Где применяется металл германий

Назван в честь Германии. Ученый из этой страны открыл элемент и имел право именовать его, как захочет. Так в таблицу Менделеева попал германий.

Автор списка предполагал о существовании элемента, хотел назвать экасилицием, потратил на поиски 15 лет.

Однако, посчастливилось не Менделееву, а Клеменсу Винклеру. Ему поручили изучить аргиродит. Новый минерал, состоящий, в основном, из серебра, нашли на прииске Химмельфюрст.

Где применяется металл германий

Винклер определил 93% состава камня и зашел в тупик с оставшимися 7%. Напрашивался вывод, что в них входит неизвестный элемент.

Более тщательный анализ принес плоды, — был открыт германий. Это металл. Чем он пригодился человечеству? Об этом, и не только, расскажем далее.

Свойства германия

Германий – 32 элемент таблицы Менделеева. Получается, металл входит в 4-ю группу. Номер соответствует валентности элементов.

То есть, германий склонен образовывать 4 химических связи. Это делает элемент, открытый Винклером, похожим на кремний.

Отсюда и желание Менделеева назвать еще неоткрытый элемент экосилицием, обозначаемым, как Si. Дмитрий Ивановичь заранее просчитал свойства 32-го металла.

На кремний германий похож химическими свойствами. С кислотами реагирует только при нагревании. Со щелочами «общается» в присутствии окислителей.

Устойчив к парам воды. Не вступает в реакции с водородом, углеродом, азотом. Загорается германий при температуре в 700-от градусов Цельсия. Реакция сопровождается образованием диоксида германия.

32-ой элемент легко взаимодействует с галогенами. Это солеобразующие вещества из 17 группы таблицы.

Дабы не запутаться, укажем, что ориентируемся на новый стандарт. В старом, это 7-я группа таблицы Менделеева.

Какой бы ни была таблица, металлы в ней располагаются слева от ступенчатой диагональной линии. 32-ой элемент – исключение.

Еще одно исключение – сурьма. С ней тоже возможна реакция. Сурьма осаждается на подложке.

Активное взаимодействие обеспеченно и с серой. Как большинство металлов, германий способен гореть в ее парах.

Внешне элемент германий твердый, серовато-белый, с выраженным металлическим блеском.

Где применяется металл германий

При рассмотрении внутреннего строения, металл имеет кубическую структуру. Она отражает расположение атомов в элементарных ячейках.

Они имеют форму кубов. Восемь атомов располагаются в вершинах. Строение близко к решетке алмаза.

У 32-го элемента 5 стабильных изотопов. Их наличие – свойство всех элементов подгруппы германия.

Они четные, что и обуславливает присутствие стабильных изотопов. У олова, к примеру, их 10.

Плотность германия составляет 5,3-5,5 граммов на кубический сантиметр. Первый показатель характерен для твердого состояния, второй – для жидкого металла.

В размягченном виде он не только более плотный, но и пластичный. Хрупкое при комнатной температуре вещество становится ковким при 550-ти градусах. Таковы особенности германия.

Твердость металла при комнатной температуре составляет около 6 баллов по шкале Мооса.

В таком состоянии 32-ой элемент является типичным полупроводником. Но, свойство становится «ярче» при повышении температуры. Просто проводники, для сравнения, теряют свои свойства при нагреве.

Германий проводит ток не только в стандартном виде, но и в твердых растворах.

По полупроводниковым свойствам 32-ой элемент, так же, близок кремнию и столь же распространен.

Однако, сферы применения веществ разнятся. Кремний – полупроводник, используемый в солнечных батареях, в том числе, и тонкопленочного типа.

Элемент нужен, так же, для фотоэлементов. Теперь, рассмотрим, где пригождается германий.

Применение германия

Германий применяют в гаммо-спектроскопии. Ее приборы позволяют, к примеру, изучить состав добавок в смешанных окислах катализаторов.

В прошлом, германий добавляли в диоды и транзисторы. В фотоэлементах свойства полупроводника тоже пригождаются.

Где применяется металл германий

Но, если кремний добавляют в стандартные модели, то германий – в высокоэффективные, нового поколения.

Главное, не использовать германий при температуре близкой к абсолютному нулю. В таких условиях металл теряет способность передавать напряжение.

Чтобы германий был проводником, примесей в нем должно быть не более 10%. Идеален ультрачистый химический элемент.

Германий делают таким методом зонной плавки. Она основана на различной растворимости сторонних элементов в жидкой и твердой фазах.

Формула германия позволяет применять его и в ювелирном деле. Здесь речь уже не о полупроводниковых свойствах элемента, а о его способности придать твердость золоту.

По этой же причине, германий нашел применение в зубопротезировании. Хотя, золотые коронки отживают свой век, небольшой спрос на них, все еще, есть.

