- Признаки металлов
- Классификация металлов
- Черные металлы
- Цветные металлы
- Медь и сплавы с медью
- Алюминий и сплавы
- Магний, титан и их сплавы
- Антифрикционные сплавы
- Мягкие металлы
- Твердые металлы
- Металлы в энергетике
- Категории черных вторичных металлов
- Марки стали – виды и классификация сталей по ГОСТ
- Виды сталей и их классификация
- По способу производства
- По химическому составу
- По назначению
- По качеству
- По степени раскисления
- По структуре
- Принципы классификации и маркировки стали по российской системе
- Как расшифровать марку стали в европейской и американской системах
- Технология конструкционных материалов (ткм)
- Металлы и их сплавы
- Классификация металлов
- Классификация сплавов
- Классификация металлов
Несколько научных дисциплин (материало- и металловедение, физика, химия) занимаются изучением свойств и характеристик металлов. Существует их общепринятая классификация.
Однако каждая из дисциплин при их изучении опирается на особые специализированные параметры, находящиеся в сфере ее интересов.
С другой стороны, все науки, изучающие металлы и сплавы, придерживаются одной точки зрения, что существует две основные группы: черные и цветные.
Признаки металлов
Различают следующие основные механические свойства:
- Твердость – определяет возможность одного материала противодействовать проникновению другого, более твердого.
- Усталость – количество, а также время циклических воздействий, которое может выдержать материал без изменения целостности.
- Прочность. Заключается в следующем: если приложить динамическую, статическую или знакопеременную нагрузку, то это не приведет к изменению формы, строения и размеров, нарушению внутренней и наружной целостности металла.
- Пластичность – это способность удерживать целостность и полученную форму при деформации.
- Упругость – это деформация без нарушения целостности под воздействием определенных сил, а также после избавления от нагрузки возможность к возращению первоначальной формы.
- Стойкость к трещинам – под влиянием внешних сил в материале они не образуются, а также сохраняется наружная целостность.
- Износостойкость – способность сохранять наружную и внутреннюю целостность при продолжительном трении.
- Вязкость – сохранение целостности при увеличивающихся физических воздействиях.
- Жаростойкость – противостояние изменению размера, формы и разрушению при воздействии высоких температур.
Классификация металлов
К металлам относятся материалы, обладающие совокупностью механических, технологических, эксплуатационных, физических и химических характерных свойств:
- механические подтверждают способность к сопротивлению деформации и разрушению;
- технологические свидетельствуют о способности к разному виду обработки;
- эксплуатационные отражают характер изменения при эксплуатации;
- химические показывают взаимодействие с различными веществами;
- физические указывают на то, как ведет себя материал в разных полях – тепловом, электромагнитном, гравитационном.
По системе классификации металлов все существующие материалы подразделяются на две объемные группы: черные и цветные. Технологические и механические свойства также тесно связаны. К примеру, прочность металла может являться результатом правильной технологической обработки. Для этих целей используют так называемую закалку и «старение».
Химические, физические и механические свойства тесно взаимосвязаны между собой, так как состав материала устанавливает все остальные его параметры. Например, тугоплавкие металлы являются самыми прочными.
Свойства, которые проявляются в состоянии покоя, называются физическими, а под воздействием извне – механическими.
Также существуют таблицы классификации металлов по плотности — основному компоненту, технологии изготовления, температуре плавления и другие.
Черные металлы
Материалы, относящиеся к этой группе, обладают одинаковыми свойствами: внушительной плотностью, большой температурой плавления и темно-серой окраской. К первой большой группе черных металлов принадлежат следующие:
- Железные – кобальт, марганец, никель, железо. Применяются в качестве основы или добавок к сплавам.
- Тугоплавкие – хром, вольфрам, молибден, титан. Все они имеют температуру плавления, превышающую уровень, при котором плавится железо. Используются как основа или добавка для получения легированных сталей.
- Урановые – актиноиды и металлы, полученные в результате синтеза. Большое применение находят в атомной энергетике.
- Редкоземельные – неодим, церий, лантан. Все металлы обладают родственными химическими свойствами, но совершенно разными физическими параметрами. Находят свое применение как присадки к сплавам.
- Щелочноземельные – кальций, натрий, литий. В свободном виде практического применения не имеют.
Цветные металлы
Вторая по величине группа имеет небольшую плотность, хорошую пластичность, невысокую температуру плавления, преобладающие цвета (белый, желтый, красный) и состоит из следующих металлов:
- Легкие – магний, стронций, цезий, кальций. В природе встречаются только в прочных соединениях. Применяются для получения легких сплавов разного назначения.
