Металлы восстанавливают образуя бинарные соединения

  • Особенности строения атомов амфотерных металлов;
  • Физические и химические свойства;
  • И нашим, и вашим: обсудим амфотерность цинка и алюминия. 

Кто-то любит соленое, кто-то любит сладкое, а кто-то — и то, и другое. То же самое происходит и с амфотерными металлами. 

Характеристика амфотерных металлов

Под амфотерностью понимают способность соединений проявлять одновременно и кислотные, и основные свойства в зависимости от условий и природы реагентов, участвующих в реакции.

Список амфотерных металлов включает в себя множество наименований. Из них мы рассмотрим цинк и алюминий.

Металлы восстанавливают образуя бинарные соединения

Характеристики элементов-металлов

Алюминий — элемент IIIA группы третьего периода. Его электронная конфигурация [Ne]3s23p1

В возбужденном состоянии электронная пара на 3s-орбитали распаривается. В результате образуются три неспаренных электрона, которые способны образовывать химические связи. Поэтому у алюминия постоянная степень окисления +3.

Цинк — расположен во IIВ группе в четвертом периоде. Цинк относится к d-элементам, при этом атом цинка имеет полностью заполненные 3d– и 4s– электронные подуровни. 

Его электронная конфигурация в основном состоянии [Ar]3d104s2. В соединениях цинк проявляет постоянную степень окисления +2

Металлы восстанавливают образуя бинарные соединения

Физические свойства

Металлы восстанавливают образуя бинарные соединения

Алюминий — лёгкий серебристо-белый металл, покрывающийся на воздухе оксидной плёнкой из-за взаимодействия с кислородом (на фото расположен слева). Из алюминия часто делают тысячи вещей, которые окружают нас в быту: от фольги на баночке йогурта до стильного корпуса смартфона.

Цинк — голубовато-белый металл (на фото расположен справа). 

Способы получения

Металлы восстанавливают образуя бинарные соединения

Химические свойства

По химическим свойствам они являются типичными восстановителями, а значит, способны реагировать с окислителями. Как и другие металлы, они будут взаимодействовать со своими противоположностями — неметаллами. Также они будут вступать в реакции вытеснения с водой, кислотами-неокислителями, щелочами и солями менее активных металлов. 

Как типичные металлы, алюминий и цинк способны вступать в реакции с неметаллами и образовывать различные бинарные соединения.  

Металлы восстанавливают образуя бинарные соединения

Ввиду низких значений электроотрицательности алюминий и цинк, как и другие металлы, являются отличными восстановителями. Настолько сильными, что они даже способны восстанавливать некоторые металлы и неметаллы из их оксидов. Этот процесс называется металлотермией

Активные металлы (стоящие до алюминия в ряду активности) не получают путём восстановления из оксидов. 

Алюминий является очень активным металлом, который, помимо этого, ещё и является одним из наиболее распространённых в земной коре. 

Его очень часто используют в металлургии для получения других металлов из их оксидов. Этот процесс называется алюмотермией

Так как алюминий и цинк — металлы, стоящие в ряду активности левее водорода, то они способны вытеснять водород из воды. 

Металлы восстанавливают образуя бинарные соединения Металлы восстанавливают образуя бинарные соединения

Алюминий, подобно другим активным металлам, при взаимодействии с водой образует гидроксид и водород

Цинк является уже менее активным металлом, поэтому нуждается в создании более жёстких условий для реакции с водой. Он взаимодействует только с перегретым водяным паром и в таких жёстких условиях вытесняет из воды ОБА атома водорода, превращаясь в оксид

Алюминий и цинк также способны вытеснять водород не только из воды, но и из кислот-неокислителей

Металлы восстанавливают образуя бинарные соединения

С кислотами-окислителями протекают более сложные ОВР, при этом помним, что в холодных концентрированных растворах кислот-окислителей алюминий пассивируется из-за наличия оксидной плёнки на его поверхности. 

Амфотерные металлы реагируют со щелочами, причем продукты зависят от определенных условий: 

Как и другие металлы, алюминий и цинк способны вытеснять менее активные металлы из их солей. 

Оксиды алюминия и цинка

Оксиды алюминия и цинка по физическим свойствам представляют собой бесцветные порошки, нерастворимые в воде. 

По химическим свойствам это типичные амфотерные оксиды, которые способны вступать в основно-кислотные взаимодействия как с основным, так и с кислотным. Как и другие оксиды, они могут вступать в ОВР с сильными восстановителями с восстановлением из них металла.

Оксидам алюминия и цинка соответствуют нерастворимые гидроксиды Al(OH)3 и Zn(OH)2, поэтому и сами оксиды с водой не взаимодействуют.

  1. Амфотерные свойства оксидов

Как типичные амфотерные оксиды, оксиды алюминия и цинка будут реагировать как с веществами, проявляющими основные свойства (основаниями, основными оксидами), так и с веществами, проявляющими кислотные свойства (кислотами, кислотными оксидами):  

  1. ОВР с сильными восстановителями

Как и другие оксиды, оксид цинка может вступать в ОВР с сильными восстановителями (C, CO, H2, Al, Mg, Ca и т. д.) с восстановлением из них металла. 