Если добавить к германию и золоту еще и кремний с алюминием, получаются припои.

Их температура плавления всегда ниже, чем у соединяемых металлов. Так что, можно делать сложные, дизайнерские конструкции.

Даже интернет без германия был бы невозможен. 32-ой элемент присутствует в оптоволокне. В его сердцевине находится кварц с примесью героя статьи.

А его двуокись увеличивает отражательные способности оптоволокна. Учитывая спрос на него, ювелирные изделия, электронику, германий нужен промышленникам в больших объемах. Каких именно, и как их обеспечивают, изучим ниже.

Добыча германия

Германий довольно распространен. В земной коре 32-го элемента, к примеру, больше, чем серебра, сурьмы, или висмута.

Разведанные запасы – около 1 000 тонн. Почти половина из них сокрыта в недрах США. Еще 410 тонн – достояние Китая.

Так что, остальным странам, в основном, приходиться закупать сырье. Россия сотрудничает с Поднебесной. Это обосновано и с политической точки зрения, и с позиции экономии.

Где применяется металл германий

Свойства элемента германий, связанные с его геохимическим родством с широко распространенными веществами, не позволяют металлу образовывать собственные минералы.

Обычно, металл внедряется в решетку уже существующих камней. Много места гость, естественно, не займет.

Поэтому, приходиться извлекать германий по крупицам. В сфалеритах можно найти несколько кило на тонну породы.

В энаргитах на 1000 килограммов приходиться не больше 5 кило германия. В пираргирите в 2 раза больше.

В тонне сульванита 32-го элемента содержится не больше 1 килограмма. Чаще всего, германий извлекают в качестве побочного продукта из руд других металлов, к примеру, железа, или цветных, таких как хромит, магнитит, рутит.

Годовое производство германия колеблется в пределах 100-120 тонн, в зависимости от спроса. 

В основном, закупается монокристаллическая форма вещества. Именно такая нужна для производства спектрометров, оптоволокна, драгоценных сплавов. Узнаем расценки.

Цена германия

Монокристаллический германий, в основном, закупают тоннами. Для больших производств это выгодно.

1 000 килограммов 32-го элемента стоит около 100 000 рублей. Можно найти предложения за 75 000 – 85 000.

Где применяется металл германий

Если брать поликристаллический, то есть, с агрегатами меньшего размера и повышенной прочностью, можно отдать в 2,5 раза больше всего за кило сырья.

Стандартны слитки длинной не меньше 28-ми сантиметров. Блоки защищают пленкой, поскольку на воздухе они тускнеют. Поликристаллический германий – «почва» для выращивания монокристаллов.

Германий

Клеменс Александр Винклер — первооткрыватель германия

В своём докладе о периодическом законе химических элементов в 1869 году русский химик Дмитрий Иванович Менделеев предсказал существование нескольких неизвестных на то время химических элементов, в частности и германия. В статье, датированной 11 декабря (29 ноября по старому стилю) 1870 года, Д. И. Менделеев назвал неоткрытый элемент экасилицием (из-за его местонахождения в Периодической таблице) и предсказал его атомную массу и другие свойства.

В 1885 году в Фрайберге (Саксония) в одной из шахт был обнаружен новый минерал аргиродит. При химическом анализе нового минерала немецкий химик Клеменс Винклер обнаружил новый химический элемент.

Учёному удалось в 1886 году выделить этот элемент, также химиком была отмечена схожесть германия с сурьмой. Об открытии нового элемента Винклер сообщил в двухстраничной статье, датируемой 6 февраля 1886 года и предложил в ней имя для нового элемента Germanium и символ Ge.

В последующих двух больших статьях 1886—1887 гг. Винклер подробно описал свойства германия.

Первоначально Винклер хотел назвать новый элемент «нептунием», но это название было дано одному из предполагаемых элементов, поэтому элемент получил название в честь родины учёного — Германии.

Путём анализа тетрахлорида германия GeCl4 Винклер определил атомный вес германия, а также открыл несколько новых соединений этого металла.

До конца 1930-х годов германий не использовался в промышленности. Во время Второй мировой войны германий использовался в некоторых электронных устройствах, главным образом в диодах.

Читайте также:  Ультразвук при резке металла

Нахождение в природе

Общее содержание германия в земной коре 1,5⋅10−4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута.

Германий вследствие незначительного содержания в земной коре и геохимического сродства с некоторыми широко распространёнными элементами обнаруживает ограниченную способность к образованию собственных минералов, внедряясь в кристаллические решётки других минералов. Поэтому собственные минералы германия встречаются исключительно редко.

Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4 (6—10 % Ge), аргиродит Ag8GeS6 (3,6—7 % Ge), конфильдит Ag8(Sn, Ge) S6 (до 2 % Ge) и др. редкие минералы (ультрабазит, ранерит, франкеит). Основная масса германия рассеяна в земной коре в большом числе горных пород и минералов.

