Физическое свойство щелочных металлов 9 класс

Физическое свойство щелочных металлов 9 классФизическое свойство щелочных металлов 9 классФизическое свойство щелочных металлов 9 классФизическое свойство щелочных металлов 9 классФизическое свойство щелочных металлов 9 класс

  • К щелочным металлам относятся литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr.
  • Щелочные металлы
  • Строение атомов щелочных металлов
  • Физические свойства щелочных металлов
  • Химические свойства щелочных металлов

Щелочные металлы:

Щелочные металлы – это химические элементы 1-й группы периодической таблицы химических элементов Д.И. Менделеева (по устаревшей классификации – элементы главной подгруппы I группы):

  1. литий Li,
  2. натрий Na,
  3. калий K,
  4. рубидий Rb,
  5. цезий Cs,
  6. франций Fr.
  7. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.

Строение атомов щелочных металлов:

Особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Щелочные металлы относятся к элементам s-семейства.

Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства.

Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия – самый низкий) и электроотрицательности. Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов.

Так, электронная конфигурация атома лития 1s2 2s1. атом лития состоит из положительно заряженного ядра (+3), вокруг которого по атомным оболочкам (двум s-орбиталям) движутся три электрона. Поскольку литий расположен во втором периоде, оболочки всего две, одна из которых является внешней. При этом 2 электрона находятся на внутреннем уровне, а 1 электрон – на внешнем.

Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома цезия на 2s-орбитали находятся один неспаренный электрон. Электроны, расположенные на внешней оболочке, называются валентными и участвуют в образовании химических связей.

В свою очередь ядро атома лития состоит из трех протонов и четырех нейтронов.

Радиус атома лития составляет 145 пм. Потенциал ионизации (первый электрон) атома лития равен 5,39 эВ (519,9 кДж/моль). Электроотрицательность атома лития равна 0,98 (шкала Полинга).

Электронная конфигурация атома натрия 1s2 2s2 2p6 3s1. Атом натрия состоит из положительно заряженного ядра (+11), вокруг которого по трем оболочкам движутся 11 электронов. При этом 10 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку натрий расположен в третьем периоде, оболочек всего три.

Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома натрия – на 3s-орбитали находится один неспаренный электрон.

В свою очередь ядро атома натрия состоит из 11 протонов и 12 нейтронов.

Радиус атома натрия составляет 190 пм. Потенциал ионизации атома натрия равен 5,14 эВ (495,6 кДж/моль). Электроотрицательность атома натрия равна 0,93 (шкала Полинга).

Электронная конфигурация атома калия 1s2 2s2 2p6 3s2 3p6 4s1. Атом калия состоит из положительно заряженного ядра (+19), вокруг которого по четырем оболочкам движутся 19 электронов. При этом 18 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку калий расположен в четвертом периоде, оболочек всего четыре.

Первая – внутренняя оболочка представлена s-орбиталью. Вторая и третья – внутренние оболочки представлена s- и р-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома калия – на 4s-орбитали находится один неспаренный электрон.

В свою очередь ядро атома калия состоит из 19 протонов и 20 нейтронов.

Радиус атома калия составляет 235 пм. Потенциал ионизации атома калия равен 4,34 эВ (418,5 кДж/моль). Электроотрицательность атома калия равна 0,82 (шкала Полинга).

Электронная конфигурация атома рубидия 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s1. Атом рубидия состоит из положительно заряженного ядра (+37), вокруг которого по пяти оболочкам движутся 37 электронов. При этом 36 электронов находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку рубидий расположен в пятом периоде, оболочек всего пять.

Первая – внутренняя оболочка представлена s-орбиталью. Вторая и четвертая – внутренние оболочки представлены s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Пятая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома рубидия на 5s-орбитали находится один неспаренный электрон.

В свою очередь ядро атома рубидия состоит из 37 протонов и 48 нейтронов.

Радиус атома рубидия составляет 248 пм. Потенциал ионизации атома рубидия равен 4,17 эВ (402,8 кДж/моль). Электроотрицательность атома рубидия равна 0,82 (шкала Полинга).

Электронная конфигурация атома цезия 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s1. Атом цезия состоит из положительно заряженного ядра (+55), вокруг которого по шести оболочкам движутся 55 электронов. При этом 54 электрона находятся на внутреннем уровне, а 1 электрон – на внешнем. Поскольку цезий расположен в шестом периоде, оболочек всего шесть.

Первая – внутренняя оболочка представлена s-орбиталью. Вторая и пятая – внутренние оболочки представлены s- и р-орбиталями. Третья и четвертая – внутренние оболочки представлены s-, р- и d-орбиталями. Шестая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома цезия на 6s-орбитали находятся один неспаренный электрон.

В свою очередь ядро атома цезия состоит из 55 протонов и 78 нейтронов.

Радиус атома цезия составляет 267 пм. Потенциал ионизации атома цезия равен 3,89 эВ (375,5 кДж/моль). Электроотрицательность атома цезия равна 0,79 (шкала Полинга).

С увеличением порядкового номера у щелочных металлов увеличиваются радиус атома, способность отдавать валентные электроны и восстановительная активность, уменьшается электроотрицательность и энергия ионизации.

Физические свойства щелочных металлов:

Все щелочные металлы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень легкие, мягкие и пластичные, их можно резать скальпелем и ножом.

Щелочные металлы имеют небольшую плотность. Так, литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней. Щелочные металлы обладают высокой тепло- и электропроводностью.

Они имеют низкую температуру плавления и кипения.

С увеличением порядкового номера у щелочных металлов уменьшаются плотность, температура плавления, температура кипения, твердость.

Химические свойства щелочных металлов:

Все щелочные металлы обладают высокой химической активностью. Они проявляют высокую химическую активность при взаимодействии с водой, кислородом, галогенами и другими соединениями.

