Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

Содержание
  1. Свойства металлов
  2. Физические свойства металлов
  3. Химические свойства металлов
  4. Механические свойства металлов
  5. Технологические свойства металлов
  6. Таблицы свойств металлов
  7. Таблица «Свойства металлов: Чугун, Литая сталь, Сталь»
  8. Таблица «Свойства пружинной стали»
  9. Таблица «Свойства кузовных тонколистовых металлов»
  10. Таблица «Свойства цветных металлов»
  11. Таблица «Свойства легких сплавов»
  12. Таблица «Металлокерамические материалы (PM)1) для подшипников скольжения»
  13. Таблица «Свойства металлокерамических материалов (РМ)1 для конструкционных деталей»
  14. Магнитные материалы
  15. Таблица «Свойства магнитомягких материалов»
  16. Магнитомягкие металлы
  17. Таблица «Свойства магнитной листовой и полосовой стали»
  18. Материалы для преобразователей и электрических реакторов
  19. Магнитная проницаемость листового сердечника для классов сплавов С21, С22, Е11, Е31 и Е41 для секции тонколистового сердечника EY11
  20. Материалы для реле постоянного тока
  21. Таблица «Свойства материалов для реле постоянного тока»
  22. Металлокерамические материалы для магнитомягких компонентов
  23. Таблица «Свойства металлокерамических материалов для магнитомягких компонентов»
  24. Магнитомягкие ферриты
  25. Таблица «Свойства магнитомягких ферритов»
  26. Теплопроводность | это… Что такое Теплопроводность?
  27. Закон теплопроводности Фурье
  28. Коэффициент теплопроводности вакуума
  29. Связь с электропроводностью
  30. Коэффициент теплопроводности газов
  31. Обобщения закона Фурье
  32. Коэффициенты теплопроводности различных веществ
  33. Примечания
  34. Физические и химические свойства конструкционных материалов
  35. Теплопроводность | 8 класс | Физика
  36. Содержание
  37. Определение тепловодности
  38. Теплопроводность твердых тел
  39. Теплопроводность жидкостей
  40. Теплопроводность газов
  41. Применение

Всем известно, что теплота может «путешествовать» с одного места на другое. Однако нам пока что неизвестно, каким же образом это происходит? Одинаково ли протекают теплообменные процессы в твёрдых телах, жидкостях и газах? И какова природа передачи теплоты? Чтобы ответить на эти вопросы, проведём эксперимент.

Возьмём железный гвоздь и стеклянную палочку и будем нагревать их концы в пламени спиртовки.

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

Через некоторое время мы почувствуем тепло. К пальцам, которые держат железный гвоздь, оно дойдёт гораздо быстрее, и вскоре мы не сможем удержать гвоздь, поскольку его температура значительно повысится. Стеклянную же палочку мы ещё долго сможем держать, хотя со временем и её температура повысится до такой степени, что будет печь пальцы.

В рассмотренном нами эксперименте происходит перенос теплоты от более нагретых частей тела к менее нагретым. Вы сами можете привести множество примеров такого переноса теплоты.

Такая передача энергии происходит в результате столкновения частиц. Она передаётся как бы по цепочке, последовательно слой за слоем, и со временем температура всех частей тела выравнивается.

Проведём ещё один опыт. К металлическому стержню, закрепленному в штативе, с помощью воска или пластилина прикрепим несколько кнопок. Свободный конец стержня будем нагревать на пламени спиртовки.

Через некоторое время мы увидим, что кнопки начнут отпадать от стержня: сначала отпадёт та кнопка, которая находится ближе к пламени, а затем поочерёдно все остальные.

Поскольку кнопки отпадали не одновременно, то можно сделать вывод о том, что температура стержня повышалась постепенно.

Почему это происходит? Попробуем разобраться, используя знания, полученные нами на предыдущих уроках.

