Влияние углерода на свойства сплавов черных металлов

11.04.2022 VT-METALL Влияние углерода на свойства сплавов черных металлов

Из этого материала вы узнаете:

  • На что влияет углерод в металле
  • Свойства металла (стали) с разным содержанием углерода
  • Технология изготовления углеродистых сталей
  • Области применения углеродистых сталей

Содержание углерода в металле определяет свойства углеродистых сталей, в частности, механические характеристики. Благодаря изменению процентного соотношения углерода можно сделать материал более пластичным или твердым, вязким или прочным.

Такие стали называются углеродистыми и классифицируются по своему составу, степени окисления, а также методам производства и применения. Металлы с разной степенью цементита используются в разных сферах. Как же углерод в металле способствует повышению ее востребованности?

На что влияет углерод в металле

В процессе производства невозможно полностью удалить примеси из стали, поэтому они остаются в небольшом процентном содержании во всех углеродистых соединениях. Также их наличие зависит от выбранного метода плавки.

На основании доли углерода в металле принято выделять углеродистую и легированную сталь. Интересующий нас компонент позволяет скорректировать технические и механические характеристики материала.

В стали присутствуют:

  • железо – в пределах 99 %;
  • углерод – до 2,14 %;
  • кремний – не более 1 %;
  • марганец – до 1 %;
  • фосфор – максимум 0,6 %;
  • сера – до 0,5 %.
  • VT-metall предлагает услуги:
  • Порошковая покраска металла
  • Также сталь содержит небольшую долю водорода, кислорода, азота.
  • Для чего нужен углерод в металле? В сталеплавильных процессах он играет такие роли:
  1. Присутствует в большинстве марок стали, поскольку позволяет получить материал с широким диапазоном механических свойств. А именно: влияет на соотношение феррита и перлита в структуре твердого металла, расширяет диапазон температур, при которых железо остается в устойчивом состоянии.
  2. Считается вредной примесью в сталях специального назначения, таких как электротехнические, жаропрочные, стойкие к коррозии, пр.
  3. Забирает на свое окисление основную долю кислорода, вдуваемого в ванну с целью избавления от примесей. Например, в кислородно-конвертерном и мартеновском скрап-рудном процессах уходит более 75–80 % кислорода. Поэтому основной задачей управления окислительным рафинированием считается регулировка удаления углерода в металле.
  4. Является единственной примесью при изготовлении стали, во время окисления которой выделяются газы CO и CO2. Объем последних многократно превосходит объема металла – если говорить точнее, то окисление килограмма углерода при +1 500 °C приводит к образованию более 10 м3 CO. Газ удаляется из ванны в форме пузырей, благодаря чему металл перемешивается со шлаком, возрастает скорость протекания тепло- и массообменных процессов. В результате на плавку уходит меньше времени.
  5. Пузыри оксида углерода проходят через расплав, параллельно избавляя его от газов, неметаллических включений при плавке и вакуумировании.
  6. Реакция окисления углерода сопровождается нагревом ванны, что важно для протекания кислородных процессов. Так, на кислородно-конвертерном этапе обработки металла тепло реакции окисления углерода обеспечивает 20–25 % приходной части теплового баланса плавки. Так сплав достигает температуры выпуска при значительной доле лома в шихте.
  7. От количества углерода в металле и его постоянного окисления зависит содержание кислорода в стали и оксидов железа в шлаке. Окисленность ванны влияет на потери железа со шлаком в виде оксидов, остаточное содержание прочих примесей, угар раскислителей и легирующих добавок, пр.
  8. Благодаря окислению интересующего нас элемента во время затвердевания металла в изложницах удается формировать слитки стали разных видов. Речь идет о кипящем, спокойном и полуспокойном типе данного металла.

Влияние углерода на свойства сплавов черных металлов

Увеличение доли углерода в металле провоцирует такие изменения:

  • повышение электросопротивления;
  • увеличение коэрцитивной силы;
  • ухудшение проницаемости магнитов;
  • снижение плотности индукции магнитов.

Свойства металла (стали) с разным содержанием углерода

Говоря о том, что такое углерод в металле, важно понимать, что свойства углеродистых сталей определяются сложным молекулярным строением. Структура цементита такова, что каждая ее ячейка имеет форму октаэдра.