- Благородные. Примеры металлов: платина, золото, серебро. Они обладают повышенной устойчивостью к коррозии.
- Легкоплавкие – кадмий, ртуть, олово, цинк. Имеют невысокую температуру плавления, участвуют в производстве разных сплавов.
Низкая прочность цветных металлов не позволяет их использовать в чистом виде, поэтому в промышленности их применяют в виде сплавов.
Медь и сплавы с медью
В чистом виде имеет розовато-красный цвет, маленькое удельное сопротивление, небольшую плотность, хорошую теплопроводность, отличную пластичность, обладает стойкостью к коррозии. Находит широкое применение как проводник электрического тока.
Для технических нужд используют два вида сплавов из меди: латуни (медь с цинком) и бронзы (медь с алюминием, оловом, никелем и другими металлами). Латунь используется для изготовления листов, лент, труб, проволоки, арматуры, втулок, подшипников.
Из бронзы изготавливают плоские и круглые пружины, мембраны, разную арматуру, червячные пары.
Алюминий и сплавы
Этот очень легкий металл, имеющий серебристо-белый цвет, обладает высокой коррозийной стойкостью. У него хорошая электропроводность и пластичность. Благодаря своим характеристикам нашел применение в пищевой, легкой и электропромышленности, а также в самолетостроении. Сплавы из алюминия очень часто используются в машиностроении для изготовления особо ответственных деталей.
Магний, титан и их сплавы
Магний неустойчив к коррозии, зато не существует легче металла, используемого для технических нужд. В основном его добавляют в сплавы с другими материалами: цинком, марганцем, алюминием, которые прекрасно режутся и являются достаточно прочными.
Из сплавов с легким металлом магнием изготавливают корпусы фотоаппаратов, различных приборов и двигателей. Титан нашел свое применение в ракетной отрасли, а также машиностроении для химической промышленности.
Титаносодержащие сплавы имеют небольшую плотность, прекрасные механические свойства и стойкость к коррозии. Они хорошо поддаются обработке давлением.
Антифрикционные сплавы
Такие сплавы определены для увеличения срока службы поверхностей, испытывающих трение. Они сочетают в себе следующие характеристики металла – хорошую теплопроводность, маленькую температуру плавления, микропористость, слабый коэффициент трения. К антифрикционным относят сплавы, основой которых является свинец, алюминий, медь или олово. К самым применяемым относятся:
- баббит. Его изготовляют на основе свинца и олова. Используют в производстве вкладышей для подшипников, которые работают на больших скоростях и при ударных нагрузках;
- алюминиевые сплавы;
- бронза;
- металлокерамические материалы;
- чугун.
Мягкие металлы
По системе классификации металлов это золото, медь, серебро, алюминий, но среди самых мягких выделяют цезий, натрий, калий, рубидий и другие. Золото сильно распылено в природе. Оно есть в морской воде, организме человека, а также его можно встретить практически в любом осколке гранита.
В чистом виде золото имеет желтый с оттенком красного цвет, так как металл мягкий — его можно поцарапать даже ногтем. Под влиянием окружающей среды золото достаточно быстро разрушается. Этот металл является незаменимым для электрических контактов.
Несмотря на то что серебра в двадцать раз больше, чем золота, он также является редким.
Используется для производства посуды, ювелирных украшений. Легкий металл натрий также получил широкое распространение, востребован практически в каждой отрасли промышленности, в том числе химической — для производства удобрений и антисептиков.
Металлом является ртуть, хоть и находится в жидком состоянии, поэтому считается одним из самых мягких в мире. Этот материал используется в оборонной и химической промышленности, сельском хозяйстве, электротехнике.
Твердые металлы
В природе практически нет самых твердых металлов, поэтому добыть их очень сложно. В большинстве случаев их находят в упавших метеоритах. Хром принадлежит к тугоплавким металлам и является самым твердым из чистейших на нашей планете, к тому же он легко поддается механической обработке.
Вольфрам – это химический элемент. Считается самым твердым при сравнении с другими металлами. Имеет чрезвычайно высокую температуру плавления. Несмотря на твердость, из него можно выковывать любые нужные детали. Благодаря теплоустойчивости и гибкости это наиболее подходящий материал для выплавки небольших элементов, используемых в осветительных приборах. Тугоплавкий металл вольфрам – основное вещество тяжелых сплавов.
Металлы в энергетике
Металлы, в состав которых входят свободные электроны и положительные ионы, считаются хорошими проводниками. Это довольно востребованный материал, характеризующийся пластичностью, высокой электропроводностью и способностью легко отдавать электроны.