Поэтому хранят щелочные металлы под слоем керосина или в запаянных ампулах. В соединениях щелочные металлы проявляют единственную степень окисления +1. Все соединения щелочных металлов носят ионный характер.

Почти все соединения растворимы в воде.

С увеличением порядкового номера у щелочных металлов усиливаются металлические свойства и ослабевают неметаллические свойства, увеличивается восстановительная способность, возрастает химическая активность их щелочей.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

Щелочные металлы

Физическое свойство щелочных металлов 9 класс Физическое свойство щелочных металлов 9 класс

Средняя оценка: 4.4

Всего получено оценок: 643.

Средняя оценка: 4.4

Всего получено оценок: 643.

Наиболее активными среди металлов являются щелочные металлы. Они активно вступают в реакции с простыми и сложными веществами.

Щелочные металлы находятся в I группе периодической таблицы Менделеева. Это мягкие одновалентные металлы серо-серебристого цвета с небольшой температурой плавления и невысокой плотностью. Проявляют единственную степень окисления +1, являясь восстановителями. Электронная конфигурация – ns1.

Рис. 1. Натрий и литий.

Общая характеристика металлов I группы приведена в таблице.

Список щелочных металлов Формула Номер Период t°пл., °C t°кип., °C ρ, г/см3
Литий Li 3 2 180,5 1340 0,533
Натрий Na 11 3 98 883 0,968
Калий K 19 4 63,07 759 0,856
Рубидий Rb 37 5 39,5 688 1,532
Цезий Cs 55 6 28,4 671 1,90
Франций Fr 87 7 20 690 1,87

Активные металлы быстро реагируют с другими веществами, поэтому в природе находятся только в составе минералов.

Для получения чистого щелочного металла используется несколько способов:

  • электролиз расплавов, чаще всего хлоридов или гидроксидов –
    2NaCl → 2Na + Cl2, 4NaOH → 4Na + 2H2O + O2↑;
  • прокаливание соды (карбоната натрия) с углём для получения натрия –
  • восстановление кальцием рубидия из хлорида при высоких температурах –
    2RbCl + Ca → 2Rb + CaCl2;
  • восстановление цезия из карбоната с помощью циркония –
    2Cs2CO3 + Zr → 4Cs + ZrO2 + 2CO2.

Свойства щелочных металлов обусловлены их строением. Находясь в первой группе периодической таблицы, они имеют всего один валентный электрон на внешнем энергетическом уровне. Единственный электрон легко переходит к атому окислителя, что способствует быстрому вступлению в реакцию.

Металлические свойства увеличиваются в таблице сверху вниз, поэтому литий расстаётся с валентным электроном труднее, чем франций. Литий – наиболее твёрдый элемент среди всех щелочных металлов. Реакция лития с кислородом проходит только под воздействием высокой температуры. С водой литий реагирует значительно медленнее, чем остальные металлы группы.

Общие химические свойства представлены в таблице.

Реакция Продукты Уравнение
С кислородом Оксид (R2O) образует только литий. Натрий образует смесь оксида и пероксида (R2O2). Остальные металлы образуют надпероксиды (RO2)
  • – 4Li + O2 → 2Li2O;
  • – 6Na + 2O2 → 2Na2O + Na2O2;
  • – K + O2 → KO2
С водородом Гидриды 2Na + H2 → 2NaH
С водой Гидроксиды 2Na + 2H2O → 2NaOH + H2↑
С кислотами Соли 2Na + 2HCl → 2NaCl + H2­↑
С галогенами Галогениды 2Li + Cl2 → 2LiCl
С азотом (реагирует только литий при комнатной температуре) Нитрид 6Li + N2 → 2Li3N
С серой Сульфиды 2Na + S → Na2S
С углеродом (реагируют только литий и натрий) Карбиды – 2Li + 2C → Li2C2;
– 2Na + 2C → Na2C2
С фосфором Фосфиды 3K + P → K3P
С кремнием Силициды 4Cs + Si → Cs4Si
С аммиаком Амиды 2Li + 2NH3 → 2LiNH2 + H2

При качественной реакции имеют разный цвет пламени. Литий горит малиновым, натрий – жёлтым, цезий – розово-фиолетовым пламенем. Оксиды щелочных металлов также имеют разный цвет. Натрий становится белым, рубидий и калий – жёлтыми.

Физическое свойство щелочных металлов 9 классРис. 2. Качественная реакция щелочных металлов.

Простые металлы и их соединения используются для изготовления лёгких сплавов, металлических деталей, удобрений, соды и других веществ. Рубидий и калий используются в качестве катализаторов.

Пары натрия применяются в люминесцентных лампах. Не имеет практического применения только франций из-за радиоактивных свойств.

Как используют элементы I группы кратко описано в таблице применения щелочных металлов.

Читайте также:  Инструмент для резки листового металла насадка на дрель шуруповерт
Область применения Применение
Химическая промышленность
  1. – Натрий ускоряет реакцию при производстве каучука;
  2. – гидроксид калия и натрия – производство мыла;
  3. – карбонат натрия и калия – изготовление стекла, мыла;
  4. – гидроксид натрия – изготовление бумаги, мыла, ткани;
  5. – нитрат калия – производство удобрений
Пищевая промышленность – Хлорид натрия – поваренная соль;
– гидрокарбонат натрия – питьевая сода
Металлургия Калий и натрий являются восстановителями при получении титана, циркония, урана
Энергетика – Расплавы калия и натрия используются в атомных реакторах и авиационных двигателях;
– литий используется для производства аккумуляторов
Электроника Цезий – производство фотоэлементов
Авиация и космонавтика Сплавы из алюминия и лития используются для корпусов машин и ракет

Физическое свойство щелочных металлов 9 классРис. 3. Питьевая сода.