Так, например, в некоторых сфалеритах содержание германия достигает килограммов на тонну, в энаргитах до 5 кг/т, в пираргирите до 10 кг/т, в сульваните и франкеите 1 кг/т, в других сульфидах и силикатах — сотни и десятки г/т.

Германий концентрируется в месторождениях многих металлов — в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти. Концентрация германия в морской воде 6⋅10−5 мг/л.

Получение

Германий встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO2, который восстанавливают водородом при 600 °C до простого вещества:

 GeO2 + 2H2 → Ge + 2H2O

Получение чистого германия происходит методом зонной плавки, что делает его одним из самых химически чистых материалов.

Промышленное производство германия в России

А. А. Бурба — создатель металлургии германия в России

Производство германия в промышленных масштабах в России началось в 1959 году, когда на Медногорском медно-серном комбинате (ММСК) был введён в действие цех переработки пыли. Специалисты комбината под руководством А. А. Бурбы в сотрудничестве с проектным институтом «Унипромедь» разработали и внедрили в производство уникальную химико-металлургическую технологию получения германиевого концентрата путём комплексной переработки пылей шахтных металлургических печей медеплавильного производства и золы от сжигания энергетических углей, служивших топливом для электростанции. После этого СССР смог полностью отказаться от импорта германия. Впервые в мировой практике было выполнено извлечение германия из медноколчеданных руд. Пуск промышленного цеха переработки пыли на ММСК относят к крупнейшим внедрениям в цветной металлургии XX века.

В 1962 году по инициативе и при участии А. А. Бурбы аналогичное производство было создано также на Ангренском химико-металлургическом заводе (АХМЗ) в городе Ангрен в Узбекистане (ныне предприятие «Ангренэнергоцветмет»).

Практически весь объём производства концентрата германия в СССР приходился на ММСК и АХМЗ. Создание крупномасштабного производства германия внесло значительный вклад в обеспечение экономической и оборонной безопасности страны.

Уже в 1960-е годы Советский Союз смог отказаться от импорта германия, а в 1970-е начать его экспорт и стать мировым лидером по производству германия.

Для переработки выпускавшегося на ММСК и АХМЗ германиевого концентрата в конечные продукты (чистый германий и его соединения) в 1961—1962 гг. на Красноярском аффинажном заводе (с 1967 г. — Красноярский завод цветных металлов, затем — ОАО «Красцветмет») был создан цех по производству германия (с 1991 г. — ОАО «Германий»). В 1962—1963 гг.

цех производил 600 кг монокристаллического германия в год. В 1968—1969 гг., когда внутренние потребности в германии были обеспечены, СССР впервые начал экспортировать диоксид германия, а в 1970 г. начался также экспорт поликристаллического зонноочищенного германия.

СССР удерживал мировое лидерство по производству германия, увеличив выпуск металла настолько, что до 40 % производства уходило на экспорт. После распада СССР, вплоть до 2010 г., ММСК оставался единственным производителем германиевого концентрата в России. С 2010 г. производство германия в концентрате на ММСК приостановлено, а оборудование законсервировано.

Одновременно с этим начато производство германия в концентрате на ООО «Германий и приложения» в г. Новомосковске Тульской области.

В 2000-х годах для получения германия в России используются германиеносные угли следующих месторождений: Павловское (Михайловский район Приморского края), Новиковское (Корсаковский городской округ Сахалинской области), Тарбагатайское (Петровск-Забайкальский район Забайкальского края). Германиеносные угли этих месторождений в среднем содержат 200 граммов германия на тонну.

Физические свойства

Элементарная кристаллическая ячейка германия типа алмаза.Аномальный пик на кривой теплоёмкости германия: 1 — экспериментальная кривая; 2 — дебаевская (колебательная) составляющая; 3 — аномальный остаток (разность кривой 1 и 2); 4,5,6 — больцмановские составляющие аномального остатка 3.

Германий — хрупкий, серебристо-белый полуметалл. Кристаллическая решётка устойчивой при нормальных условиях аллотропной модификации — кубическая типа алмаза.

Температура плавления 938,25 °C, температура кипения 2850 °C, плотность германия 5,33 г/см3.

Теплоёмкость германия имеет аномальный вид, а именно, содержит пик над уровнем нормальной (колебательной) составляющей, который, как пишет Ф.

Зейтц : «не может быть объяснён никакой теорией, предполагающей гуковский закон сил, ибо никакая суперпозиция эйнштейновских функций не даёт кривой с максимумом» и объясняется, как и аномальность поведения теплоёмкостей гафния, алмаза и графита, больцмановским фактором, контролирующим диффузионную (диссоциационную) компоненту.