Мы знаем, что в твёрдом теле (например, в металле) частицы взаимодействуют между собой, потенциальная энергия их велика, и они могут совершать колебательные движения около определенных положений. Модель структуры твердого тела (металла) можно представить в виде кристаллической решётки.

Модель кристаллической решётки

Частицы металла ближнего к пламени конца стержня получают от него энергию. А это значит, что увеличивается средняя кинетическая энергия колебательного движения его частиц. Так как частицы взаимодействуют друг с другом, то они передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь, передают энергию своим соседям, и так далее по всему стержню.

Это можно уподобить передаче энергии колебательного движения от одного человека к другому в цепочке стоящих рядом, взявшихся за руки людей. Если один человек будет смещаться, то в одну, то в другую сторону, то он вызовет смещение по очереди и всех остальных.

  • Обращаем внимание на то, что перемещение вещества от одного тела к другому или от одной части тела к другой, не происходит, но при этом передаётся энергия.
  • Процесс переноса теплоты от более нагретых тел или частей тела к менее нагретым в результате теплового движения и взаимодействия частиц без переноса вещества называется теплопроводностью.
  • Так как взаимодействие молекул и тепловое движение у разных веществ неодинаковы, то и теплопроводность веществ разная.

Чтобы в этом убедиться, проделаем следующий опыт. Возьмём сосуд с горячей водой и стержни одинакового размера из различных материалов, например, из серебра, латуни, стали, стекла и дерева. Верхние концы стержней погрузим в сосуд так, чтобы они прогревались водой. А к свободным нижним концам этих стержней прикрепим воском или пластилином кнопки.

Через некоторое время мы заметим, что первым отпадает кнопка от серебряного стержня. Значит серебро — это очень хороший проводник тепла. Затем отпадает гвоздик от стержня из латуни, а потом и от стального.

Ждать же, пока прогреются стеклянный и деревянный стержни, приходится очень долго. Значит,  дерево и стекло имеют очень малую теплопроводность.

Так теплопроводность дерева примерно в три тысячи раз меньше теплопроводности серебра. Убедиться в этом можно на опыте. Деревянную или стеклянную палочку можно безопасно держать рукой, в то время как другой ее конец, находящийся в пламени спиртовки, уже горит или плавится.

Становится понятным, почему деревянные дома лучше сохраняют тепло, чем кирпичные, почему ручки паяльников, кастрюль и сковородок делают из пластмассы или дерева.

Материалы, которые очень плохо проводят тепло, называют теплоизоляторами.

Теперь зададимся вопросом, а могут ли проводить теплоту газы? Что бы на него ответить, проделаем такой опыт: поместим в открытый конец пробирки термометр и будем нагревать пробирку в пламени спиртовки донышком вверх. Можно заметить, что нагревание воздуха идёт, но очень медленно, что подтверждается незначительным повышением показания термометра.

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

Приведём ещё несколько примеров. И так, все вы знаете, что фен выдувает горячий воздух за счёт электрической энергии, которую он потребляет из сети.

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

Однако, если встать чуть-чуть в стороне от потока воздуха, то тепло едва ли можно будет ощутить.

Кроме того, мы знаем, что двойные окна значительно лучше сохраняют тепло, чем одинарные. Это происходит за счёт небольшого слоя воздуха между ними.

Двойные стёкла в оконной раме

Так чем объясняется столь плохая теплопроводность газов? Вспомните, что силы взаимодействия между молекулами газов при нормальном давлении практически равны нулю.

Значит, энергия переносится только за счёт хаотического движения молекул и столкновений их друг с другом. Поэтому, например, сильно разреженные газы практически не проводят теплоту.

Это их свойство применяют, в частности, в термосах, чтобы продолжительное время сохранять в них жидкости при постоянной температуре.

Такими образом, теплопроводность газов очень малая, особенно по сравнению с теплопроводностью твёрдых тел. Так, например, теплопроводность обычного воздуха, которым мы с вами дышим, почти в 10 000 раз меньше, чем теплопроводность меди.