Из урока 9 класса узнали об особенностях щелочных металлов. Они находятся в I группе таблицы Менделеева и при реакциях отдают один валентный электрон.

Это мягкие металлы, легко вступающие в химические реакции с простыми и сложными веществами – галогенами, неметаллами, кислотами, водой.

В природе встречаются только в составе других веществ, поэтому для их извлечения используется электролиз или реакция восстановления. Применяются в промышленности, строительстве, металлургии, энергетике.

Чтобы попасть сюда — пройдите тест.

Средняя оценка: 4.4

Всего получено оценок: 643.

А какая ваша оценка?

Гость завершил

Тест «Толстый и тонкий»с результатом 7/8

Гость завершил

Тест «Бесприданница»с результатом 9/15

Гость завершил

Тест «Горе от ума»с результатом 11/15

Гость завершил

Тест «Садко»с результатом 12/14

Гость завершил

Тест «Мертвые души»с результатом 14/19

Гость завершил

Тест «Вишнёвый сад»с результатом 14/16

Гость завершил

Тест «Имя существительное»с результатом 24/25

Не подошло? Напиши в х, чего не хватает!

Щелочные металлы: общая характеристика, строение; свойства и получение простых веществ — урок. Химия, 9 класс

Щелочными металлами называются химические элементы-металлы (IA) группы Периодической системы Д. И. Менделеева: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr).

Электронное строение атомов. На внешнем энергетическом уровне атомы щелочных металлов имеют один электрон ns1. Поэтому для всех металлов группы (IA) характерна степень окисления (+1).

Этим объясняется сходство свойств всех щелочных металлов.

Для них (сверху вниз по группе) характерно:

  • увеличение радиуса атомов;
  • усиление восстановительных, металлических свойств.

Нахождение в природе. Из щелочных металлов наиболее широко распространены в природе натрий и калий. Но из-за высокой химической активности они встречаются только в виде соединений.

Основными источниками натрия и калия являются:

  • каменная соль (хлорид натрия (NaCl)),
  • глауберова соль, или мирабилит — декагидрат сульфата натрия Na2SO4 (·) 10H2O,
  • сильвин — хлорид калия (KCl),
  • сильвинит — двойной хлорид калия-натрия (KCl) (·)(NaCl) и др.

Соединения лития, рубидия и цезия в природе встречаются значительно реже, поэтому их относят к числу редких и рассеянных.

Физические свойства простых веществ. В твёрдом агрегатном состоянии атомы связаны металлической связью. Наличие металлической связи обусловливает общие физические свойства простых веществ-металлов: металлический блеск, ковкость, пластичность, высокую тепло- и электропроводность.

В свободном виде простые вещества, образованные элементами (IA) группы — это легкоплавкие металлы серебристо-белого (литий, натрий, калий, рубидий) или золотисто-жёлтого (цезий) цвета, обладающие высокой мягкостью и пластичностью.

Физическое свойство щелочных металлов 9 класс

Рис. (1). Литий

Физическое свойство щелочных металлов 9 класс

Рис. (2). Натрий

Наиболее твёрдым является литий, остальные щелочные металлы легко режутся ножом и могут быть раскатаны в фольгу.

Только у натрия плотность немного больше единицы ρ=1,01 г/см3, у всех остальных металлов плотность меньше единицы.

Химические свойства. Щелочные металлы обладают высокой химической активностью, реагируя с кислородом и другими неметаллами. 

Поэтому хранят щелочные металлы под слоем керосина или в запаянных ампулах. Они являются сильными восстановителями.

Все щелочные металлы активно реагируют с водой, выделяя из неё водород.

Пример:

2Na+2H2O=2NaOH+H2↑.

Взаимодействие натрия с водой протекает с выделением большого количества теплоты (т. е. реакция является экзотермической). Кусочек натрия, попав в воду, начинает быстро двигаться по её поверхности.

Под действием выделяющейся теплоты он расплавляется, превращаясь в каплю, которая, взаимодействуя с водой, быстро уменьшается в размерах.

Если задержать её, прижав стеклянной палочкой к стенке сосуда, капля воспламенится и сгорит ярко-жёлтым пламенем.

Получение. Металлический натрий в промышленности получают главным образом электролизом расплава хлорида натрия с инертными (графитовыми) электродами.

  • В расплаве хлорида натрия присутствуют ионы:
  •  NaCl⇄Na++Cl−.
  • При электролизе
  • на катоде восстанавливаются катионы Na+, а на аноде окисляются анионы Cl−:
  • катод ((–)):  2Na++2e_=2Na,
  • анод ((+)): 2Cl−−2e_=Cl2↑.
  • Суммарное уравнение реакции при электролизе расплава хлорида натрия:
  • 2NaCl→2Na+Cl2↑.

Источники:

Рис. 1. Литий © ЯКласс

Рис. 2. Натрий © ЯКласс

Щелочные металлы в химии

К щелочным металлам относятся металлы IA группы Периодической системы Д.И. Менделеева – литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs) и франций (Fr).

На внешнем энергетическом уровне щелочных металлов находится один валентный электрон. Электронная конфигурация внешнего энергетического уровня щелочных металлов – ns1.

В своих соединениях они проявляют единственную степень окисления равную +1. В ОВР являются восстановителями, т.е. отдают электрон.

