cl3-1 (Fe+2 — восстановитель);

Fe+2O + C+2O = Fe0 + CO2+4 (Fe+2 — окислитель).

Ион железа в высшей СО обладает только окислительными свойствами. Так, феррат калия К2FeO4 – один из наиболее сильных окислителей.

  1. Вещества, в состав которых входят ионы неметаллов (например, Cl-1,
  2. Br-1, S-2, I-1), за счет последних могут выступать только в роли восстановителей.
  3. В пределах каждого периода с возрастанием порядкового номера элемента восстановительная способность его атомов понижается, а окислительная способность — повышается.

Так, во II периоде литий – только восстановитель, а фтор – только окислитель. Это результат постепенного заполнения электронами внешнего электронного уровня (у атома лития — 1 электрон, у атома фтора — 7 электронов из 8 возможных на данном уровне).

В пределах каждой главной подгруппы с возрастанием порядкового номера элемента восстановительная способность их атомов возрастает, а а окислительная способность постепенно убывает.

Так, в главной подгруппе IV группы кислород – сильный окислитель, а теллур – очень слабый окислитель, в некоторых реакциях он выступает даже как восстановитель. Аналогичное явление наблюдается также и в отношении их химических соединений.

Эти закономерности обусловлены повышением величины радиусов атомов элементов.

Ссылка на основную публикацию
Adblock
detector