А теперь давайте выясним, какова же теплопроводность жидкостей? Так как взаимодействие молекул у жидкостей значительное, то перенос энергии молекулами у них лучше, чем у газов, но хуже, чем у твёрдых тел.

Чтобы в этом убедиться, проведём такой опыт. Возьмём пробирку с водой, на дно которой поместим кусочек льда. Чтобы лёд не всплывал, прикрепим к нему какой-либо металлический предмет.

Будем нагревать верхнюю часть пробирки в спиртовке.

Через некоторое время вода в верхней части пробирки закипит, но лёд на дне при этом не растает. Это говорит о том, что теплопроводность воды малая, хотя и больше чем у воздуха. Следует помнить, что металлы, находящиеся в жидком состоянии (это, например, медь, олово и так далее) обладают хорошей теплопроводностью.

Таким образом, теплопроводность жидкости действительно занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

И так, из всех рассмотренных нами примеров мы можем сделать вывод о том, что теплопроводность — это свойство тел, и у каждого тела она разная. Например, шерсть, перья и волосы имеют плохую теплопроводность. Это объясняется тем, что между их волокнами содержатся частички воздуха.

Мы постоянно сталкиваемся с явлением теплопроводности в повседневной жизни. Например, посуду, в которой готовят пищу, делают из материалов, обладающих хорошей теплопроводностью, чтобы передавать энергию от источника к пище. А вот посуду из которой едят, наоборот, делают из материалов с плохой теплопроводностью.

Читайте также:  Области применения и особенности труб ппу: строение, виды и маркировка, преимущества изоляции

Самой низкой теплопроводностью обладает вакуум (то есть пространство, свободное от вещества). И это неудивительно, ведь явление теплопроводности возникает при взаимодействии молекул или других частиц, которых в вакууме попросту нет в вакууме. Этим и объясняется тот факт, что в открытом космосе самая низкая температура в природе.

Конечно же у вас может возникнуть вопрос: как же тогда нам передаётся тепло от Солнца? Это происходит посредством ещё одного вида теплопередачи — излучения. Но нём мы поговорим с вами в следующий раз.

Свойства металлов

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

Металлы, это группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск. В данной статье все свойства металлов будут представлены в виде отдельных таблиц.

Свойства металлов делятся на физические, химические, механические и технологические.

Физические свойства металлов

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, теплоемкость, расширяемость при нагревании.

Удельный вес металла — это отношение веса однородного тела из металла к объему металла, т.е. это плотность в кг/м3 или г/см3.

Плавкость металла — это способность металла расплавляться при определенной температуре, называемой температурой плавления.

Электропроводность металлов — это способность металлов проводить электрический ток, это свойство тела или среды, определяющее возникновение в них электрического тока под воздействием электрического поля.

 Под электропроводностью подразумевается способность проводить прежде всего постоянный ток (под воздействием постоянного поля), в отличие от способности диэлектриков откликаться на переменное электрическое поле колебаниями связанных зарядов (переменной поляризацией), создающими переменный ток.

Магнитные свойства металлов характеризуются: остаточной индукцией, коэрцетивной силой и магнитной проницаемостью.

Теплопроводность металлов — это их способность передавать тепло от более нагретых частиц к менее нагретым. Теплопроводность металла определяется количеством теплоты, которое проходит по металлическому стержню сечением в 1см2, длиной 1см в течение 1сек. при разности температур в 1°С.

Теплоемкость металлов — это количество теплоты, поглощаемой телом при нагревании на 1 градус. Отношение количества теплоты, поглощаемой телом при бесконечно малом изменении его температуры, к этому изменению единицы массы вещества (г, кг) называется удельной теплоёмкостью, 1 моля вещества — мольной (молярной).

Расширяемость металлов при нагревании.Все металлы при нагревании расширяются, а при охлаждении сжимаются. Степень увеличения или уменьшения первоначального размера металла при изменении температуры на один градус характеризуется коэффициентом линейного расширения.