Физические свойства щелочных металлов

  • Все щелочные металлы легкие (обладают небольшой плотностью), очень мягкие (за исключением Li легко режутся ножом и могут быть раскатаны в фольгу), имеют низкие температуры кипения и плавления (с ростом заряда ядра атома щелочного металла происходит понижение температуры плавления).
  • В свободном состоянии Li, Na, K и Rb – серебристо-белые металлы, Cs – металл золотисто-желтого цвета.
  • Щелочные металлы хранят в запаянных ампулах под слоем керосина или вазелинового масла, поскольку они обладают высокой химической активностью.
  • Щелочные металлы обладают высокой тепло- и электропроводностью, что обусловлено наличием металлической связи и объемоцентрированной кристаллической решетки

Получение щелочных металлов

  1. Все щелочные металлы возможно получить электролизом расплава их солей, однако на практике таким способом получают только Li и Na, что связано с высокой химической активностью K, Rb, Cs:
  2. 2LiCl = 2Li + Cl2↑
  3. 2NaCl = 2Na + Cl2↑

Любой щелочной металл можно получить восстановлением соответствующего галогенида (хлорида или бромида), применяя в качестве восстановителей Ca, Mg или Si. Реакции проводят при нагревании (600 – 900С) и под вакуумом. Уравнение получения щелочных металлов таким способом в общем виде:

  • 2MeCl + Ca = 2Mе↑ + CaCl2,
  • где Ме – металл.
  • Известен способ получения лития из его оксида. Реакцию проводят при нагревании до 300°С и под вакуумом:
  • 2Li2O + Si + 2CaO = 4Li + Ca2SiO4
  • Получение калия возможно по реакции между расплавленным гидроксидом калия и жидким натрием. Реакцию проводят при нагревании до 440°С:
  • KOH + Na = K + NaOH

Химические свойства щелочных металлов

Все щелочные металлы активно взаимодействуют с водой образуя гидроксиды. Из-за высокой химической активности щелочных металлов протекание реакции взаимодействия с водой может сопровождаться взрывом. Наиболее спокойно с водой реагирует литий. Уравнение реакции в общем виде:

  1. 2Me + H2O = 2MeOH + H2↑
  2. где Ме – металл.
  3. Щелочные металлы взаимодействуют с кислородом воздуха образую ряд различных соединений – оксиды (Li), пероксиды (Na), надпероксиды (K, Rb, Cs):
  4. 4Li + O2 = 2Li2O
  5. 2Na + O2 =Na2O2
  6. K + O2 = KO2

Все щелочные металлы при нагревании реагируют с неметаллами (галогенами, азотом, серой, фосфором, водородом и др.). Например:

  • 2Na + Cl2 =2NaCl
  • 6Li + N2 = 2Li3N
  • 2Li +2C = Li2C2
  • 2K + S = K2S
  • 2Na + H2 = 2NaH
  • Щелочные металлы способны взаимодействовать со сложными веществами (растворы кислот, аммиак, соли). Так, при взаимодействии щелочных металлов с аммиаком происходит образование амидов:
  • 2Li + 2NH3 = 2LiNH2 + H2↑
  • Взаимодействие щелочных металлов с солями происходит по следующему принципу –вытесняют менее активные металлы (см. ряд активности металлов) из их солей:
  • 3Na + AlCl3 = 3NaCl + Al
  • Взаимодействие щелочных металлов с кислотами неоднозначно, поскольку при протекании таких реакций металл первоначально будет реагировать с водой раствора кислоты, а образующаяся в результате этого взаимодействия щелочь будет реагировать с кислотой.
  • Щелочные металлы реагируют с органическими веществами, такими, как спирты, фенолы, карбоновые кислоты:
  • 2Na + 2C2H5OH = 2C2H5ONa + H2↑
  • 2K + 2C6H5OH = 2C6H5OK + H2↑
  • 2Na + 2CH3COOH = 2CH3COONa + H2↑

Качественные реакции

Качественной реакцией на щелочные металлы является окрашивание пламени их катионами: Li+ окрашивает пламя в красный цвет, Na+ — в желтый, а K+, Rb+, Cs+ — в фиолетовый.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Урок 6: Щелочные металлы

  • План урока:
  • Представители щелочных металлов
  • Строение атомов щелочных металлов
  • Изменение химических свойств щелочных металлов
  • Внешний вид и физические свойства щелочных металлов
  • Нахождение в природе
  • Качественные реакции
  • Химические свойства щелочных металлов
  • Получение щелочных металлов
  • Применение соединений щелочных металлов

Представители щелочных металлов

Щелочные металлы – это группа высокоактивных металлов. Название происходит от продукта взаимодействия этих веществ с водой, в результате которой образуется щелочь (сложное химическое соединение). Найти в природе такие металлы, сделать из них изделие или просто хранить в виде слитка невозможно. Эти металлы сразу окисляются кислородом воздуха.

К щелочным металлам относятся: литий, натрий, калий, рубидий, цезий, франций.

Строение атомов щелочных металлов

В таблице Менделеева щелочные металлы расположены в первой группе. Такое положение не случайно, а отражает строение атома и химические свойства.

Химические свойства элементов напрямую зависят от строения атома. Атом любого элемента состоят из ядра, имеющего положительный заряд и электронов, образующих энергетически облака вокруг ядра.

Ядро и электроны притягиваются за счет электростатического напряжения. Соответственно, чем меньше у электрона силы сопротивления, тем ближе он будет к ядру. Электроны с большей энергией способны отдаляться на периферию атома.

По мере смены периодом, количество электронов и энергетических уровней будет увеличиваться. Общий параметр атомов всех щелочных металлов является 1 электрон на внешнем энергетическом уровне.

Изменение химических свойств щелочных металлов

По мере продвижения от первого до последнего периода, в атомах щелочных металлов происходит увеличение количества атомов и электронных облаков. Чем дальше атом оказался от ядра, тем меньше притяжение между ними.

За счет этого, отдаленный (последний) электрон проще отсоединить от атома. Легкость отщепления электронов определяет реакционную способность.

Отщепление электрона приводит к окислению собственного атома и восстановлению окислителя.

Таким образом, восстановительные свойства щелочных металлов увеличиваются сверху вниз в группе. Самый активный металл – цезий.