Гидроксиды алюминия и цинка

По физическим свойствам гидроксиды алюминия и цинка представляют собой белые порошкообразные вещества, нерастворимые в воде. Все их химические свойства обусловлены тем, что они являются амфотерными гидроксидами: они способны вступать в реакции как с основным, так и с кислотным. 

Помимо этого, как и для других нерастворимых гидроксидов, для гидроксидов алюминия и цинка характерны реакции термического разложения.

  1. Гидроксиды алюминия и цинка как амфотерные гидроксиды
  1. Термическое разложение гидроксидов 

Подобно другим нерастворимым гидроксидам, нерастворимые Al(OH)3 и Zn(OH)2 способны разлагаться при нагревании на соответствующий оксид и воду.

Важнейшие химические свойства солей

  1. Реакции с растворами щелочей

Соли алюминия и цинка реагируют с растворами щелочей.

  1. Разрушение комплексных солей и их аналогов кислотами 

Если сильная кислота находится в недостатке, её хватает только для самого сильного металла (щелочного или щелочно-земельного). В результате образуется соль и амфотерный гидроксид, возможно также образование воды. 

Если сильная кислота находится в избытке, её хватает на оба металла: образуются две соли и вода. 

Со слабыми кислотами (угольной CO2(р-р), сернистой SO2(р-р), сероводородной H2S) ситуация немного сложнее:

  • Если слабая кислота находится в недостатке, её также хватает только для самого сильного металла (щелочного или щелочно-земельного). 

— Если слабая кислота находится в избытке, в продуктах образуется кислая соль (из-за избытка кислотного) и амфотерный гидроксид.Со слабой кислотой он не взаимодействует, так как сам слабый. 

При нагревании комплексной соли будет происходить выпаривание из неё воды. В анионе там, где нет воды (например, в расплаве), образуются средние соли с амфотерными металлами. 

Самые “страшные” реакции с участием комплексных солей — их реакции с солями. Чтобы их написать, можно для себя представить комплексную соль как совокупность щёлочи и амфотерного гидроксида. 

Фактчек

  • Алюминий и цинк относятся к амфотерным металлам, то есть таким, которые могут реагировать и с кислотами, и со щелочами в зависимости от природы реагирующих веществ.
  • Алюминий относится к p-элементам, его постоянная степень окисления +3; цинк относится к d-элементам, его постоянная степень окисления +2.
  • Алюминий и цинк реагируют с рядом веществ: неметаллами, водой, кислотами, щелочами, солями.
  • Оксиды и гидроксиды алюминия и цинка также обладают амфотерными свойствами ,что определяет их химическое поведение в различных реакциях.
  • Алюминий и цинк способны образовывать особый тип солей, называемый комплексными

Проверь себя 

Задание 1.Какими свойствами обладают алюминий, цинк и их оксиды и гидроксиды? 

  1. Основными свойствами;
  2. Кислотными свойствами;
  3. Амфотерными свойствами;
  4. Нейтральными свойствами.

Задание 2.Цинк реагирует с водой с образованием: 

  1. Оксида цинка и водорода;
  2. Гидроксид цинка и водорода; 
  3. Цинката и водорода;
  4. Гидрида цинка и кислорода.

Задание 3.Что можно наблюдать при приливании раствора гидроксида натрия к раствору хлорида алюминия? 

  1. Выделение газа; 
  2. Выпадение осадка; 
  3. Видимых изменений не наблюдается;
  4. Выпадение осадка, а затем его растворение. 

Задание 4.Что образуется в реакции оксида цинка и сернистого газа? 

  1. Сульфат цинка;
  2. Сульфит цинка;
  3. Сульфид цинка и кислород;
  4. Реакция не идет.

Задание 5.Какая соль образуется при взаимодействии тетрагидроксоалюмината натрия и избытка сероводорода? 

  1. Средняя соль;
  2. Комплексная соль; 
  3. Кислая соль; 
  4. Основная соль.

ОТВЕТЫ: 1. — 3; 2. — 1; 3. — 4; 4. — 4; 5. — 3

Гидриды — свойства, формулы и применение водородных соединений

Время на чтение: 21 минута Металлы восстанавливают образуя бинарные соединения

Типы и классификация

Вещества, созданные водородом с металлами и неметаллами многобразны. В зависимости от характера полученного соединения, выделяют:

Металлы восстанавливают образуя бинарные соединения

  • Простые гидриды — бинарные, в них только 2 элемента, они встречаются чаще всего.
  • Со многими переходными металлами (элементы р-подгруппы) водород образует ко́мплексные соединения. Ко́мплексные гидриды металлов (к примеру, боро- или алюмогидриды) вместо атома водорода, имеют алюмогруппу (AlH4) или борогруппу (BH4). Из них натрийборогидрид Na (BH4) и литийалюмогидрид Li (AlH4), будучи сильными восстановителями, нашли применение в лабораторной практике. Кроме этого, Na (BH4) используют для отбеливания бумаги.
  • И также есть гидриды интерметаллидов (пример: TiAl или Ti3Al, алюминид титана), в кристаллических решётках которых водород просто растворяется, аккумулируется.
Читайте также:  Влияние углерода на свойства сплавов черных металлов

У разных химических элементов строение атомов и молекул отличается. Соответственно, связи в образованных гидридах тоже неодинаковы. Классификация по виду связи определяет полученные вещества, как:

  • металлоподобные;
  • ионные (солеобразные);
  • ковалентные.