Химические свойства металлов

К химическим — окисляемость, растворимость и коррозионная стойкость.

Окисление металлов — это реакция соединения металла с кислородом, сопровождающаяся образованием окислов (оксидов). Если рассмотреть окисляемость шире, то это реакции, в которых атомы теряют электроны и образуются различные соединения, например, хлориды, сульфиды. В природе металлы находятся в основном в окисленном состоянии, в виде руд, поэтому их производство основано на процессах восстановления различных соединений.
Растворимость металлов — это их способность образовывать с другими веществами однородные системы — растворы, в которых металл находится в виде отдельных атомов, ионов, молекул или частиц. Металлы растворяются в растворителях, в качестве которых выступают сильные кислоты и едкие щелочи. В промышленности наиболее часто используются: серная, азотная и соляные кислоты, смесь азотной и соляной кислот (царская водка), а также щелочи — едкий натр и едкий калий.
Коррозионная стойкость металлов — это их способность сопротивляться коррозии.

Механические свойства металлов

  • К механическим — прочность, твердость, упругость, вязкость, пластичность.
  • Прочностью металла называется его способность сопротивляться действию внешних сил, не разрушаясь.
  • Твердостью металлов называется способность тела противостоять проникновению в него другого, более твердого тела.
  • Упругость металлов — свойство металла восстанавливать свою форму после прекращения действия внешних сил, вызвавших изменение формы (деформацию).

Вязкость металлов — это способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам.

Вязкость — свойство обратное хрупкости.

Пластичность металлов — это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность—свойство обратное упругости.

Технологические свойства металлов

  1. К технологическим — прокаливаемость, жидкотекучесть, ковкость, свариваемость, обрабатываемость резанием.
  2. Прокаливаемость металлов – это их способность получать закаленный слой определенной глубины.
  3. Жидкотекучесть металлов — это свойство металла в жидком состоянии заполнять литейную форму и воспроизводить ее очертания в отливке.
  4. Ковкость металлов —это технологическое свойство, характеризующее их способность к обработке деформированием, например, ковкой, вальцеванием, штамповкой без разрушения.
  5. Свариваемость металлов — это их свойство образовывать в процессе сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией производимого изделия.

Обрабатываемость металлов резанием — это их способность изменять геометрическую форму, размеры, качество поверхности за счет механического срезания материала заготовки режущим инструментом. Обрабатываемость металлов зависит от их механических свойств, в первую очередь прочности и твердости.

Современными методами испытания металлов являются механические испытания, химический анализ, спектральный анализ, металлографический и рентгенографический анализы, технологические пробы, дефектоскопия. Эти испытания дают возможность получить представление о природе металлов, их строении, составе и свойствах, а также определить качество готовых изделий.

Таблицы свойств металлов

Таблица «Свойства металлов: Чугун, Литая сталь, Сталь»

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это
Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это
Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

  1. Предел прочности на растяжение
  2. Предел текучести (или Rp 0,2);
  3. Относительное удлинение образца при разрыве;
  4. Предел прочности на изгиб;
  5. Предел прочности на изгиб приведен для образца из литой стали;
  6. Предел усталости всех типов чугуна, зависит массы и сечения образца;
  7. Модуль упругости;
  8. Для серого чугуна модуль упругости уменьшается с увеличением напряжения растяжения и остается практически постоянным с увеличением напряжения сжатия.