Из них делают силовые, радиочастотные и специальные провода, детали для электрических установок, машин, для бытовых электроприборов. Лидерами применения металлов для изготовления кабельной продукции считаются:
- свинец — за большую устойчивость к коррозии;
- медь — за высокую электропроводность, легкость в обработке, стойкость к коррозии и достаточную механическую прочность;
- алюминий — за небольшой вес, устойчивость к вибрациям, прочность и температуру плавления.
Категории черных вторичных металлов
К отходам черных металлов предъявляют определенные требования. Для отправки сплавов в сталеплавильные печи потребуются определенные операции по их обработке.
Перед подачей заявки на перевозку отходов необходимо ознакомиться с ГОСТом черных металлов для определения его стоимости. Черный вторичный лом классифицируют на стальной и чугунный.
Если в составе присутствуют легирующие добавки, то его относят к категории «Б». В категорию «А» включены углеродистые: сталь, чугун, присад.
Металлурги и литейщики из-за ограниченности первичной сырьевой базы проявляют активный интерес к вторичному сырью. Использование лома черных металлов вместо металлической руды – это ресурсное, а также энергосберегающее решение. Вторичный черный металл используют как охладитель конвертерной плавки.
Диапазон применения металлов невероятно широк. Черные и цветные неограниченно используются в строительной и машинной индустрии. Не обойтись без цветных металлов и в энергетической промышленности.
Редкие и драгоценные идут на изготовление украшений. В искусстве и медицине находят применение как цветные, так и черные металлы.
Невозможно представить жизнь человека без них, начиная от хозяйственных принадлежностей и до уникальных приборов и аппаратов.
Марки стали – виды и классификация сталей по ГОСТ
Сталь представляет собой сплав, основными элементами которого являются железо и углерод.Его массовая доля теоретически не превышает 2,14% (на практике – не более 1,5%). В состав также входят постоянные и случайные примеси, оказывающие различное влияние на качество материала (сера, фосфор, марганец, кремний), могут добавляться другие элементы.
Сталь производят переработкой передельного чугуна и лома. Во время этого процесса снижается содержание углерода и ненужных примесей, вводятся необходимые дополнительные компоненты, обеспечивающие требуемые свойства материала.
Виды сталей и их классификация
Черная металлургия производит множество видов стали с различными характеристиками, материалы классифицируют по способу производства,химическому составу, назначению, качеству, степени раскисления, структуре.
По способу производства
Свойства стального сплава во многом зависят от технологии изготовления.
Традиционный способ переплавки передельного чугуна и лома – ведение процесса в мартеновских печах, основными недостатками которых были длительность плавки и значительные выбросы в атмосферу вредных веществ.
Постепенно мартены заменялись кислородными конвертерами и электропечами. Высококачественные легированные стальные сплавы получают только по технологии электрошлаковой переплавки.
По химическому составу
По химсоставу стали разделяют на углеродистые, применяемые в стандартных эксплуатационных условиях, и легированные, используемые при высоких температурах и/или в агрессивных средах. Углеродистые и легированныестали классифицируют по содержанию углерода на следующие типы:
- низкоуглеродистые – содержат менее 0,3%C;
- среднеуглеродистые – содержание C в интервале 0,3-0,7%;
- высокоуглеродистые – доля углерода превышает 0,7%.
Процентное содержание существенно влияет на технические характеристики как легированных, так и нелегированных стальных сплавов. Чем оно больше, тем выше твердость и хрупкость материала, тем хуже обрабатываемость резанием, свариваемость, способность к деформированию.
Для холодной штамповки изделий сложной формы выбирают сплавы, в которых содержание Cне превышает 1%. Низкоуглеродистые стали свариваются без ограничений, то есть не требуют предварительного подогрева и особых условий охлаждения.
При сварке средне- и высокоуглеродистых сплавов во избежание трещинообразования применяют дополнительные технологические операции.
Углеродистые стали содержат железо, углерод, постоянные и случайные примеси; легированные, помимо этих компонентов, – добавки, обеспечивающие требуемые технические характеристики. Распространенные легирующие элементы и их действие:
- Хром (Cr). Дешевый и распространенный элемент, введение которого в состав стальных сплавов повышает их прочность, твердость и прокаливаемость. При содержании в количестве 13% и более повышают коррозионную стойкость материала.
- Никель (Ni). Дефицитнаядобавка, вводимая обычно в количестве не более 5%. Часто используется в коррозионностойких сталях совместно с хромом. Служит для снижения порога хладноломкости, обеспечения прочности и ударной вязкости. Обеспечивает малый линейный и объемный коэффициент термического расширения. В настоящее время уделяется внимание разработке безникелевых коррозионностойких марок.