Бинарные соединения самые распространённые, есть у всех элементов. Исключения здесь металлы платиновой группы (платиноиды), Au, Ag, Hg, Ti, Cd, In, а также благородные газы. Между этими веществами нет чётко выраженных границ, деление по характеру связи для них немного условно.

К металлическим принадлежат соединения водорода с переходными металлами и редкоземельными элементами. Это, скорее, раствор неметалла в металле, с внедрением атомов в кристаллическую решётку. Характерно для них следующее:

Металлы восстанавливают образуя бинарные соединения

  • В основном такие гидриды являются бертоллидами, состав их зависит от способа получения, непостоянен, законам постоянных и кратных отношений не подчиняется.
  • В формулах для них указывают предельное содержание водорода.
  • В отличие от прочих, они сохраняют исходную металлическую решётку.
  • Их вид и физические свойства соответствуют металлам, с которыми они образованы.
  • Имеют характе́рный металлический блеск, взаимодействуют с H2O (в жидком или газообразном состоянии), кислородом, при нормальных условиях, но медленно.
  • Как и металлы, обладают значительной теплопроводностью и проводимостью.
  • При нагревании распадаются на водород и исходный металл.

Образуются в процессе адсорбции водорода на металлической поверхности, диссоциации H2 и диффузного проникновения атомов в металлическую решётку. Поглощение обратимо, но химические связи весьма крепкие.

Металлы восстанавливают образуя бинарные соединения

От металлоподобных, через гидриды меди (CuH, водородистая медь), цинка, ZnH2, водородистый цинк и им подобных, осуществляется переход к полимерам.

Это химические вещества со сложной структурой, в которой присутствуют цепи и полиэдры. Твёрдые, устойчивые, с кристаллическим строением (полимерные гидриды лёгких металлов стабильнее всего), данные соединения распадаются при нагреве на составляющие элементы.

От них, через гидриды бора и галлия — к водородным соединениям с неметаллами. В них водород имеет степень окисления +1.

Соединения с ионным типом связи

Их образует водород с металлами 1А и 2А групп, кроме Mg, а также с Al. Они отчасти показывают свойства соответствующих галогенидов, откуда и появилось второе наименование — солеобразные.

Это химические соединения, такие как гидрид натрия (NaH), кальция (CaH2), лития, с формулой LiH, другие. Для них характерно:

Металлы восстанавливают образуя бинарные соединения

  • Получают при высокой температуре и под давлением.
  • В этих соединениях, проявляющих, как правило, щелочные свойства, у водорода степень окисления -1. С металлами 1А и 2А групп, такими, как Na, Li, Be, K, Rb, Sr он выступает окислителем, подобно галогенам. Например, гидрид натрия, с химической формулой NaH — в этом соединении ион водорода имеет отрицательный заряд.
  • Это кристаллические вещества белого цвета, с ионной решёткой, структура подобна строению соответствующего галогенида.
  • При нормальных условиях устойчивы.
  • Распад на металл и водород при нагреве, минуя этап плавления (исключением является LiH, его температура плавления 688 градусов Цельсия).
  • В расплаве — хорошие проводники, при этом на аноде будет выделяться H2.
  • Вспыхивают при растирании на воздухе.
  • Все являются сильными восстановителями. Применяются для получения чистых металлов из солей и оксидов, для удаления окалины, коррозии.
  • Реагируют с оксидом углерода, формируют соли муравьиной кислоты (формиаты).
  • Как и соли, могут участвовать в обменных реакциях, гидролизе.

Солеобразными бывают не только бинарные (простые) соединения водорода. Дигидриды, образуемые добавлением групп бора (BH4) или алюминия (AlH4) к металлу, также имеют ионный тип связи.

Окислительная активность водорода небольшая по сравнению с галогенами. Дополнительный электрон он отдаёт с трудом, при нагреве (реакция проходит с поглощением тепла). Это и обусловливает различие между свойствами ионных гидридов и галогенидов.

Металлы восстанавливают образуя бинарные соединения

По химической природе такие соединения ведут себя как основные. Ионные гидриды обладают высокой химической активностью. Они бурно реагируют с кислородом и H2O в парообразном состоянии.

Но выраженный ионный характер — свойство, проявляемое соединениями кальция, натрия, щелочных и щёлочноземельных элементов. На них проще всего и нагляднее можно показать химию взаимодействий этих веществ:

Металлы восстанавливают образуя бинарные соединения

  • С водой: 2NaH + H2O = 2NaOH + H2O.
  • С кислородом: NaH + O2 = NaO + H2O.
  • Реакция разложения: CaH2 = Ca + H2.
  • С оксидами углерода: NaH + CO2 = NaCOOH.
  • Кремния: 4NaH + 3SiO2 = 2Na2SiO3 + Si + 2H2.
  • Металлов: 4NaH + Fe3O4 = 4NaOH + 3Fe.
  • Восстановление: 2NaH + 2SO2 = Na2SO4 + H2S.
  • С аммиаком: NaH + NH3 = NaNH2 + H2.
  • С кислотами: 2NaH + H2SO4 = Na2SO4 + 2H2.
  • Со спиртами: KH + HO-R = KOR + H2.