Читайте также:  Штрипс оцинкованный для воздуховодов

Внешний вид и физические свойства щелочных металлов

Щелочные металлы обладают всеми характерными свойствами: серебристый цвет (исключение: цезий – золотистого цвета) металлический блеск, электро- и теплопроводность, ковкость, пластичность.

Особенным качеством является мягкость и легкость за счет низкой плотности вещества. Эти металлы можно резать ножом, разминать руками (в перчатках) и ломать.

Нахождение в природе щелочных металлов

Из-за высокой реакционной активности, щелочные металлы не встречаются в природе в виде самородков или чистых залежей. Обнаружить их можно в составе солей. Многие природные минералы содержат ион щелочного металла в своей структуре.

Таблица. Минералы, в состав которых входят ионы щелочных металлов

Как видно из таблицы, чем выше активность элемента, тем ниже его встречаемость в природе. Элемент последнего периода первой группы – франций – вообще не встречается в природе даже в составе минералов. Этот элемент является радиоактивным и является промежуточным продуктом распада Урана-235. Его общее содержание в земной коре оценивается в 380 граммов.

Обнаружение ионов металлов в соединениях

Самый простой способ определения иона металла – окраска пламени. Для соли каждого металла характерен свой цвет:

  • Литий – красный,
  • Калий – фиолетовый,
  • Натрий – желтый,
  • Рубидий – розовый,
  • Цезий – синий.

Соли франция такой проверке не подвергаются.

Для такой проверки важно, чтобы в пламени не было других примесей, меняющий цвет, иначе проверка будет недостоверна.

Качественные реакции

Обнаружение катионов лития

Обнаружить ионы металлов в соли можно с помощью качественной реакции.

  1. Для обнаружения катионов лития используют фосфорную кислоту. Получившийся белый фосфат лития растворим только в концентрированной азотной кислоте и солях аммония:
  2.  3Li+ + PO43- = Li 3РО 4↓
  3. В растворимых солях литий можно обнаружить с помощью фторида аммония. При реакции образуется белый нерастворимый осадок фторида лития:
  4. Li+ + F- = LiF↓

Обнаружение катиона натрия

Ионы натрия можно обнаружить реакцией с комплексной солью гексагидроксостибатом (V). При низких температурах и в нейтральной среде образуется мелкокристаллическая белая соль натрия:

Na+ + [Sb (OH)6]– = Na[Sb(OH)6] ↓

Эту реакцию проводят на предметном стекле. За образованием и формой кристаллов наблюдают под микроскопом или бинокуляром.

Обнаружение катиона калия

В кислой и нейтральной среде ионы калия образуют двойную комплексную соль с гексанитрокабальтатом натрия (III). Эта соль нерастворима в воде и имеет желтый цвет:

2K+ + Na3[Co(NO2)6] = NaK2[Co(NO2)6] ↓+ 2Na+

Особенность реакции в ее медленном течении. Реакционную смесь оставляют на несколько часов. Для ускорения реакции можно тереть стеклянной палочкой по стенке пробирки. Это приводит к формированию статического электричества, что усиливает притяжение ионов друг к другу.

Еще одним способом обнаружения катионов калия служит реакция с гидротартратом натрия NaHC4H4O6. В этом случае образуется соль белого цвета. Реакцию можно ускорить потиранием стеклянной палочной о поверхность пробирки:

K+ + NaHC4H406= KHC4H4O6↓ + Na+.

Обнаружение катионов рубидия, цезия

Катионы рубидия и цезия – высокоактивные ионы, поэтому не обнаруживаются качественными реакциями. Все соединения прозрачные и хорошо растворимы в воде. Основными способами их обнаружения в составе соли служит осаждение органическими ароматическими растворами. Способа разделения цезия и рубидия из смеси в настоящее время нет.

Обнаружение ионов франция

Как радиоактивный металл, франций не входит в состав обычных солей. Его обнаружение проводится методом спектрометрии и радиационных приборов.

Химические свойства щелочных металлов

Все металлы являются восстановителями, поэтому они вступают в реакцию с различными окислителями. К таким относятся простые неметаллы и сложные соединения, обладающие окислительными свойствами.

Реакция с простыми неметаллами

Щелочные металлы активно вступают в реакции с галогенами. При этом образуется соответствующий галогенид. С серой, фосфором и водородом с образованием сульфидов, гидридов, фосфидов реагируют только при нагревании:

  • 2Na + Cl2→ 2NaCl
  • 2К + S   К2S
  • 2Rb + H2  2RbH
  • 3Na + P   Na3P
  • В реакции с кислородом щелочные металлы образуют пероксиды (кроме лития), повторное окисление которых приводит к образованию оксидов:
  • 2Na + О2 = Na2О2
  • 2 Na2О2 + О2 = 2Na2О
  • Специальных условий для окисления металлов кислородом не требуется, поэтому щелочные металлы хранят под слоем парафина, вазелина или масла без доступа кислорода.

Взаимодействие с водой

Реакция щелочных металлов с водой происходит с выделением большого количества тепла. Выделяющийся в ходе реакции водород может воспламеняться, что в некоторых случаях приводит к взрыву.