Таблица «Свойства пружинной стали»

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

  1. Предел прочности на растяжение,
  2. Относительное уменьшение поперечного сечения образца при разрыве,
  3. Предел прочности на изгиб;
  4. Предел прочности при знакопеременном циклическом нагружении при N ⩾ 107,
  5. Максимальное напряжение при температуре 30°С и относительном удлинении 1 2% в течение 10 ч; для более высоких температур см. раздел «Способы соединения деталей»;
  6. 480 Н/мм2 для нагартованных пружин;
  7. Приблизительно на 40% больше для нагартованных пружин

Таблица «Свойства кузовных тонколистовых металлов»

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

Таблица «Свойства цветных металлов»

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

  1. Модуль упругости, справочные данные;
  2. Предел прочности на растяжение;
  3. Предел текучести, соответствующий пластической деформации 0,2%;
  4. Предел прочности на изгиб;
  5. Наибольшая величина;
  6. Для отдельных образцов

Таблица «Свойства легких сплавов»

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

  1. Предел прочности на растяжение;
  2. Предел текучести, соответствующий пластической деформации 0,2%;
  3. Предел прочности на изгиб;
  4. Наибольшая величина;
  5. Показатели прочности приведены для образцов и для отливок;
  6. Показатели предела прочности на изгиб приведены для случая плоского нагружения

Таблица «Металлокерамические материалы (PM)1) для подшипников скольжения»

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;
  2. Применительно к подшипнику 10/16 г 10;
  3. Углерод содержится, главным образом, в виде свободного графита;
  4. Углерод содержится только в виде свободного графита

Таблица «Свойства металлокерамических материалов (РМ)1 для конструкционных деталей»

Способность металлов передавать тепло от более нагретых к менее нагретым участкам тела это

  1. В соответствии со стандартом DIN 30 910,1990 г. издания;

Магнитные материалы

Таблица «Свойства магнитомягких материалов»

  1. Данные относятся только к магнитным кольцам.

Магнитомягкие металлы

Таблица «Свойства магнитной листовой и полосовой стали»

Материалы для преобразователей и электрических реакторов

Магнитная проницаемость листового сердечника для классов сплавов С21, С22, Е11, Е31 и Е41 для секции тонколистового сердечника EY11

Материалы для реле постоянного тока

Таблица «Свойства материалов для реле постоянного тока»

Металлокерамические материалы для магнитомягких компонентов

Таблица «Свойства металлокерамических материалов для магнитомягких компонентов»

Магнитомягкие ферриты

Таблица «Свойства магнитомягких ферритов»

  1. Нормируемые величины;
  2. Потеря материалом магнитных свойств в зависимости от частоты при низкой плотности магнитного потока (В < 0,1 мТл);
  3. Потери магнитных свойств при высокой плотности магнитного потока; замеряются предпочтительно при f = 25 кГц, В = 200 мТл, Θ = 100°С;
  4. Магнитная проницаемость при строго синусоидальном магнитном поле; замеряется при f
Читайте также:  Уравнения реакции сероводорода с металлами

Теплопроводность | это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.).

Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому.

Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи.

Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло.

Тем не менее, тепло в вакууме передаётся с помощью излучения.

Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная.

Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов — у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело.

Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п.

Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

Цветок на куске аэрогеля над горелкой Бунзена

Материал
Теплопроводность, Вт/(м·K)
Графен (4840±440) — (5300±480)
Алмаз 1001—2600
Графит 278,4—2435
Карбид кремния 490
Серебро 430
Медь 382—390
Оксид бериллия 370
Золото 320
Алюминий 202—236
Нитрид алюминия 200
Нитрид бора 180
Кремний 150
Латунь 97—111
Хром 93,7
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Кварц 8
Стекло 1-1,15
КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Силиконовое масло 0,16
Пенобетон 0,14—0,3
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Вата 0,055
Воздух (300 K, 100 кПа) 0,026
Вакуум (абсолютный) 0 (строго)

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

Физические и химические свойства конструкционных материалов

К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др.

Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий — серебристо-белый.

Плотность р металла характеризуется его массой, заключенной в единице объема. По плотности все металлы подразделяют на легкие (менее 4500 кг/м) и тяжелые.

Плотность имеет большое значение при создании различных изделий.

Например, в самолето-и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий.