Германий является одним из немногих аномальных веществ, которые увеличивают плотность при плавлении. Плотность твёрдого германия 5,327 г/см3 (25 °С), жидкого — 5,557 г/см3 (1000 °С). Другие вещества, обладающие этим свойством — вода, кремний, галлий, сурьма, висмут, церий, плутоний.

Германий по электрофизическим свойствам является непрямозонным полупроводником.

Основные полупроводниковые свойства нелегированного монокристаллического германия

  • Статическая диэлектрическая проницаемость ε = 16,0
  • Ширина запрещённой зоны (при 300 К) Eg = 0,67 эВ
  • Собственная концентрация ni=2,33⋅1013 см−3
  • Эффективная масса:
    • электронов, продольная: mII=1,58m0, mII=1,64m0
    • электронов, поперечная: m┴=0,0815m0 , m┴=0,082m0
    • дырок, тяжелых: mhh=0,379m0
    • дырок, легких: mhl=0,042m0
  • Энергия сродства к электрону: χ = 4,0 эВ.

Легированный галлием германий в виде тонкой плёнки переходит при низких температурах в сверхпроводящее состояние.

Изотопы

Основная статья: Изотопы германия

Природный германий состоит из смеси пяти изотопов: 70Ge (20,55 % ат.), 72Ge (27,37 %), 73Ge (7,67 %), 74Ge (36,74 %), 76Ge (7,67 %).

Первые четыре изотопа стабильны, пятый (76Ge) весьма слабо радиоактивен и испытывает двойной бета-распад с периодом полураспада 1,58⋅1021 лет.

Искусственно получено 27 радиоизотопов с атомными массами от 58 до 89. Наиболее стабильным из радиоизотопов является 68Ge, с периодом полураспада 270,95 суток. А наименее стабильным — 60Ge, с периодом полураспада 30 мс.

Химические свойства

В химических соединениях германий обычно проявляет валентности 4 или 2. Соединения с валентностью 4 стабильнее. При нормальных условиях устойчив к действию воздуха и воды, щелочей и кислот, растворим в царской водке и в щелочном растворе перекиси водорода.

Соединения германия

Неорганические

  • Гидриды
    • Гермилен  GeH2  
    • Герман  GeH4 
    • Дигерман  Ge2H6
    • Тригерман  Ge3H8
  • Оксиды
    • Оксид германия  (II)  GeO
    • Оксид германия (IV)  GeO2
  • Гидроксиды
    • Гидроксид германия (II)  Ge(OH)2 
    • Гидроксид германия (IV)  Ge(OH)4
    • Метагидроксид германия (IV)  GeO(OH)2
  • Соли
    • Галогениды
      • Бромид германия (IV)  GeBr4 
      • Йодид германия (II)  GeI2 
      • Йодид германия (IV)  GeI4
      • Фторид германия (IV)  GeF4
      • Хлорид германия (IV)  GeCl4
    • Нитрид германия (IV)  Ge3N4
    • Сульфид германия (II)  GeS
    • Сульфид германия (IV)  GeS2
    • Сульфат германия (IV)  Ge(SO4)2

Органические

Основная статья: Германийорганические соединения

Германийорганические соединения — металлоорганические соединения содержащие связь «германий-углерод». Иногда ими называются любые органические соединения, содержащие германий.

Первое германоорганическое соединение — тетраэтилгерман, было синтезировано немецким химиком Клеменсом Винклером (нем. Clemens Winkler) в 1887 году

  • Тетраметилгерман (Ge(CH3)4)
  • Тетраэтилгерман (Ge(C2H5)4).
  • Изобутилгерман ((CH3)2CHCH2GeH3)

Применение

В 2007 году основными потребителями германия были: 35 % волоконная оптика; 30 % тепловизорная оптика; 15 % химические катализаторы; 15 % электроника; небольшие количества германия потребляет металлургия.

Оптика

Пример инфракрасной линзы из германияПример линзы из кристаллического германия в военных инфракрасных камерах на танке Армата Т-14