- Молибден (Mo) и вольфрам (W). Дорогостоящие лигатуры, применяемые при производстве быстрорежущих сталей для повышения их теплостойкости. Эти элементы увеличивают красностойкость, износостойкость, ударную вязкость.
- Марганец (Mn). В количестве до 0,6% является постоянной примесью. При искусственном повышении процентного содержания марганец выполняет функции более дешевой альтернативы никеля. Он повышает ударную вязкость, износостойкость и твердость при сохранении хорошей пластичности. Mn связывает серу и, тем самым, нейтрализует ее негативное воздействие на качество материала. Минус марганца – повышение чувствительности сплава к перегреву.
- Кремний (Si). Как и марганец, является постоянной примесьюв количестве до 0,4 %. Искусственное повышение его содержания позволяет повысить упругость и прочность материала. Высокий процент Si сообщает сплаву особые свойства, необходимые в электротехнической индустрии, при производстве рессорно-пружинных, кислото- и окалиностойких марок.
- Титан (Ti). Обеспечивает комплекс ценных эксплуатационных характеристик – прочности, твердости и пластичности, повышает теплостойкость материала.
Классификация легированных марок стали по количеству легирующих добавок:
- низколегированные – до 5%;
- легированные – 5-10%;
- высоколегированные – выше 10%.
По назначению
По областям применения все марки стали условно разделяют на следующие виды:
- Конструкционные. Наиболее обширная категория, используемая в строительстве при создании сварных металлоконструкций, в машиностроении, для сооружения сетей инженерных коммуникаций. К ней относятся – стали обыкновенного качества, качественные углеродистые, низко- и среднелегированные марки. Конструкционные стальные сплавыподвергаются различным видам термической (ТО) и химико-термической обработки (ХТО).
- Инструментальные. Используются при производстве режущего, измерительного, штамповочного инструмента. К ним предъявляются высокие требования по прокаливаемости, способности сохранять прочность и износостойкость при нагреве.
- Специального назначения. Это конструкционные легированные сплавы с особыми свойствами –кислотостойкие, жаростойкие, жаропрочные, с высоким электросопротивлением.
Таблица условных обозначений химических элементов в маркировке
Наименование элемент | Условное обозначение | Наименование элемента | Условноеобозначение |
Хром | Х | Азот | А |
Кремний | С | Никель | Н |
Титан | Т | Кобальт | К |
Медь | Д | Молибден | Мо |
Вольфрам | В | Алюминий | Ю |
Ванадий | Ф | Марганец | Г |
По качеству
Качество – это совокупность характеристик, которые определяются особенностями производства, составом сырья, дополнительными технологическими приемами. Категории качества:
- Обыкновенного качества. К этой группе относятся только нелегированные марки. Количество серы не превышает 0,06%, фосфора – 0,07%.
- Качественные. Бывают нелегированными и легированными. S – не более 0,04%, P – до 0,04%.
- Высококачественные – нелегированные и легированные. Количество серы до 0,02%, фосфора – 0,03%.
- Особовысококачественные. Это легированные марки, полученные способами электрошлакового или электродугового переплава, содержат минимально возможное количество вредных примесей: серы – не более 0,15%, фосфора – до 0,025%.
По степени раскисления
Раскисление – это операция, при которой из сплава удаляется кислород, вызывающий его хрупкое разрушение при высокотемпературных деформациях. Элементы, используемые для раскисления: алюминий, марганец, кремний.Классификация марок стали по степени раскисления, влияющей на технологические свойства материала:
- Кипящие. По мере твердения выделяются газы, создающие имитацию кипения состава. Для раскисления в этом случае используется марганец. Обычно к этой категории относятся малоуглеродистые марки. Их выгружают из печи практически сразу после внесения раскислителей. В отдельных случаях расплав раскисляют в ковше. Из кипящих сплавов производят прокат крупного сечения, который затем переплавляют на материал более высокого качества или подвергают горячей деформации для получения проката меньших размеров сечения.
- Полуспокойные. Бывают только углеродистыми. Отличаются хорошей ковкостью. Для раскисления используются марганец и алюминий.
- Спокойные. Качественные легированные марки производят только спокойными. Для раскисления применяют марганец, кремний, алюминий. Кислород в этих сплавах практически весь связывается раскислителями, образовавшимися в результате окислительных реакций,поднимается наверх и удаляется вместе со шлаком. Расплав охлаждается и не сопровождается выделением газов.