По свойствам и природе связи промежуточное положение между ионными и ковалентными занимает гидрид магния, с формулой MgH2.

Соли и оксиды калия, кальция, меди и других щелочных и щёлочноземельных металлов образуют с гидридом кислорода (водой) ещё один вид соединений — дигидраты. Это соли серной кислоты (сульфаты), галогениды, оксиды плюс 2 присоединённых молекулы H2O. Формула алебастра — Ca5O4 плюс 2H2O, гипс — CaSO4 плюс 2H2O, в природе они не редкость.

Гидросульфид натрия, NaHS, образует не только дигидрат, NaHS плюс 2H2O, но и тригидрат, с присоединением 3H2O.

Когда связь ковалентна

Это соединения, в которых степень окисления водорода +1, как правило, газы, летучие жидкости. Их водород даёт с неметаллами, а также с германием, алюминием, бериллием, оловом, мышьяком, сурьмой — элементами 4, 5, 6 и 7 групп периодической системы. И также ковалентную связь имеют соединения водорода и бора.

Это могут быть вещества простые, бинарные, такие как метан (CH4), силан (формула SiH4). Сложные тоже имеются, с длинными цепями, многоатомные молекулы — они образуются водородом с кремнием, бором, германием.

Многие из них неустойчивы, так гидрид олова (SnH4) распадается уже при комнатной температуре, а гидрид свинца недолго существует и при отрицательных температурах. Самый простой гидрид бора не существует в природных условиях вообще.

Отличительные свойства:

Металлы восстанавливают образуя бинарные соединения

  • Все сильные восстановители, степень окисления водорода +1.
  • Проявляют кислотные, а также амфотерные свойства.
  • Агрегатное состояние — газ или летучая жидкость, исключения тут гидрид кислорода (вода), азота, фтороводород (плавиковая кислота), те, в которых молекулы полярны и возникает водородная связь. Последние существуют, как нелетучая жидкость или в твёрдом состоянии.
  • Электронодефицитные виды, получаемые с элементами главной подгруппы 3 группы, например, гидрид алюминия AlH3 или бериллия, химическая формула BeH2, очень активны и образуют многоатомные, длинные полимерные цепи, с больши́м весом. Такие полимеры — твёрдые вещества.
  • При нагреве легко и практически необратимо, разлагаются на элемент и водород H2. Требуется температура от 100 до 300 градусов по Цельсию (для гидрида серы H2S — порядка 400 градусов).
  • Чаще всего они имеют высокую токсичность.
  • Характерна высокая химическая активность, реакционная способность.
  • Получить можно непосредственным взаимодействием элементов, разложением металлических соединений водой, кислотой, восстановлением галогенидов гидридами бора, алюминия, щелочных металлов.
  • Высшие гидриды германия, кремния, с общей химической формулой EnH2n+2 — это полимеры, их стабильность тем ниже, чем больше атомный вес и количество атомов элемента.
  • Принадлежащие к s-подгруппе хорошо растворяются в воде и проявляют кислотные свойства. Прочие — в незначительной мере, свойства у них основные. Все хорошо растворимы в неполярных органических растворителях.
  • При взаимодействии с водой (H2O), выделяется чистый водород (H2) и оксид, с общей химической формулой EO2.

Тяжёлые элементы дают соединения с небольшой устойчивостью.

За счёт водородных связей и способности к донорно-акцепторному взаимодействию, вода (H2O), плавиковая кислота (HF), аммиака (NH3), а частично HCl и H2S, хорошие растворители.

Химические вещества, образованные двумя или более металлов, такие как FeTi, Ca2Ru, Mg2Ni — это интерметаллические соединения. Они хорошо поглощают водород и соединяясь с ним дают гидриды-интерметаллиды.

Содержат атомы железа, магния, меди, кальция, титана, алюминия, редкоземельные элементы. Их легко получить даже с H2 нехимическим (для технических нужд, до 2% примесей). Применяют для хранения водорода и аккумуляторных батарей.

У гидридов много областей применения. Особенно широко используют NaH. С его помощью удаляют термическую окалину с металлов, производят добавки, повышающие октановое число бензина, катализаторы полимеризации. Он необходим при производстве красителей, моющих средств, в качестве мощного восстановителя применяется в металлургии.

В органической химии комплексные водородные соединения применяют уже более 50 лет, для получения особо чистых химических элементов. В химии алкалоидов также широко используют комплексные гидриды металлов. Без них не обходится производство металлокерамики, дегазаторов, многих фармакологических средств.

Азот с водородом образует аммиак, кислород — воду, сера даёт сероводород, в природе постоянно идёт синтез подобных веществ. С миром химии человек пересекается постоянно. Поэтому знания о наиболее распространёных веществах принесут пользу каждому.

Читайте также:  Котировка меди на лондонской бирже металлов на сегодня на бирже

§ 44. Общие химические свойства металлов

Общие химические свойства металлов

По химическим свойствам металлы являются восстановителями, так как легко отдают свои электроны атомам неметаллов, превращаясь в положительно заряженные ионы — катионы.