  • Благодаря прозрачности в инфракрасной области спектра металлический германий сверхвысокой чистоты имеет стратегическое значение в производстве оптических элементов инфракрасной оптики: линз, призм, оптических окон датчиков. Наиболее важная область применения — оптика тепловизионных камер, работающих в диапазоне длин волн от 8 до 14 микрон. Это диапазон для наиболее популярных инфракрасных матриц на микроболометрах используемых в системах пассивного тепловидения, военных системах инфракрасного наведения, приборах ночного видения, противопожарных системах. Германий также используется в ИК-спектроскопии в оптических приборах, использующих высокочувствительные ИК-датчики. Германий проигрывает по пропускающей способности света в диапазоне от 8 до 14 микрон сульфиду цинка. Однако германий в отличие от сульфида цинка продолжает пропускать порядка 25 % инфракрасного излучения до длины волны 23 микрона, поэтому является одним из основных материалов для длинноволновой инфракрасной оптики, обычно используемой в военных прицелах.
  • Оптические детали из Ge обладают очень высоким показателем преломления (4,0) и обязательно требует использования просветляющих покрытий. В частности, используется покрытие из очень твердого алмазоподобного углерода, с показателем преломления 2,0.
  • Наиболее заметные физические характеристики оксида германия (GeO2) — его высокий показатель преломления и низкая оптическая дисперсия. Эти свойства находят применение в изготовлении широкоугольных объективов камер, микроскопии, и производстве оптического волокна.
  • Тетрахлорид германия используется в производстве оптоволокна, так как образующийся в процессе разложения этого соединения диоксид германия удобен для данного применения благодаря своему высокому показателю преломления и низкому оптическому рассеиванию и поглощению.
  • Сплав GeSbTe используется при производстве перезаписываемых DVD. Сущность перезаписи заключается в изменении оптических свойств этого соединения при фазовом переходе под действием лазерного излучения.
Читайте также:  Параметры сверл по металлу

Радиоэлектроника

  • До 1970-х годов германий был основным полупроводниковым материалом электронной промышленности и широко использовался в производстве транзисторов и диодов. Впоследствии германий был полностью вытеснен кремнием. Германиевые транзисторы и диоды обладают характеристиками, отличными от кремниевых, ввиду меньшего напряжения отпирания p-n-перехода в германии — 0,35…0,4 В против 0,6…0,7 В у кремниевых приборов. Кроме того, обратные токи у германиевых приборов имеют сильную зависимость от температуры, и на несколько порядков больше таковых у кремниевых — скажем, в одинаковых условиях кремниевый диод будет иметь обратный ток 10 пА, а германиевый — 100 нА, что в 10000 раз больше. Также у германиевых приборов значительно выше шум и ниже температура, при которой происходит разрушение p-n-переходов. По советскому ГОСТ 10862-64 (1964 г.) и более поздним стандартам германиевые полупроводниковые приборы имеют обозначение, начинающиеся с буквы Г или цифры 1, например: ГТ313, 1Т308 — высокочастотные маломощные транзисторы, ГД507 — импульсный диод. До того транзисторы имели индексы, начинающиеся с букв С, Т или П (МП), а диоды — Д, и определить материал прибора по индексу было сложнее. Диоды и транзисторы с индексами меньше 100, были германиевыми, от 100 до 199, — кремниевыми. Далее индексы зависели от частоты и мощности, причём, у транзисторов и диодов правила отличались. До конца 1960-х гг. германиевые полупроводниковые приборы использовались повсеместно, в настоящее время германиевые диоды и транзисторы практически полностью вытеснены кремниевыми, как имеющими значительно лучшие эксплуатационные характеристики.
  • Сейчас в электронике германий используется в СВЧ-устройствах, как составная часть структур SiGe, позволяя достичь субтерагерцовых частот. Работы Жореса Алфёрова по структурам SiGe, в частности, заложили основу этого направления.
  • Теллурид германия применяется как стабильный термоэлектрический материал и компонент термоэлектрических сплавов (термо-ЭДС 50 мкВ/К).

Прочие применения

  • Германий широко применяется в ядерной физике в качестве материала для детекторов гамма-излучения.
  • В ювелирном сплаве Argentium® (серебро пробы 935 либо 960) германий является легирующим элементом, обеспечивающим формирование прозрачного и стойкого защитного оксидного слоя на поверхности изделий.

Экономика

Цены

ГодЦена($/кг)
1999 1 400
2000 1 250
2001 890
2002 620
2003 380
2004 600
2005 660
2006 880
2007 1 240
2008 1 490
2009 950

Средние цены на германий в 2007 году

  • Германий металлический $1200/кг
  • Германия диоксид $840/кг

Биологическая роль

Германий обнаружен в животных и растительных организмах. Малые количества германия не оказывают физиологического действия на растения, но токсичны в больших количествах. Германий нетоксичен для плесневых грибков.

Для животных германий малотоксичен. У соединений германия не обнаружено фармакологическое действие. Допустимая концентрация германия и его оксида в воздухе — 2 мг/м³, то есть такая же, как и для асбестовой пыли.

Соединения двухвалентного германия значительно более токсичны.

Германий

ГЕРМАНИЙ, Ge (от лат. Germania — Германия * а. germanium; н. Germanium; ф. germanium; и. germanio), — химический элемент IV группы периодической системы Менделеева, атомный номер 32, атомная масса 72,59.

Природный германий состоит из 4 стабильных изотопов 70Ge (20,55%), 72Ge (27,37%), 73Ge (7,67%), 74Ge (36,74%) и одного радиоактивного 76Ge (7,67%) с периодом полураспада 2•106 лет. Открыт в 1886 немецким химиком К.