Температурой плавления tпл называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам 3416 °С, тантал 2950 °C, титан 1725 °C и др.

) и легкоплавкие (олово 232 °С, свинец 327 °С, цинк 419,5 °C, алюминий 660 °С) металлы.

Температура плавления важна при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий.

Теплопроводностью Л называют способность металлов передавать теплоту от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминий обладают высокой теплопроводностью. Железо имеет теплопроводность примерно в 3 раза ниже, чем алюминий, и в 5 раз ниже, чем медь.

Теплопроводность следует учитывать при выборе материала для деталей. Например, если металл плохо проводит теплоту, то при нагреве и быстром охлаждении (термическая обработка, сварка) он склонен к образованию трещин.

Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с высокой теплопроводностью.

Тепловым расширением называют свойство металлов увеличиваться в размерах при нагревании и уменьшаться — при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения а.

Читайте также:  Коронки по металлу для дрели какие лучше

Тепловые расширения необходимо учитывать при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, валков прокатных станов, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс.

Теплоемкостью называют способность металла при нагревании поглощать определенное количество теплоты. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости с, которая равна отношению теплоемкости однородного тела к его массе.

Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками — электропроводностью g и электросопротивлением r. Хорошая электропроводность необходима, например, для токоведущих проводов, поэтому для их производства используют медь и алюминий.

При изготовлении электронагревателей приборов и печей требуются сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением — увеличивается.

Магнитные свойства характеризуются абсолютной магнитной проницаемостью ua — способностью металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными.

Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства характеризуют способность материала к взаимодействию с внешней средой, в частности, способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем активнее металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием внешней агрессивной среды на их поверхность называют коррозией.

Окисляемость — способность материалов взаимодействовать с кислородом и образовывать оксиды, растворимость — способность вещества образовывать с другим веществом (или веществами) гомогенные смеси с дисперсным распределением компонентов. Сопротивление металлов коррозии, окислению и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

Химические свойства металлов обязательно учитывают при изготовлении и работе изделий в условиях высоких температур и под воздействием химически агрессивных сред.

Теплопроводность | 8 класс | Физика

Содержание

Внутренняя энергия тела может изменяться без совершения работы — за счет теплопередачи. Когда мы подносим металлическую палку к пламени свечи, ее конец тоже становится горячим.

На этом примере видно, что внутренняя энергия может передаваться от одних тел к другим. Также внутренняя энергия может передаваться от одной части тела к другой — ведь нижняя часть палки не касается свечи, но нагревается.

То же явления мы можем наблюдать, опустив железную ложку в кипяток. Вскоре конец ложки, не погружённый в воду, станет горячим (рисунок 1).

Рисунок 1. Пример теплопроводности

Одним из видов теплопередачи является теплопроводность. Именно его мы наблюдаем в приведенном примере. На данном уроке мы более подробно рассмотрим это явление.

Определение тепловодности

Теплопроводность — это явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте. 

  • теплопроводность свойственна веществам во всех трех агрегатных состояниях: твердом, жидком и газообразном
  • разные вещества обладают разной теплопроводностью

Рассмотрим подробнее последнее утверждение. Поднесем к огню конец деревянной палочки (рисунок 2). Он загорится. Тем не менее, другой ее конец останется холодным. Следовательно, дерево обладает плохой теплопроводностью.

Рисунок 2. Нагревание различных материалов для оценки их теплопроводности.

Если мы заменим деревянную палочку на металлическую, то она вся довольно быстро нагреется. Держа такой предмет, можно легко обжечься.

Это говорит о том, что металлы имеют большую теплопроводность. Серебро медь и золото имеют наибольшую теплопроводность.

Теплопроводность твердых тел

Рассмотрим опыт, изображенный на рисунке 3. 

Рисунок 3. Теплопроводность твердого тела.

Прикрепляем к штативу один конец толстой медной проволоки. Под другим концом проволоки расположим спиртовую горелку. К проволоке прикрепим с помощью воска небольшие гвоздики (рисунок 3, а).