 

Взаимодействие с сильными кислотами

  1. В реакциях щелочных металлов с кислотами образуются соответствующие соли. Особенных проявлений свойств щелочных металлов здесь нет:
  2. 8K + 10HNO3 (конц) → 8KNO3 + N2O +5 H2O
  3. 8Na + 5H2SO4 (конц) → 4Na2SO4 + H2S↑ + 4H2O

Специфические химические свойства лития

  • В некоторых реакциях литий проявляет отличные от остальных щелочных металлов свойства. Например, это единственный металл, реагирующий с азотом без нагревания:
  • 6Li + N2 = 2Li3N
  • Нитрид лития подвергается необратимому гидролизу.
  • Li3N + 3H2O → 3LiOH + NH3↑
  • В реакции с лития с кислородом образуется оксид лития:
  • 4Li + О2 = 2Li2О

Получение щелочных металлов

Получить щелочные металлы в чистом виде можно только электролизом расплавов их солей:

  1. NaCl   Na+ + Cl–;
  2. катод (–) (Na+): Na+ + е = Na0,
  3. анод (–) (Cl–): Cl– – е = Cl0, 2Cl0 = Cl2;
  4. 2NaCl = 2Na + Cl2 .
  5. Если использовать раствор соли, катионы металла будут сразу вступать в реакцию с образованием щелочей:
  6. NaCl   Na+ + Cl–,
  7. H2O   Н+ + ОН–;
  8. катод (–) (Na+; Н+): H+ + е = H0, 2H0 = H2
  9. (2H2O + 2е = H2 + 2OH–),
  10. анод (+) (Cl–; OН–): Cl– – е = Cl0, 2Cl0 = Cl2;
  11. 2NaCl + 2H2O = 2NaOH + Cl2  + H2 .

Применение соединений щелочных металлов

Основные области применения данных солей – медицина, кулинария, строительство, химическая промышленность.

Наиболее используемый щелочной металл – натрий. Он служит катализатором синтеза металлов, служит теплоносителем в атомных реакторах.

Хлорид натрия – соединение, используемое в каждом доме. Это безопасная соль, используемая в кулинарии. Так же, хлорид натрия применяется в медицине для приготовления физиологических растворов.

Литий и его щелочи служат основой изготовления щелочных батареек. Длительное время это был единственный способ создания портативных энергоносителей.

Калий и натрий используются для изготовления мыла в качестве омыляющего компонента.

Соли калия используются в сельском хозяйстве в качестве удобрения.

Калий, рубидий и натрий используются в атомной промышленности и атомной энергетике. Эти металлы служат катализаторами многих реакций.

  • Литий добавляется во многие сплавы для улучшения металлических свойств.
  • Соединения лития, рубидия и цезия используют при изготовлении цветных стекол.
  • Франций пока не имеет практического применения в связи с высокой радиоактивностью.

конспект урока по теме

Конспект урока по химии в 9 классе по теме: «Щелочные металлы – простые вещества, их физические и химические свойства»

Провела учитель химии и биологии

Изварина Н.Н.

МБОУ ООШ №3

Цели:

— обеспечить восприятие и осмысление учащимися  общих  и специфических  свойств  металлов  I группы главной подгруппы.  Дать общую характеристику щелочных металлов. Рассмотреть их атомное строение, основные физические и  химические свойства;

  • — подвести учащихся к осознанию практической значимости щелочных металлов в жизни человека;
  • — создать условия для развития умения осознанно работать с источниками информации и с химическими терминами.
  • Задачи:

— обучающая: создать условия для получения учащимися знаний о положении щелочных металлов в периодической системе химических элементов Д.И. Менделеева, физических и химических свойствах щелочных металлов, нахождении в природе и значимости металлов в жизни человека;

  1. — развивающая: способствовать развитию у учащихся логического мышления, умения анализировать и сравнивать, работать с дополнительной информацией;
  2. — воспитывающая: содействовать формированию представлений о причинно-следственных связях и отношениях, вырабатывать стремление к коллективизму, формировать мировоззренческое понятие о познаваемости природы.
  3. Ход урока:
  4. — Здравствуйте, ребята!

(слайд 1) Тема нашего урока:  «Щелочные металлы – простые вещества, их физические и химические свойства». Запишите тему урока в рабочую тетрадь (слайд 2).

  1. Проведение разминки (по изученному материалу).

Давайте проведем небольшую разминку (слайд 3). Для того,  чтобы закрепить ваши знания о металлах, я прошу ответить на вопросы, которые даны в карточках №1. На эту работу вам отводится 3-4 мин., и затем мы заслушаем ваши ответы.

Карточка №1 (разминка):

1.Из каких металлов изготавливают электрические провода?

2.Почему в технике чаще используются сплавы металлов, а не чистые металлы?

3.Какой тип химической связи характерен для металлов?

4.Перечислите физические свойства металлов?

5. Что такое пластичность?

     — Итак, давайте проверим  ваши ответы. Обменяйтесь  заполненными карточками  со своим соседом по парте, проверь работу одноклассника на правильность заполнения. Один  обучающийся зачитывает ответы, другие дополняют… Заполненные карточки сдать учителю.

3. Изучение нового материала.

— Сегодня мы познакомимся с представителями металлического мира — щелочными металлами, узнаем много интересного о них. Глубже осмыслим общие и специфические свойства металлов I группы главной подгруппы, историю названия, нахождение в природе, физические и химические свойства.

Что узнаем… (слайд № 4).

  • Положение щелочных металлов в Периодической системе химических элементов
  • Изменение свойств в группе
  • История названия
  • Нахождение в природе
  • Биология и медицина
  • Физические свойства
  • Химические свойства
  • Окраска пламени

Так кто же они:  щелочные металлы? На уроке послушайте внимательно мой рассказ, доклады своих одноклассников и выделите для себя все самое важное, необычное, связанное с ними. В ходе урока делайте записи в рабочие тетради.

Положение щелочных металлов в Периодической системе химических элементов.

Фронтальная беседа (слайд 5):

1. Как называются элементы 1 группы главной подгруппы. Перечислите их.    (Щелочные металлы; Li; Na; K; Rb; Cs; Fr)  

Fr — радиоактивный металл, наиболее долгоживущий изотоп его имеет период полураспада 22 минуты.

2.Составьте электронные и графические формулы щелочных металлов?  Li; Na; K;

3.Чем отличаются и что общего в строении этих элементов?

(Разный атомный радиус; одинаковое число валентных электронов на последнем слое).

4. Какую степень окисления будут иметь щелочные металлы? (+1;1е на последнем слое).