По структуре
Структурная форма стали зависит от химического состава, способа производства, дополнительных технологических операций. Различают структуру материала в отожженном и нормализованном состояниях. В отожженном состоянии возможно 6 типов структуры:
- Доэвтектоидная. В структуре имеются феррит и перлит, который является смесью двух фаз – феррита и цементита (или карбидов). К ферритному классу относятся все углеродистые и низколегированные стальные сплавы.
- Эвтектоидная. Перлитная структура обеспечивает хорошую обрабатываемость стального сплава. Ее дисперсные виды – троостит и сорбит.
- Заэвтектоидная. Перлит и цементит, который является представителем фаз внедрения.
- Ледебуритная. Первичный ледебурит (эвтектическая смесь перлита и цементита).
- Аустенитная. Это твердые растворы, пересыщенные углеродом. Сплавы этого класса образуются при высоких концентрациях хрома, никеля и марганца. Они отличаются высоким уровнем ударной вязкости.
- Ферритная. Представляет собой твердые растворы, слабо насыщенные углеродом.
Углеродистые стали могут иметь структуру одного из трех первых классов, легированные – всех шести. После нормализации возможны 4 структурных состояния: ферритное, перлитное, аустенитное и мартенситное. Мартенситная структура, присущая средне- и высоколегированным сталям, характеризуется высокими прочностными характеристиками и мелкозернистостью.
Принципы классификации и маркировки стали по российской системе
В России используются буквенно-цифровые маркировки, конкретный тип которых зависит от качества сплава.
- Стали обыкновенного качества обозначаются буквами ст, после которых указывается индекс марки (0-6) и уровень раскисления. Сп – спокойные, пс – полуспокойные, кп – кипящие. Впереди может стоять буква А (сплав обладает гарантированными механическими параметрами, часто его на ставят), Б– гарантированным химсоставом, В – с гарантированными механическими характеристиками и химсоставом. Пример: Ст3 – сталь обыкновенного качества с гарантированными механическими свойствами и условный индекс 3, для которого содержание углерода составляет 0,14-0,22%.
- В качественных сталях буквы вначале маркировки отсутствуют. Количество углерода указывается в сотых долях процента. В конце ставится уровень раскисления. Пример: 08кп. Содержание углерода – 0,08%.
- Качественные инструментальные стали в начале маркировки имеют букву У, далее следует количество C в сотых долях процента. В конце обозначения высококачественного сплава ставится буква А. Например, маркировка У7А расшифровывается как высококачественная углеродистая сталь с содержанием углерода 0,07%.
- В быстрорежущих сталях маркировка начинается с буквы Р, после которой указывается количество вольфрама в процентах. Например, Р17 – быстрорежущий сплав, содержащий 17% W.
- В конструкционных легированных сталях содержание углерода проставляется в сотых долях процента. Далее указывается условное обозначение элементов и их содержание в процентах. Пример: 12Х18Н10Т. Такая сталь содержит 0,12% углерода, хрома – 18%, никеля – 10%, титана – примерно 1%.
Как расшифровать марку стали в европейской и американской системах
Для коррозионностойких сталей в Европе и Америке часто используют систему маркировки AISI. Она предусматривает наличие трех цифр, одной или нескольких букв. Первая цифра в маркировке металла обозначает класс стали. Следующие две цифры соответствуют порядковому номеру сплава в группе. Значение букв, используемых в маркировке стальных сплавов:
- содержание углерода менее 0,03%;
- содержание Св пределах 0,03-0,08%;
- сплав содержит азот;
- малоуглеродистые стали, содержащие азот;
- высокая концентрация серы и фосфора;
- содержится селен, B – кремний, Cu – медь.
В США могут применяться и другие системы маркировки. В Европе существует система, во многом похожая на российскую систему маркировки. Содержание углерода указывается в сотых процента.
Отличия заключаются в том, что сначала идет перечисление легирующих элементов, а затем в том же порядке следует их процентное содержание, лигатуры указываются в соответствии с таблицей Менделеева.
Если какой-то элемент присутствует в количестве более 5%, то перед маркировкой ставится буква X. Например: X5CrNi18-10. В этой стали содержится 0,05% углерода, 18% хрома и 10% никеля.