Винклером в минерале аргиродите; был предсказан в 1871 Д. Н. Менделеевым (экасилиций).

Свойства германия

Германий — хрупкий серебристо-белый металл. Кристаллизуется в кубической решётке типа алмаза с периодом а = 0,56575 нм (5,6575 Е). Плотность 5326 кг/м3 (при 25°С; t плавления 958,5°С, t кипения 2690°С; удельная теплоёмкость (при 0-300°С) 322,14 Дж/кг•К, теплопроводность 58,8 Дж/м•с•К (при 25°С).

Важнейшими являются полупроводниковые свойства германия, самого распространённого природного полупроводникового материала.

Электрические свойства (при 25°С): удельное сопротивление монокристаллического германия 5,6-6,0 кОм/м, концентрация носителей тока 2•1013 см-3, ширина запрещённой зоны 0,665 эВ, подвижность электронов mn 0,39 м2/с, подвижность дырок mr 0,19 m2/с.

Германий химический

Металлический германий устойчив на воздухе при комнатной температуре и быстро окисляется при температуре выше красного каления (600-700°С) с образованием двуокиси, твёрдый германий не реагирует с азотом, водородом; жидкий германий при температуре 1000-1100°С взаимодействует с водородом.

В соединениях степень окисления +2 и +4; устойчивой формой является Ge+4. Моно- и диоксид германия амфотерны, растворяются в щелочной среде с образованием германитов и германатов.

Германий имеет множество соединений с галогенами и серой; сульфиды растворяются в щелочных растворах, образуя сульфогерманаты, соли в водном растворе легко гидролизуются, давая гидратированный диоксид. Радиус иона Ge+4 промежуточный между радиусами ионов Si+4 и Ti+4.

Большинство кислородных соединений германия являются структурными аналогами соединений кремния. Многие из них диморфны; более плотные модификации (например, GeO2) аналогичны по структуре соединениям титана.

Германий в природе

Германий относится к рассеянным элементам. Распространённость германия в земной коре (1-2)•10-4%. В качестве примеси встречается в минералах кремния, в меньшей степени в минералах железа и цинка.

Собственные минералы германия очень редки: сульфосоли — аргиродит, германит, реньерит и некоторые другие; двойной гидратированный оксид германия и железа — штоттит; сульфаты — итоит, флейшерит и некоторые др. Промышленного значения они практически не имеют.

Германий накапливается в гидротермальных и осадочных процессах, где реализуется возможность отделения его от кремния. В повышенных количествах (0,001-0,1%) встречается в сфалерите, магнетите, каменных и бурых углях.

Источниками германия являются полиметаллические руды, ископаемые угли и некоторые типы вулканогенно-осадочных месторождений железных руд. Основное количество германия получают попутно из подсмольных вод при коксовании углей, из золы энергетических углей, сфалеритовых и магнетитовых концентратов.

Германий извлекается кислотным выщелачиванием, возгонкой в восстановительной среде, сплавлением с едким натром и др. Концентраты германия обрабатываются соляной кислотой при нагревании, конденсат очищается и подвергается гидролитическому разложению с образованием диоксида; последний восстанавливается водородом до металлического германия, который очищается методами фракционной и направленной кристаллизации, зонной плавки.

Применение германия

Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов.

Из германия изготовляют линзы для ИК оптики, фотодиоды, фоторезисторы, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, преобразователи энергии радиоактивного распада в электрическую и т.д.

Сплавы германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. Некоторые сплавы германия с другими химическими элементами — сверхпроводники.

Германий | это… Что такое Германий?

32 Германий
3d104s24p2

Герма́ний — химический элемент с атомным номером 32 в периодической системе, обозначается символом Ge (нем. Germanium).

История

Элемент был предсказан Д. И. Менделеевым (как эка-кремний) и открыт[2][3] в 1886 году немецким химиком Клеменсом Винклером, профессором Фрейбергской горной академии, при анализе минерала аргиродита Ag8GeS6.

Читайте также:  Электрическая виброплита: свойства, назначение, особенности конструкции и выбора электро инструмента

Происхождение названия

Назван в честь Германии, родины Винклера.

Нахождение в природе

Общее содержание германия в земной коре 1,5·10−4% по массе, то есть больше, чем, например, сурьмы, серебра, висмута.

Германий вследствие незначительного содержания в земной коре и геохимического сродства с некоторыми широко распространёнными элементами обнаруживает ограниченную способность к образованию собственных минералов, внедряясь в кристаллические решётки других минералов. Поэтому собственные минералы германия встречаются исключительно редко.