Способность атомов металлов отдавать, а их катионов — присоединять электроны может служить мерой их химической активности.

Так, алюминий на воздухе очень быстро покрывается оксидной плёнкой, а с золотом заметных изменений не происходит. Цинк активно взаимодействует с соляной кислотой, а серебро — нет.

Поэтому алюминий и цинк можно отнести к активным металлам, а золото и серебро — к неактивным.

Ряд активности металлов

Химическую активность разных металлов легко сопоставить, анализируя их поведение в водных растворах солей и кислот.

Например, если в раствор сульфата меди(II) опустить цинковую пластинку или железный гвоздь, то практически сразу же на их поверхности появляется красноватый налёт меди.

Это свидетельствует о том, что цинк и железо вытесняют медь из раствора. Эти процессы можно представить следующими уравнениями: 

  • Zn + CuSО4 = ZnSО4 + Сu↓,
  • Zn0 + Сu2+ = Zn2+ + Cu0;
  • Fe + CuSО4 = FeSО4 + Сu↓,
  • Fe0 + Cu2+ = Fe2+ + Сu0.

В этих реакциях цинк и железо отдают свои электроны ионам меди, то есть они окисляются. Ионы меди принимают электроны, поэтому медь восстанавливается.

Если поступить наоборот и в раствор сульфата цинка поместить медную пластинку, то на ней не произойдёт осаждения цинка. В чём тут причина?

Экспериментальным путём, изучая способность одних металлов вытеснять другие из водных растворов их солей, русский учёный Н. Н. Бекетов расположил металлы в ряд. В нём металлы, находящиеся левее, способны восстанавливать последующие из растворов их солей. Поскольку эта способность металлов связана с их восстановительной активностью, то этот ряд получил название ряда активности металлов.

Ряд активности металлов

Li K Ba Sr Cа Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H2) Cu Hg Ag Pd Pt Au

Чем левее в этом ряду расположен металл, тем большими восстановительными свойствами в водном растворе он обладает, то есть легче отдаёт свои электроны окислителю и переходит в виде катиона в раствор; тем труднее катион этого металла восстанавливается. Цинк и железо легче отдают свои электроны, чем медь, и поэтому восстанавливают Cu2+ из раствора.

  1. По положению цинка в ряду активности можно прогнозировать, что этот металл способен восстановить из раствора ионы олова, меди и серебра:
  2. Zn0 + Sn2+ = Zn2+ + Sn0;
  3. Zn0 + Сu2+ = Zn2+ + Cu0;
  4. Zn0 + 2Ag+ = Zn2+ + 2Ag0.
  5. В то же время медь будет восстанавливать только ионы серебра, но не восстановит ионы олова:
  6. Cu0 + 2Ag+ = Cu2+ + 2Ag0.

Это означает, что цинк обладает большей восстановительной способностью. Он легче отдаёт электроны, чем олово, медь и серебро. Поэтому цинк считается более активным металлом, чем эти металлы. В свою очередь, медь — более активный металл, чем серебро.

Ряд активности металлов позволяет не только прогнозировать поведение металлов в реакциях с растворами солей, но и сравнивать их отношение к воде, растворам кислот, а также к неметаллам и ряду других веществ.

Так, слева от водорода расположены металлы, которые вытесняют водород из воды и кислот (то есть восстанавливают ионы водорода Н+). Металлы, расположенные справа от водорода, такой восстановительной активности в реакциях с растворами кислот не проявляют. Например, цинк реагирует с соляной кислотой, вытесняя водород:

  • Zn + 2НСl = ZnCl2 + Н2↑,
  • Zn0 + 2Н+ = Zn2+ + ,
  • а серебро водород не вытесняет.

Взаимодействие металлов с простыми и сложными веществами

К общим химическим свойствам металлов относят их реакции с неметаллами, водой, кислотами, солями. Для некоторых металлов также характерны реакции с растворами щелочей. Часть металлов вступает в реакции с органическими веществами.

Многие перечисленные взаимодействия вам известны из предыдущих глав пособия. Кроме того, вы изучали химические свойства металлов в 9-м классе. Поэтому на данном этапе обучения мы систематизируем известные вам свойства, составив таблицу 31.

Таблица 31. Общие химические свойства металлов

Реагенты и уравнения реакций Особенности взаимодействия с металлами
Неметаллы Образуют бинарные соединения: оксиды, гидриды, нитриды, галогениды. Реакции протекают как при обычных условиях, так и при нагревании
Вода
 
  1. Щелочные и щёлочноземельные (Са, Sr, Ва, Ra) металлы образуют водород и щёлочь при обычных условиях.
  2. Металлы средней активности, реагируя с парами воды, образуют оксиды.
  3. Образуют нерастворимые основания: магний реагирует с кипящей водой; алюминий реагирует с водой, если с поверхности удалена плёнка оксида, например алюминий амальгамирован
  • Кислоты
Щелочные металлы реагируют с кислотами-окислителями HNO3(конц), H2SO4(конц) со взрывом. Pb пассивируется в разбавленных HCl, H2SO4. Напомним, что при взаимодействии металлов с кислотами-окислителями HNO3(конц) и H2SO4(конц) водород не выделяется, а образуются продукты восстановления азота и серы
  1. Cоли
В водных растворах металлы s-элементов, обладая сильными восстановительными свойствами, вытесняют из воды водород, а не ионы менее активных металлов из солей. Остальные металлы реагируют в соответствии с положением в ряду активности
Растворы щелочей В такие реакции вступают цинк, алюминий, бериллий 

Отметим, что с водой при нормальных условиях взаимодействуют все металлы s-элементов, кроме бериллия и магния. Магний реагирует с водой при нагревании. Алюминий взаимодействует с водой при комнатной температуре, но только после удаления с его поверхности плёнки оксида алюминия.