Таблица обозначений легированных сталей в разных системах маркировки
Стандарт США ASTM A240 | Европейские стандарты EN10088-2 и EN 10095 | Российский стандарт ГОСТ 5632-2014 | Химический состав, % | ||||
C max | Cr | Ni | Mo | Ti | |||
Аустенитный класс | |||||||
Коррозионностойкие | |||||||
AISI304 | 1.4301 | 12Х18Н9 | 0,07 | 17-19 | 8-10 | ||
AISI 304DDQ | 1.4301 | 08Х18Н10 | 0,07 | 17-19 | 9-10 | ||
AISI 304L | 1.4307 | 04Х18Н10 | 0,03 | 18-19 | 8-10 | ||
AISI 316 | 1.4401 | 03Х17Н14М2 | 0,03 | 16,5-18,5 | 10-13 | 2-2,5 | |
AISI 316L | 1.4432 | 03Х17Н14М3 | 0,03 | 16,5-18,5 | 10,5-13 | 2,5-3 | |
AISI 316Ti | 1.4571 | 08Х17Н13М2Т | 0,08 | 16,5-18,5 | 10,5-13,5 | 2-2,5 | 5*C-0,7 |
AISI 321 | 1.4541 | 12Х18Н10Т | 0,08 | 17-19 | 9-12 | 5*C-0,7 | |
Жаростойкие и жаропрочные | |||||||
AISI 309S | 1.4833 | 20Х23Н13 | 0,15 | 22-24 | 12-14 | ||
AISI 310 S | 1.4845 | 20Х23Н18 | 0,10 | 24-26 | 19-22 | ||
Ферритный класс | |||||||
Коррозионностойкие стальные сплавы | |||||||
AISI 410S | 1.4000 | 08Х13 | 0,08 | 12-14 | |||
AISI 430 | 1.4016 | 12Х18 | 0,12 | 16-18 | |||
AISI 430Ti | 1.4510 | 08Х17Т | 0,08 | 16-18 | До 0,8 | ||
AISI 409 | 1.4512 | 08Х13 | 0,08 | 0,5-11,75 | |||
Мартенситный класс | |||||||
Коррозионностойкие стальные сплавы | |||||||
AISI 410 | 1.4006 | 12Х13 | 0,08-0,15 | 11,5-13,5 | |||
AISI 420L | 1.4021 | 20Х13 | 0,16-0,25 | 12-14 | |||
AISI 420 | 1.4028 | 30Х13 | 0,26-0,35 | 12-14 | |||
AISI 420 | 1.4031 | 40Х13 | 0,36-0,42 | 12,5-14,5 | |||
AISI 420 | 1.4034 | 45х13 | 0,43-0,5 | 12,5-14,5 |
Технология конструкционных материалов (ткм)
ТКМ– дисциплина, изучающая способы
получения различных металлов и неметаллических материалов, а также
технологические методы формообразования
заготовок и деталей литьем, сваркой
обработкой давлением и резанием.
Металлы и их сплавы
Все известные в настоящее время
химические элементы (более 100 наименований)
по совокупности свойств подразделяют
на металлы и неметаллы. Примерно 80 %
общего числа элементов относится к
металлам. Некоторые из них (мышьяк,
сурьму и др.) иногда называют полуметаллами,
так как по одним свойствам их можно
отнести к металлам, а по другим – к
неметаллам.
Металлы (от греческого металлон – копи,
рудники) – вещества неорганического
происхождения, многие из которых обладают
характерным блеском, высокой плотностью,
прочностью и твердостью, пластичностью,
хорошей электро- и теплопроводностью.
Классификация металлов
Все существующие металлы условно принято
подразделять на черные и цветные.
Черные металлы– промышленное
название железа и его сплавов (чугун,
сталь, ферросплавы и др.). Черные металлы
составляют более 90 % всего объёма,
используемых в экономике металлов, из
них основную часть составляют различные
стали.
Цветные металлы – все остальные,
например:K(калий),Na(натрий),Ca(кальций),Al(алюминий),Mg(магний);Ni(никель),Cu(медь),Pb(свинец),Zn(цинк),Sn(олово),W(вольфрам),Ti(титан),Mо (молибден),V(ванадий),Nb(ниобий),Zr(цирконий),Au(золото),Ag(серебро),Pt(платина) и
т.д.
-
Цветные металлы в свою очередь
подразделяются на следующие группы: - — легкие цветные, например:K(калий),Na(натрий),Ca(кальций),Al(алюминий),Mg(магний);
-
— тяжелые цветныес плотностью более
5 г/см3, например:Ni(никель)i,Cu(медь),Pb(свинец),Zn(цинк),Sn(олово); - — благородные, например:Au(золото),Ag(серебро),Pt(платина);
- — редкие.