Почти все они представляют собой сульфосоли: германит Cu2(Cu, Fe, Ge, Zn)2 (S, As)4 (6 — 10 % Ge), аргиродит Ag8GeS6 (3,6 — 7 % Ge), конфильдит Ag8(Sn, Ge) S6 (до 2 % Ge) и др. редкие минералы (ультрабазит, ранерит, франкеит). Основная масса германия рассеяна в земной коре в большом числе горных пород и минералов.

Так, например, в некоторых сфалеритах содержание германия достигает килограммов на тонну, в энаргитах до 5 кг/т, в пираргирите до 10 кг/т, в сульваните и франкеите 1 кг/т, в других сульфидах и силикатах — сотни и десятки г/т.

Германий концентрируется в месторождениях многих металлов — в сульфидных рудах цветных металлов, в железных рудах, в некоторых окисных минералах (хромите, магнетите, рутиле и др.), в гранитах, диабазах и базальтах. Кроме того, германий присутствует почти во всех силикатах, в некоторых месторождениях каменного угля и нефти. Концентрация германия в морской воде 6·10−5 мг/л[4].

Получение

Германий встречается в виде примеси к полиметаллическим, никелевым, вольфрамовым рудам, а также в силикатах. В результате сложных и трудоёмких операций по обогащению руды и её концентрированию германий выделяют в виде оксида GeO2, который восстанавливают водородом при 600 °C до простого вещества:

GeO2 + 2H2 = Ge + 2H2O.

Очистка и выращивание монокристаллов германия производится методом зонной плавки.

Физические свойства

Кристаллическая структура германия.

Кристаллическая решётка германия — кубическая гранецентрированная типа алмаза, пространственная группа F d3m, постоянная решётки а = 0,5658 нм. Германий — один из немногих элементов и веществ, плотность которого в жидком состоянии (5,57 г/см3) выше, чем в твёрдом (5,33 г/см3). Другие, например, — кремний, галлий, висмут, вода.

Механические свойства[5]

  • Модуль упругости E, ГПа — 82
  • Скорость звука (t=20÷25 °C) в различных направлениях ·1000 м/с.
    • L100 : 4,92
    • S100 : 3,55
    • L110 : 5,41
    • S110 : 2,75
    • L111 : 5,56
    • S111 : 3,04

Электронные свойства

Германий является типичным непрямозонным полупроводником.

  • Статическая диэлектрическая проницаемость ε = 16,0
  • Ширина запрещённой зоны (300 К) Eg = 0,67 эВ
  • Собственная концентрация ni=2,33·1013 см−3[5]
  • Эффективная масса[6]:
    • электронов, продольная: mII=1,58m0, mII=1,64m0[7]
    • электронов, поперечная: m┴=0,0815m0 , m┴=0,082m0[7]
    • дырок, тяжелых: mhh=0,379m0
    • дырок, легких: mhl=0,042m0
  • Электронное сродство: χ = 4,0 эВ[7]

Легированный галлием германий в тонкой плёнке можно привести в сверхпроводящее состояние[8].

Изотопы

В природе встречается пять изотопов: 70Ge (20,55 % масс.), 72Ge (27,37 %), 73Ge (7,67 %), 74Ge (36,74 %), 76Ge (7,67 %). Первые четыре стабильны, пятый (76Ge) испытывает двойной бета-распад с периодом полураспада 1,58·1021 лет. Кроме этого существует два «долгоживущих» искусственных: 68Ge (время полураспада 270,8 дня) и 71Ge (время полураспада 11,26 дня).

Химические свойства

В химических соединениях германий обычно проявляет валентности 4 или 2. Соединения с валентностью 4 стабильнее. При нормальных условиях устойчив к действию воздуха и воды, щелочей и кислот, растворим в царской водке и в щелочном растворе перекиси водорода. Применение находят сплавы германия и стёкла на основе диоксида германия.

Соединения германия

Неорганические

  • Гидриды
    • Гермилен
    • Герман
    • Дигерман
    • Тригерман
  • Оксиды
    • Оксид германия(II)
    • Оксид германия(IV)
  • Гидроксиды
    • Гидроксид германия(II)

Органические

Основная статья: Германийорганические соединения

Германийорганические соединения — металлоорганические соединения содержащие связь «германий-углерод». Иногда ими называются любые органические соединения, содержащие германий.