При этом образуются гидроксиды металлов. Остальные металлы от марганца до водорода в ряду активности взаимодействуют с парами воды при нагревании, образуя, как правило, оксиды металлов. Металлы, находящиеся в ряду напряжений после водорода, не взаимодействуют с водой ни при каких условиях.

Активные металлы (Na, K) вступают в реакции с карбоновыми кислотами, спиртами, фенолами.

Положение металла в ряду активности металлов позволяет прогнозировать его поведение в окислительно-восстановительных реакциях, протекающих в водных растворах.

Атомы металлов во всех химических превращениях являются восстановителями.

Металлы в химических превращениях являются восстановителями и легко отдают свои электроны, превращаясь в положительно заряженные ионы — катионы.

Активность металлов в окислительно-восстановительных реакциях, протекающих в водных растворах, определяется по их положению в ряду активности: чем левее в этом ряду расположен металл, тем большими восстановительными свойствами он обладает и тем труднее катионы этого металла восстанавливаются.

Более активные металлы восстанавливают менее активные металлы из растворов их солей. Металлы, стоящие в ряду напряжений левее водорода, вытесняют его из разбавленных кислот (кроме азотной). Металлы s-элементов, за исключением бериллия и магния, вытесняют водород из воды при обычной температуре.

  1. Назовите характерные для металлов физические свойства.
  2. Перечислите p-элементы, которые относятся к элементам-металлам.
  3. Расставьте коэффициенты в уравнении реакции методом электронного баланса: Cu + HNO3(разб) → Cu(NO3)2 + NO↑ + H2O.
  4. Составьте уравнения возможных химических реакций с учётом, что медь окисляется до степени окисления +2:
    •          а) Ag + НСl →;                          б) Сu + Hg(NО3)2 → ;
    •           в) Mg + H2SО4(pазб) →;             г) Ni + NaCl → ;
    •          д) Zn + АgNО3 → ;                            е) Au + H2O → .
  5. Составьте уравнения реакций взаимодействия цинка с неметаллами (O2, P), кислотами (разбавленными HCl, H2SO4), с растворами щелочей (NaOH, KOH), с солями (AgNO3, Pb(NO3)2).
  6. Цинк массой 1,3 г растворили в концентрированном растворе гидроксида натрия. Рассчитайте объём выделившегося газа.
  7. Составьте уравнения реакций, которые могут протекать на поверхности активного металла, например лития, на воздухе.
  8. Укажите, как изменится масса цинковой пластинки (увеличится, уменьшится, не изменится) при погружении её на небольшое время в раствор: 1) серной кислоты; 2) гидроксида натрия; 3) сульфата магния; 4) сульфата меди(II); 5) нитрата серебра(I).
  9. Определите объём водорода, который выделится при взаимодействии 260 г цинка с раствором серной кислоты объёмом 250 см3. Массовая доля H2SO4 равна 15 %, плотность — 1,1 г/см3.
  10. Железную пластинку массой 90 г погрузили в раствор медного купороса. Через некоторое время её вынули, промыли, высушили и взвесили. Масса стала равна 92,4 г. Определите массу прореагировавшего железа и массу меди, осевшей на пластинке.

*Самоконтроль

1. В порядке увеличения восстановительной активности металлы расположены в ряду:

  • а) Mg, Ca, Na;
  • б) Cu, Ag, Hg;
  • в) Cа, K, Cs;
  • г) Zn, Al, Pb.

2. Реагируют с растворами щелочей:

  • а) Zn;
  • б) Ca;
  • в) Al;
  • г) Be.

3. Реагируя с парами воды, образуют оксиды:

  • а) Li;
  • б) Ag;
  • в) Fe;
  • г) Zn.
Читайте также:  Демонтаж оцинкованной стали с трубопровода

4. Масса цинковой пластинки увеличится при погружении её в раствор:

  • а) Hg(NO3)2;
  • б) Cu(NO3)2;
  • в) AgNO3;
  • г) HNO3.

5. На растворение 13 г цинка требуется раствор, содержащий гидроксид натрия массой (г):

  • а) 40;
  • б) 20;
  • в) 16;
  • г) 4.

Соединения металлов IА группы

  • — Бинарные соединения с кислородом;
  • — Гидроксиды щелочных металлов;
  • — Важнейшие соли натрия и калия.

Твердые вещества, х.р. в воде (за исключением Li2O, который растворяется медленно). Оксиды Li20 и Na20 бесцветны, К2O -желтовато-белый, Rb2O — светло-желтый, Cs2O — оранжевый.