-
Редкие металлы в свою очередь
подразделяют на: -
— тугоплавкие (с температурой плавления
выше 1875 °С), например: W(вольфрам),Ti(титан),Mо
(молибден),V(ванадий),Nb(ниобий),Zr(цирконий), Та
(тантал); - — легкие, например: Sr(стронций),Sc(скандий),Rb(рубидий),Cs(цезий);
- — радиоактивные, например: U(уран);Ra(радий),Ae(актинидий),Pd(палладий);
- — редкоземельные, например: Ge(германий),Ga(галлий),Hf(гафний),In(индий),La(лантан),Tl(таллий), Се (церий),Re(рений).
Классификация сплавов
Технически чистые металлы обладают
низкой прочностью и поэтому применение
их ограничено. В промышленности, как
правило, применяются сплавы металлов.
Сплавом (металлов) называют твёрдые и жидкие системы, образованные
главным образом сплавлением двух или
более металлов, а также металлов с
различными неметаллами. Сплавы являются
одним из основных конструкционных
материалов. Среди них наибольшее значение
имеют сплавы на основежелезаиалюминия.
В технике применяется более 5 тыс.
сплавов.
По характеру металла (основы) различают:
— черныеили железоуглеродистыесплавы— стали, чугуны (основа — Fe);
— цветные сплавы(основа — цветные
металлы), в т.ч. :
- сплавы на основе цветных металлов, таких как K(калий),Na(натрий),Ca(кальций),Al(алюминий),Mg(магний) называются легкими цветными сплавами;
- на основе цветных металлов, таких как Ni(никель)i,Cu(медь),Pb(свинец),Zn(цинк),Sn(олово) называются тяжёлыми цветными сплавами;
- на основе тугоплавких металлов, таких как W(вольфрам),Ti(титан),Mо (молибден),V(ванадий),Nb(ниобий),Zr(цирконий), и т.д. называются тугоплавкими сплавами;
— сплавырадиоактивных металлов
(основа – радиоактивные металлы);
— сплавыредкоземельных металлов
(основа – радиоактивные металлы).
В зависимости от количества основных
компонентов, входящих в состав сплава,
различают сплавы двойные (бинарные) и
сложные (тройные, четверные и т. д.)
- Примеси сплавов.
-
Помимо основных компонентов в состав
сплавов входят примеси: - — случайные (попадают в сплав
во время его приготовления); - — специальные (вводятся в сплав
в виде добавок для придания ему необходимых
эксплуатационных свойств)
Введение в сплав специальных добавок
называется легированием, а сама добавка
– лигатурой. Составляющими лигатуры
могут быть как отдельные элементы
(легирующие элементы), так и сплавы этих
элементов (например: ферросплавы FeTi:FeV;FeCrи
т.д.).
Помимо этого различают примеси вредные
(S,P,O2,H2,N2),
ухудшающие свойства материалов, и
полезные, улучшающие их свойства —
(легирующие элементы).
Классификация металлов
На вопрос: «что есть классификация металлов» или «приведите пример классификации металлов», можно ответить, что на сегодня самой известной и продуманной системой классификации металлов и элементов вообще является… таблица Менделеева.
©ИЦМ(www.modificator.ru)
С другой стороны можно сказать, что единой классификации металлов (и их сплавов) не существует. Металлы и сплавы классифицируют следующим образом:
- по основному компоненту — на железные, алюминиевые, медные, магниевые, титановые и другие;
- по числу компонентов — на двухкомпонентные (двойные), трёхкомпонентные (тройные) и многокомпонентные;
- по технологии изготовления полуфабрикатов и изделий металлы делят на литейные, деформируемые, порошковые (спеченные) и другие;
- классификация металлов по плотности: лёгкие (магниевые, бериллиевые, алюминиевые, титановые сплавы) с малой плотностью (до 5000 кг/м3) и тяжелые (стареющие сплавы, главным образом на основе вольфрама) с высокой плотностью (не менее 15000 кг/м3);
- по температуре плавления металлы классифицируют на легкоплавкие, имеющие низкую температуру плавления (припои, баббиты и др.), и тугоплавкие (сплавы на основе ниобия, молибдена, тантала, вольфрама и др.), температура плавления которых выше 1800°С;
- классификация металлов и сплавов по применению такова:
- антифрикционные (сплавы с низким коэффициентом трения и высоким уровнем износостойкости);
- коррозионно-стойкие (сплавы на основе железа, никеля, меди, алюминия, титана и других элементов, отличающиеся повышенной коррозионной стойкостью в различных агрессивных средах);
- криогенные (прецизионные сплавы на основе железа, никеля, алюминия, характеризующиеся комплексом тепловых, электрических, магнитных, механических свойств и предназначенные для работы при низких температурах (от -269 до +20°С);
- магнитные (сплавы, обладающие ферромагнетизмом);
- немагнитные (сплавы на основе меди, алюминия, железа, магнитная проницаемость которых близка к единице);
- пружинные (сплавы на железной, медной, никелевой, кобальтовой и других основах с высоким пределом упругости и релаксационной стойкостью) и т.д.