Первое германоорганическое соединение — тетраэтилгерман, было синтезировано немецким химиком Клеменсом Винклером (нем. Clemens Winkler) в 1887 году

  • Тетраметилгерман (Ge(CH3)4)
  • Тетраэтилгерман (Ge(C2H5)4).
  • Изобутилгерман ((CH3)2CHCH2GeH3)

Применение

Оптика

  • Благодаря прозрачности в инфракрасной области спектра металлический германий сверхвысокой чистоты имеет стратегическое значение в производстве оптических элементов инфракрасной оптики: линз, призм, оптических окон датчиков[9][10]. Наиболее важная область применения — оптика тепловизионных камер, работающих в диапазоне длин волн от 8 до 14 микрон. Такие устройства используются в системах пассивного тепловидения, военных системах инфракрасного наведения, приборах ночного видения, противопожарных системах. Германий также используется в ИК-спектроскопии в оптических приборах, использующих высокочувствительные ИК-датчики[10]. Оптические детали из Ge обладают очень высоким показателем преломления (4,0) и обязательно требует использования просветляющих покрытий. В частности, используется покрытие из очень твердого алмазоподобного углерода, с показателем преломления 2,0[11][12].
  • Наиболее заметные физические характеристики оксида германия (GeO2) — его высокий показатель преломления и низкая оптическая дисперсия. Эти свойства находят применение в изготовлении широкоугольных объективов камер, микроскопии, и производстве оптического волокна.
  • Тетрахлорид германия используется в производстве оптоволокна, так как образующийся в процессе разложения этого соединения диоксид германия удобен для данного применения благодаря своему высокому показателю преломления и низкому оптическому рассеиванию и поглощению.
  • Сплав GeSbTe используется при производстве перезаписываемых DVD. Сущность перезаписи заключается в изменении оптических свойств этого соединения при фазовом переходе под действием лазерного излучения.[13]

Радиоэлектроника

  • Германий используется в производстве полупроводниковых приборов: транзисторов и диодов. Германиевые транзисторы и детекторные диоды обладают характеристиками, отличными от кремниевых, ввиду меньшего напряжения отпирания p-n-перехода в германии — 0,35…0,4 В против 0,6…0,7 В у кремниевых приборов[14]. Кроме того, обратные токи у германиевых приборов на несколько порядков больше таковых у кремниевых — скажем, в одинаковых условиях кремниевый диод будет иметь обратный ток 10 пА, а германиевый — 100 нА, что в 10000 раз больше[15]. До 1960-х гг. германиевые полупроводниковые приборы использовались повсеместно. По советскому ГОСТ 10862-64 (1964 г.) и более поздним стандартам германиевые полупроводниковые приборы имеют обозначение, начинающиеся с буквы Г или цифры 1, например: ГТ313, 1Т308 — высокочастотные маломощные транзисторы, ГД507 — импульсный диод. До того транзисторы имели индексы, начинающиеся с букв С, Т или П (МП), а диоды — Д, и определить материал прибора по индексу было невозможно; впрочем, большинство из них были германиевые. В настоящее время германиевые диоды и транзисторы практически полностью вытеснены кремниевыми.
  • Теллурид германия применяется как стабильный термоэлектрический материал и компонент термоэлектрических сплавов (термо-ЭДС 50 мкВ/К).

Прочие применения

Экономика

Цены

Год
Цена
($/кг)[16]
1999 1 400
2000 1 250
2001 890
2002 620
2003 380
2004 600
2005 660
2006 880
2007 1 240
2008 1 490
2009 950

Средние цены на германий в 2007 году[17]

  • Германий металлический $1200/кг
  • Германий диоксид (двуокись) $840/кг

Биологическая роль

Германий обнаружен в животных и растительных организмах. Малые количества германия не оказывают физиологического действия на растения, но токсичны в больших количествах. Германий нетоксичен для плесневых грибков.

Для животных германий малотоксичен. У соединений германия не обнаружено фармакологическое действие. Допустимая концентрация германия и его оксида в воздухе — 2 мг/м³, то есть такая же, как и для асбестовой пыли.

Соединения двухвалентного германия значительно более токсичны[18].

См. также

Примечания

  1. Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 531. — 623 с. — 100 000 экз.
  2. Экасилиций — нептуний — ангулярий — германий в «Популярной библиотеке химических элементов» на сайте «Наука и техника»
  3. Германий в Геологической энциклопедии
  4. J.P. Riley and Skirrow G. Chemical Oceanography V. I, 1965
  5. 1 2 Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
  6. Баранский П. И., Клочев В. П., Потыкевич И. В. Полупроводниковая электроника. Свойства материалов: Справочник. Киев: Наукова думка, 1975. 704с
  7. 1 2 3 Зи С. Физика полупроводниковых приборов. М.:Мир, 1984. 455с
  8. Compulenta
  9. Rieke, G.H. (2007). «Infrared Detector Arrays for Astronomy». Annu. Rev. Astro. Astrophys. 45: 77. DOI:10.1146/annurev.astro.44.051905.092436.
  10. 1 2 Brown, Jr., Robert D. Germanium (pdf). U.S. Geological Survey (2000). Архивировано из первоисточника 22 августа 2011. Проверено 22 сентября 2008.
Понравилась статья? Поделиться с друзьями:
Станок