5. Какими свойствами обладают все металлы (восстановители).

Вывод: Атомы всех щелочных металлов имеют на внешнем электронном уровне по 1s электрону, которые относительно легко отрываются; максимальная степень окисления +1, проявляют восстановительные свойства.

https://www.youtube.com/watch?v=eu1Uny6gAs0\u0026t=48s

Изменение свойств в группе (слайд 6)

Вернемся к электронным и графическим формулам и рассмотрим изменение свойств в группе: восстановительные свойства щелочных металлов усиливаются при переходе от лития к цезию, что связано с увеличением радиусов их атомов, усилением восстановительных свойств.  Уменьшается прочность химической связи металл – металл.   Уменьшается температура плавления, температура кипения. У щелочных металлов металлические свойства выражены особенно ярко. Самый сильный восстановитель в ПСХЭ – франций.

Читайте также:  Атомы металлов отдают или принимают электроны чем отдают

Подведем итог:        

1)Радиус атома увеличивается в группе от лития к францию. 2)Увеличиваются восстановительные свойства (способность отдавать электроны).

  • 3)Уменьшается прочность химической связи металл – металл.
  • История названия (слайд 7)
  • Карл Линней писал
  • «Если не знать имен —
  • умрет и познание вещей»

               Ребята получили поисковые задания. Я хочу предоставить слово учащимся и  послушать информацию  о том, как были открыты щелочные металлы  и  о происхождении названий щелочных металлов (сообщение учащихся). (Слайд № 8)

Литий был открыт шведским химиком Й. Арведсоном в 1817 г.,  по предложению Й. Берцелиуса назван литием (от греч. «литос» – камень)

Металлический Na и К были впервые получены в 1807 году английским химиком и физиком Г.Дэви электролизом твердых щелочей.

Как только Дэви начал электролиз расплава NаОН на отрицательном электроде, опущенном в расплав, появились маленькие шарики с сильным металлическим блеском, похожие на ртуть.

 Некоторые из них сгорали с взрывом и ярким пламенем, другие не сгорали, а только тускнели, покрываясь белой пленкой. На основании эксперимента Дэви сделал вывод, что полученное вещество-металл. За короткий срок ученый досконально исследовал свойства К и Na.

Й. Берцелиус предложил назвать один новый элемент натрием (от араб. «натрун» – сода), а второй элемент,  по предложению Гильберта, назван калием (от араб. алкали – щелочь)

  1. Происхождение названий щелочных металлов (Слайд № 9)
  2. Li (1817) лат. » литос» — камень
  3. Na (1807) араб. «натрум» -сода
  4. К (1807) араб. «алкали» — щелочь
  5. Rb (1861) лат. «рубидус» — темно-красный
  6. Cs (1860) лат. «цезиус» — небесно-голубой
  7. Fr (1939) от названия страны Франция.
  8. Нахождение в природе (слайд 10) коллекция минералов

Щелочные металлы — очень активны. Могут ли они встречаться в природе в свободном виде? (Нет). На партах у вас коллекция минералов, во время сообщения учащейся рассмотрите ее.

  • Сообщение учащихся: В природе щелочные металлы встречаются только в виде соединений, что обусловлено их чрезвычайно высокой химической активностью. Наиболее распространенными являются натрий и калий, важнейшие природные соединения, которых:
  •  Na CL – галит (каменная, или поваренная соль)
  • NaNO₃ — натриевая селитра (чилийская селитра)
  • Na₂SO₄•10 H₂O —  глауберова соль (мирабилит)
  • Na CL• КCL – сильвинит
  • КNO₃ — калиевая селитра

Соединения других щелочных металлов встречаются редко.  Лепидолит- один из основных источников редких щелочных металлов, рубидия и цезия.

  1. Биология и медицина (Слайд 11) 
  2. Сообщение учащегося о биологической роли щелочных металлов.
  3.  Натрий и калий – их биологическая роль и применение  соединений  натрия и калия в медицине.

Натрий и калий являются биогенными элементами, т.е. элементами, играющими важную роль в живых организмах, в частности, в организме человека.

Na+ – главный внеклеточный катион, участвует в создании мембранных потенциалов клеток, входит в состав плазмы крови. Общая масса  его в организме — 100 г.

K+ – главный внутриклеточный катион, участвует в создании мембранных потенциалов клеток, участвует в поддержании сердечного ритма, регулирует водный режим. Общая масса в организме — 250 г.

  • Сообщение учащегося о применении соединений натрия и калия в медицине.
  • В медицине  находят широкое применение следующие соединения натрия и калия:
  • А) 0,9%-ный раствор NaCL является физиологическим раствором, используется для инъекций;
  • Б) пищевая сода NaНСO₃ применяется как средство для понижения кислотности желудочного сока;
  • В) глауберова соль Na₂SO₄ — известное слабительное средство.;
  • Г) раствор перманганата калия КМnО₄ имеет способность убивать болезнетворные организмы, обладает антисептическими свойствами. Используют для полоскания слизистых оболочек горла, промывания желудка при пищевых отравлениях;
  • Д) соли калия входят в состав лекарственных препаратов, нормализующих сердечную деятельность.

(Слайд 12)  Щелочные металлы — очень активные металлы. Предлагаю и вам побыть физически активными и провести физическую минутку (1 минута).

Физические свойства (слайд 13)

Щелочные металлы представляют собой вещества серебристо-белого цвета, которые быстро тускнеют на воздухе вследствие окисления (демонстрация образцов ЩМ).

 Для предотвращения контакта с воздухом и влагой во избежание взрывов  и пожаров щелочные металлы хранят под слоем керосина в герметически закрытых сосудах, а литий в вазелине. Значит, эти вещества взрывоопасны. ЩМ  хорошо проводят электрический ток, пластичны..