Вообще говоря, деление металлических материалов на металлы и сплавы тоже можно считать классификацией металлов по определённому признаку.
©ИЦМ(www.modificator.ru)
В геологии существует классификация металлов по степени распространения в земной коре, однако металлургов она не удовлетворяет по ряду причин. (Интересно: от геологов до металловедов перешло понятие «редкие» метали. Однако благодаря техническому прогрессу последних десятилетий нет смысла относить к «редким» такие металлы, как W, Мо, V, U, Lі, Be, Nb, Тi, Zr и даже Сe [2]).
И даже родственные, казалось бы, металлургическая и литейная классификация металлов и сплавов, а также их однотипное стандартное маркирование, по многим причинами, до сих пор не сложились в единую систему.
Существует мнение [2], что к распределению металлов на черные и цветные их привела классификация металлов по объему их добычи из руды. Так как ежегодно в мире добывают около 550 млн.
тон железа, из которого изготавливают чугун и сталь (черные металлы), а добыча цветных металлов существенно меньше, и в сумме составляет 5-6% от добычи железа.
(Понятие «цветные металлы», конечно же, условное, так как цветные металлы, за исключением золота и меди, имеют серый цвет излома с разными степенями блеска и оттенками).
Согласно А П. Гуляеву классификация чёрных металлов выглядит следующим образом:
- Железные металлы — железо, кобальт, никель (ферромагнетики) и марганец;
- Тугоплавкие металлы (температура плавления выше 1539°);
- Урановые металлы — актиниды;
- Редкоземельные металлы (РЗМ) — лантан, церий, неодим, празеодим и др., объединённые под названием лантаноидов, и сходные с ними по свойствам иттрий и скандий;
- Щелочноземельные металлы.
В технике также принята условная классификация цветных металлов, по которой они разделены по различным признакам, характерным для той или иной группы: лёгкие металлы, тяжёлые цветные металлы, благородные металлы (в т. ч. платиновые металлы), тугоплавкие металлы, рассеянные металлы, редкоземельные металлы, радиоактивные металлы.
В химии металлы классифицируют по их положению в Периодической системе элементов и делят их на четыре группы.
©ИЦМ(www.modificator.ru)
Приведём также ещё один вариант классификации металлов, существующий у некоторых металловедов [4].
Металлические материалы делятся на две большие группы: железо и сплавы железа (сталь и чугун) называют черными металлами, а остальные металлы и их сплавы — цветными.
Кроме того, все цветные металлы, применяемые в технике, в свою очередь, делятся на следующие группы (классификация цветных металлов):
- легкие металлы Mg, Ве, Аl, Ti с плотностью до 5 г/см3,
- тяжелые металлы Pb, Мо, Ag, Au, Pt, W, Та, Iг, Os с плотностью, превышающей 10 г/см3;
- легкоплавкие металлы Sn, Pb, Zn с температурой плавления 232; 327; 410°С соответственно;
- тугоплавкие металлы W, Мо, Та, Nb с температурой плавления выше, чем у железа (>1536°С);
- благородные металлы Au, Ag, Pt с высокой устойчивостью против коррозии;
- урановые металлы или актиниды, используемые в атомной технике;
- редкоземельные металлы (P3M) – лантаноиды, применяемые для модифицирования стали;
- щелочные и щелочноземельные металлы Na, К, Li, Са в свободном состоянии применяются в качестве жидкометаллических теплоносителей в атомных реакторах; натрий также используется в качестве катализатора в производстве искусственного каучука, а литий — для легирования легких и прочных алюминиевых сплавов, применяемых в самолетостроении.
Корниенко А.Э. («ИЦМ»)
Лит.:
- Гуляев А.П. Металловедение. — М.: Металлургия, 1977. — УДК669.0(075.8)
- Промышленная классификация металлов и сплавов (автор не указан) // Мир металлов и сплавов [Электронный ресурс], 2010 — Режим доступа: http://allmetalls.ru/, свободный. — Загл. с экрана.
- Классификация металлических материалов (автор не указан) // Сталь [Электронный ресурс], 2010 — Режим доступа: http://www.stal.by, свободный. — Загл. с экрана.
- Солнцев Ю.П., Пряхин Е.И., Войткун Ф. Материаловедение: Учебник для вузов. — М.: МИСИС, 1999. — 600 с. — УДК 669.017