  1. Наиболее устойчивый оксид Li2O образуется при горении Li на воздухе. Для получения других оксидов проводят медленное окисление металлов в условиях недостатка O2 или осуществляют восстановление пероксидов одноименными металлами:
  2. 4Na + O2= 2Na2O
  3. Na2O2 + 2Na → 2Na2O
  4. Являются типичными основными оксидами -взаимодействуют с Н2O, кислотными оксидами, кислотами.
  5. На воздухе оксиды «расплываются»; легко поглощают СO2, превращаясь при этом в карбонаты:
  6. Ме2O+ СO2 = Ме2СO3

Оксиды щел. Me не проявляют ни окислительных, ни восстановительных свойств.

Пероксиды Ме202

  • Твердые вещества, растворимые в воде, имеют окраску отсветло-желтой у Na2O2 до темно-коричневой у Rb2O2.
  • Практически наиболее важный пероксид натрия образуется при го­рении металла на воздухе:
  • 2 Na + O2= Na2O2
  • Пероксиды К, Rb, Cs получают действием 02 на растворы щел. Me в жидком NH3

Пероксидыщел. Me можно считать солями пероксида водорода Н2O2. В водномрастворе они гидролизуются как соли слабой кислоты:

  1. Na2O2 + Н2O → NaOH + NaHO2
  2. Сильные кислоты вытесняют из пероксидов щел. Me пероксид водорода:
  3. Na2O2 + H2SO4 = Na2SO4 + Н2O2

Пероксиды щел. Me являются сильными окислителями. Реакции со многими веществами (порошкообразный Al , уголь, эфир, хлопок и др.) происходят настолько энергично, что сопровождаются взрывом.

  • Пероксид натрия поглощает СO2 с выделением кислорода:
  • 2Na2O2 + 2СO2 = 2Na2CO3 + O2
  • Это свойство используется в дыхательных аппаратах для водолазов и пожарных, а так­же для обновления воздуха а закрытых помещениях, а частности, на подводных лодках.

Супероксиды (надпероксиды) Me+[O2-]

Характерны для калия, рубидия, цезия. Образуются при горении этих металлов навоздухе. Уже при нулевой температуре разлагаются, выделяя свободный кислород:

  1. 2КO2+ 2Н2O = 2КОН + Н2O2 + O2
  2. Приболее высокой температуре разложение происходит без образования H2O2.
  3. Супероксиды являются очень сильными окислителями, подобно пероксидам.

Озониды Me+[O3-]

Известны для К, Rb , Cs . Очень неустойчивые соединения,имеют оранжево-красную окраску. При взаимодействии с водой выделяют наибольшее количество кислорода:

  • 2RbO3 +Н2O = 2RbOH + 2,5O2
  • Общим свойством всех бинарных соединений щелочных металлов с кислородом является их способность поглощать СO2. Пероксиды, супероксиды и озониды могут связывать также монооксид углерода СО:
  • Na2O2 + СО = Na2CO3
  • 2КO2 + СО = К2СO3+ O2
  • 2RbO3 +СО = Rb2CO3 + 2O2

Гидроксиды щелочных металлов

МеОН — общая формула гидроксидов s'-металлов, называемых щелочами.

Щелочи — твердые, непрозрачные бесцветные вещества, довольно легкоплавкие. Плавятся без разложения в интервале температур -300-50°С. Только гидроксид лития при плавлении частично разлагается:

2LiOH = Li2O + Н2O

Твердые гидроксиды и их концентрированные растворы сильно гигроскопичны, они жадно поглощают влагу и используются для осушения газов, не обладающих кислотными свойствами. Вследствие гигроскопичности твердые щелочи быстро расплываются навоздухе.

Гидроксиды щелочных металлов очень хорошо растворяются в воде (за исключением малорастворимого LiOH ), а также в спирте.

Щелочи — очень агрессивные, едкие вещества. Они вызывают тяжелые ожоги кожи и слизистых оболочек, разъедают ткань, бумагу, кожу и др. вещества.

Щелочи — одни из самых реакционноспособных веществ, используются во многих реакциях неорганического и органического синтеза, а также в технологических процессах. Они находят широкое применение в щелочных аккумуляторах.

Важнейшие соли натрия и калия

NaCI — поваренная, или каменная соль. Пищевой продукт, консервирующее средство, сырье для получе­ния соды Na2C03, хлора, NaOH . Изотонический р-р NaCI (0,9%) используется в медицине (физиологический раствор).

NaBr — бромид натрия. Применяется как седативное средство в медицине.

  1. Na2CO3 — кальцинированная сода. Водные растворы имеют сильнощелочную реакцию вследствие гидролиза:
  2. Na2CO3 + Н2O = NaHCO3 + NaOH.
  3. Получают аммиачно-хлоридным способом (метод Сольвэ):
  4. NaCl + NH 3 + СO2 + Н2O = NaHCO3 + NH4Cl
  5. 2NaHCO3= Na2CO3 + CO2 + H2O

Применяется для производства стекла, при получении мыла и др.моющих средств.

  • NaHCO3 — питьевая, или пищевая, сода. Водные р-ры имеют слабощелочную среду в результате гидролиза:
  • NaHCO3 + Н2O = Н2СO3+ NaOH;
  • поэтому используются как лекарственное средство для понижения кислотности желудочного сока.