Начнем нагревать свободный конец проволоки с помощью спиртовки (рисунок 3, б). Воск постепенно начнет таять.

Поочередно гвоздики начнут отваливаться, начиная с тех, что находятся ближе к огню спиртовки (рисунок 3, в).

Объясним происходящее со стороны физики:

  1. Частицы металла находятся очень близко к друг другу. Они колеблются в определенных положениях
  2. Скорость колебательного движения частиц при нагревании металла сначала увеличивается в той части проволоки, которая находится ближе к огню
  3. За счет взаимодействия частиц металла друг с другом, увеличивается скорость движения соседних частиц
  4. При увеличении скорости их движения, начинает подниматься температура

Этот процесс будет постепенно проходить по всей длине проволоки.

При теплопроводности не происходит переноса вещества от одного конца тела к другому.

Рассмотрим еще один опыт (рисунок 3). На этот раз с другой стороны подставим к горелке еще один штатив с закрепленной на нем проволокой. Различие будет в ее материале — проволока сделана из стали.

Рисунок 3. Теплопроводность различных металлов.

В процессе нагревания мы увидим, что гвоздики на медной проволоке отваливаются быстрее. Медь быстрее нагревается по всей длине. Это показывает нам, что тепловодность различных металлов неодинакова. Медь имеет большую тепловодность, чем сталь.

Теплопроводность жидкостей

Проведем простой опыт. Наполним пробирку водой и начнем подогревать ее верхнюю часть (рисунок 4).

Рисунок 4. Теплопроводность жидкости.

Вода в верхней части пробирки быстро закипит, а у дна просто нагреется. Это говорит о том, что у жидкостей теплопроводность невелика (исключение составляют ртуть и расплавленные металлы).

Причина небольшой теплопроводности жидкостей — расположение молекул в их строении. Расстояние между молекулами жидкости больше, чем в твердых телах. 

Теплопроводность газов

Исследуем на опыте теплопроводность газов. Наденем на палец пробирку. Будем нагревать ее дно в пламени спиртовки (рисунок 5).

Рисунок 5. Теплопроводность газа.

Нам придется долго ждать, чтобы почувствовать тепло нагретого в пробирке воздуха. Расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Значит, теплопроводность газов еще меньше.

Волосы, шерсть, перья птиц обладают плохой теплопроводностью. Причина этому — между волокнами этих веществ содержится воздух. 

Теплопроводность объясняется переносом энергии от одной части тела к другой, который происходит при взаимодействии частиц вещества. Чем больше расстояние между частицами и слабее взаимодействие между ними, тем меньшей теплопроводностью обладает тело. Поэтому наименьшей теплопроводностью обладает вакуум (безвоздушное пространство). Нет частиц — нет теплопроводности.

Применение

Иногда необходимо предохранить тело от нагревания или охлаждения. Для этого используют тела с малой теплопроводностью. Если кастрюли и сковородки делают из металла (позволяет быстрее нагреваться), то их ручки делают из дерева или пластмассы. Это позволяет нам не обжигаться. По этой же причине кружки и стаканы изготавливают преимущественно из пластмассы, стекла, фарфора.

Материалы, которые используют при строительстве домов (бревна, кирпичи, бетон) обладают плохой теплопроводностью. Таким образом строения меньше охлаждаются.

В устройстве термоса тоже применяется явление теплопроводности (рисунок 6). Из пространства между колбой и кожухом выкачан воздух, так почти не осуществляется теплопередача.

Рисунок 6. Устройство термоса.

Снежный покров имеет плохую теплопроводность. Это имеет огромное значение для живых организмов: многие зимующие растения защищены от вымерзания; крупные животные ночуют, зарывшись в снег; мелкие могут вести активную жизнь в норах, вырытых под снегом.

Понравилась статья? Поделиться с друзьями:
Станок