Все щелочные металлы кроме лития очень мягкие, легко режутся ножом  (с демонстрацией): рис. 20 учебника стр. 53. Плотность металлов увеличивается с 0,53 г/см³ у лития  до 2,44г/см³ у цезия(рис. 21 учебника).

Плотность Li; Na; K  меньше 1 г/см³, поэтому при внесении в воду они плавают на ее поверхности. Щелочные металлы легкоплавки: температура плавления понижается в подгруппе от 180 ⁰ С у лития до 28 ⁰ С у цезия.

Вывод:  ЩМ серебристо-белого цвета, очень мягкие (кроме лития), режутся ножом, плотность металлов в группе увеличивается, а температура плавления понижается. ЩМ — взрывоопасные вещества.

https://www.youtube.com/watch?v=eu1Uny6gAs0\u0026t=69s

Химические свойства

Щелочные металлы очень активны, ими начинается электрохимический ряд напряжения металлов. Заполните карточки №2 (взаимодействие щелочных металлов с неметаллами) в течение 3-4 минут, расставьте  степени окисления веществ, напишите название полученных веществ.

Давайте проверим уравнения реакций (слайд 14). После проверки сдайте работы учителю.

  1. Карточка №2
  2. Взаимодействие ЩМ с неметаллами:
  3. А)2Ме0 + Н20 = 2Ме+1Н-1 (гидрид)
  4. 2Na + H2 = 2NaH
  5. Б)2Ме0 + Cl20 = 2Mе+1Cl-1 (хлорид)
  6. В)2Ме0 + S0 = Mе+12S (сульфид)
  7. Г) С кислородом натрий образует пероксиды:
  8.       2Ме0 + О20 = Ме+12О2-1 пероксид
  9.       2Na + O2 = Na2O2      Только литий образует оксид 4Li + 0₂ = 2 Li₂0
  10. Учитель записывает на доске уравнения реакций (Слайд 15).
  11. Пероксиды – это такие вещества, в которых осуществляется связь между двумя атомами кислорода: Na-O-O- Na
  12. 2Na + O2 = Na2O2      пероксид 
  13. Na2O2 +2Na = 2Na2O     оксид  (слайд 16). 

2.ЩМ  энергично реагирует с водой.

Литий реагирует с водой спокойно без пламени, все последующие за ним элементы-аналоги реагируют с водой с воспламенением и взрывом, который усиливается от Na к Cs. Давайте посмотрим видео – фрагмент взаимодействия  натрия с водой.

Просмотр видеофрагмента(слайд 17). 

— Что наблюдаете? Ответ: Раствор окрасился в малиновый цвет.  

— Что же там образовалось? (Щелочь).

— Почему же металлы 1 группы главной подгруппы называются щелочными?

Ответ: Т.к. при взаимодействии с водой образуются щелочи.

  • 2Na + 2Н₂0 = 2NaOH+ Н₂
  • 2Li + 2Н₂0 = 2 Li ОН + Н₂
  • Окраска пламени (слайд 18)
  • Характерной для щелочных металлов является окраска, придаваемая каждым из них бесцветному пламени:  Li⁺ -малиновый
  •                                                                 Na⁺ — желтый
  •         K⁺-фиолетовый                                                                                                                                                                                                                        Cs⁺- фиолетово-синий
  • Для распознавания соединений щелочных металлов по окраске пламени исследуемое вещество вносится в пламя горелки на кончике железной проволоки.

Подведение итога. Ребята, что нового вы узнали на уроке о щелочных металлах.

Итог урока: Атомы всех щелочных металлов имеют на внешнем электронном уровне по 1s электрону, которые относительно легко отрываются; максимальная степень окисления +1, проявляют восстановительные свойства.  

Радиус атома увеличивается в группе от лития к францию. Увеличиваются восстановительные свойства (способность отдавать электроны).

В природе щелочные металлы встречаются только в виде соединений, что обусловлено их чрезвычайно высокой химической активностью. Наиболее распространенными являются натрий и калий.

 ЩМ серебристо-белого цвета, очень мягкие (кроме лития), режутся ножом, плотность металлов в группе увеличивается, а температура плавления понижается. ЩМ — взрывоопасные вещества.

  1. ЩМ вступают в химические реакции  с неметаллами, с кислородом образуют пероксиды (кроме лития), также ЩМ реагируют с водой и кислотами.
  2. Закрепление.
  3. Давайте закрепим полученные знания. Отгадайте загадки, о каких щелочных металлах идет речь: 
  4. 1. Хранят обычно в керосине, и бегает он по воде,
  5.  В природе, помните, отныне,
  6.  Свободным нет его нигде,
  7.  В солях открыть его возможно
  8.  Желтеет пламя от него
  9.  И получить из соли можно
  10.  Как Дэви получил его.
  11.  О каком элементе идет речь? (Na)
  12.                              2. Он энергично вытесняет
  13. Из влаги — чистый водород,
  14.                          Его при этом заменяет
  15.                          И вяжет прочно кислород.
  16.                          Тот элемент в растеньях скрыт
  17.                          По фиолетовому цвету
  18.                          Он может быть в солях открыт.

          О каком элементе идет речь? (К).

(слайд №19) Для того, чтобы закрепить ваши знания о щелочных металлах, я прошу ответить на вопросы, которые даны в карточках №3, на эту работу вам отводится 3-4 мин.

Выполните по вариантам цепочку превращений, подпишите названия полученных веществ, укажите степени окисления у всех веществ. Каждый получит оценку за письменные работы по карточкам с учетом устных ответов.

Карточка №3         вариант 1

С помощью уравнений реакций осуществите превращения. Укажите названия полученных веществ, укажите  степени окисления  всех веществ и тип химической реакции.

задание ответ
Na → Na2O2 → Na2O
Ссылка на основную публикацию
Adblock
detector