NaNO3 — натриевая, или чилийская, селитра. Применяется как удобрение; в качестве окислителя входит в состав взрывчатых смесей, ракетных топлив, пиротехнических средств.

Na2SO4 • 10H2O — мирабилит, или глауберова соль. Применяетсяв медицине как слабительное средство.

Na2B4O7 • 10H2O — бура (декагидрат тетрабората натрия). Применяют наружно как антисептическое средство для полосканий,спринцеваний и т.д.

KCl — в природе минерал сильвин (сильвинит — NaCl • KCl). Используется как удобрение, применяется при производстве КОН, КСlO3, КСlO4, KNO3 и др.

К2СO3- поташ. В значительных количествах содержится в растительной золе.

KNO3 — калийная селитра. Применяют как удобрение, для изготовления черного пороха (окислитель), в производстве спичек, для консервирования мясных продуктов.

КМnO4 (перманганат калия), К2Сr2О7 (дихромат калия, хромпик), КСlO3 (хлорат калия, бертолетова соль). Сильнейшие окислители, широко используются в неорганическом и органическом синтезе.

K4[Fe(CN)6] — желтая кровяная соль. Используется как реагент для обнаружения ионов Fe3+.

K3[Fe(CN)6] — красная кровяная соль. Используетсякак реагент для обнаружения ионов Fe2+.

Гдз химия 11 класc габриелян о.с. остроумов и.г. сладков с.а. §4 ионная химическая связь и ионные кристаллические решётки ответы

Гдз химия 11 класc габриелян о.с. остроумов и.г. сладков с.а. §4 ионная химическая связь и ионные кристаллические решётки ответы

Другие задания смотри здесь…

Красным цветом даются ответыа фиолетовым ― объяснения.

Задание 1
Какая связь называется ионной? Ионная связь — это химическая связь, образовавшаяся между катионами и анионами за счёт их электростатического притяжения. Как она образуется? Атомы одного элемента отдают свои электроны, атомы других — принимают их, при этом образуются положительные и отрицательные ионы, которые за счёт электростатических сил образуют ионное химическое соединение.

Какие группы элементов образуют бинарные соединения с ионной связью? Характерен для соединений, образованных типичными металлами (щелочными и щёлочноземельными) и типичными неметаллами (галогенами, кислородом).

Задание 2

В какие частицы превращаются атомы при окислении? Атомы превращаются в катионы — положительно заряженные ионы, т.к. в процессе окисления отдаются электроны.Какие группы таких частиц можно выделить? Простые катионы (например, K+, Mg2+) и сложные катионы (например, NH4+).

Задание 3

В какие частицы превращаются атомы при восстановлении? Атомы превращаются в анионы — отрицательно заряженные ионы, т.к. при восстановлении присоединяются электроны.Какие группы таких частиц можно выделить? Простые анионы (например, Cl-, S2-) и сложные анионы (например, OH-, SO42-).

Задание 4

В чём причина инертности элементов VIIIА-группы? В атомах инертных элементов внешний энергетический уровень полностью заполнен, поэтому этим атомам просто не нужны «чужие» электроны, а химическая связь осуществляется путем обмена электронами или их перехода от одного атома к другому.Является ли утверждение об инертности благородных газов абсолютным? Нет, т.к. в особых условиях (атомы могут находится в возбужденном состоянии) могут образовывать соединения с фтором, кислородом, например, ксенон взаимодействует с фтором: Xe + F2УФ-свет⟶ XeF2

Задание 5

Запишите схемы образования ионной связи между атомами: а) бария и кислорода;

Ba -2e → Ba2+     

O + 2e → O2-Найдем наименьшее общее кратное между зарядами образовавшихся ионов 2 (2 и 2). Чтобы атомы бария отдали 2 электрона их нужно взять 1 (2:2=1), чтобы атомы кислорода приняли 2 электроны их нужно взять 1 (2:2=1).Ba + O → Ba2+O2- → BaOб) калия и брома;

K -1e → K+    

Br +1e → Br-Найдем наименьшее общее кратное между зарядами образовавшихся ионов 1 (1 и 1). Чтобы атомы калия отдали 1 электрон их нужно взять 1 (1:1=1), чтобы атомы брома приняли 1 электрон их нужно взять 1 (1:1=1). K + Br → K+Br- → KBr
в) кальция и фтора.

Ca -2e → Ca2+     

F +1e → F-            Найдем наименьшее общее кратное между зарядами образовавшихся ионов 2 (2 и 1). Чтобы атомы кальция отдали 2 электрона их нужно взять 1 (2:2=1), чтобы атомы фтора приняли 2 электроны их нужно взять 2 (2:1=2).Ca + 2F → Ca2+F2- → CaF2

Задание 6

Запишите приведённые ниже схемы, заменив вопросительный знак на соответствующий символ: цифру, букву, знаки «+» или «-«:

а) Ba -2ē ⟶ Ba2+

б) Br +1ē ⟶ Br- в) Sr -2ē ⟶ Sr2+г) S + 2ē ⟶ S2-д) Fe2+ -1ē ⟶ Fe3+Другие задания смотри здесь…

Понравилась статья? Поделиться с друзьями:
Станок