Влияние углерода на свойства сплавов черных металлов

Данная особенность обеспечивает ряд таких важных технико-экономических показателей сплавов, как:

  • высокая прочность, несущая способность;
  • твердый поверхностный слой в сочетании с мягкой сердцевиной, что объясняется плохой прокаливаемостью – данная характеристика компенсирует хрупкость металла;
  • большой срок службы, достигающий 50 лет при нормальных условиях, либо применении средств, призванных защитить материал от появления очагов ржавчины;
  • низкая стоимость технологии выплавки, которая используется с конца XIX века – именно тогда были созданы мартеновские печи.

От количества углерода в металле зависит определенный вид стали:

  • Низкоуглеродистая сталь имеет в составе до 0,25 % данного компонента, отличается пластичностью, однако легко поддается деформации. Такой металл может обрабатываться в холодном виде либо при высоких температурах.
  • Среднеуглеродистая сталь содержит 0,3–0,6 % углерода, является пластичной, текучей, имеет средний уровень прочности. Данный процент углерода в металле позволяет использовать его как материал для деталей и конструкции, эксплуатируемых в нормальных условиях.
  • Высокоуглеродистая сталь предполагает долю углерода в 0,6–2 %. Отличается хорошей стойкостью к износу, низкой вязкостью, а также она прочная и дорогостоящая. Для проведения сварных работ металл необходимо предварительного разогреть до +225 °C.

Стоит отметить, что первые два вида проще поддаются обработке, свариванию.

Каждая марка стали имеет свою сферу применения и отличается от других методом изготовления:

Конструкционные стали

Обладают большой долей углерода в металле, для их производства используются мартеновские печи и специальные конвертеры. В маркировке конструкционных сталей применяют первые три буквы алфавита и цифры. По буквам можно определить принадлежность сплава к определенной группе, тогда как цифровое значение говорит о количестве углерода.

Если в металле присутствует марганец, обозначение дополняется буквой «Г». Группа А разделяет сплавы по механическим характеристиками, Б – по доле примесей, В – сразу по двум показателям. Так, при производстве группы А отталкиваются от необходимых качеств, тогда как в группе Б опираются на соответствие нормам.

Инструментальные стали

Производят в мартеновской или электрической печи, которая стала наиболее распространена в последнее время. Марки сплава имеют различную вязкость, степень раскисления. Кроме того, среди инструментальных сталей принято выделять качественные и высококачественные.

Технология изготовления углеродистых сталей

Зная содержание углерода в металле, важно также понимать, что это позволяет использовать в металлургии различные методы производства углеродистых сталей, для каждого из них используется особое оборудование.

Влияние углерода на свойства сплавов черных металлов

Специалисты выделяют несколько типов печей, применяемых для этих нужд:

  • конверторные плавильные;
  • мартеновского типа;
  • электрические.

Конверторные печи расплавляют все компоненты сплава, после чего смесь проходит обработку техническим кислородом. В горячий металл вносят известь, чтобы удалить присутствующие примеси, превратив их в шлак. Процесс производства сопровождается активным окислением металла, из-за чего выделяется большое количество угара.

Использование конверторных печей для изготовления углеродистых сталей требует установки дополнительных фильтровальных систем, поскольку во время работы образуется много пыли. А монтаж дополнительного оборудования всегда чреват значительными финансовыми затратами.

Однако этот недостаток не мешает конверторному методу активно использоваться на металлургических производствах, так как специалисты ценят его за высокую производительность.

Печи мартеновского типа обеспечивают высокое качество различных марок стали. Здесь производство металла с содержанием углерода состоит из таких этапов:

  1. в отдельный отсек печи загружают чугун, стальной лом, пр.;
  2. металл нагревается до значительной температуры;
  3. составляющие будущего сплава превращаются в однородную горячую массу;
  4. происходит химическая реакция между компонентами в процессе плавления;
  5. готовый металл поступает из печи.

Электрические печи предполагают совершенно иной подход к производству: отличается способ нагрева материалов. Благодаря использованию электричества снижается окисляемость металла в процессе разогрева, из-за чего в сплаве сокращается доля водорода. Это позитивно отражается на структуре и качестве готовой стали.

Области применения углеродистых сталей

Производство деталей машин

Прежде чем приступить к изготовлению определенной детали из углеродистых сталей, оценивают режим ее дальнейшей работы.

Влияние углерода на свойства сплавов черных металлов

Марки металла, в которых содержится малая доля углерода, подходят для изделий, защищенных от серьезных нагрузок, воздействия вибрации, ударов. К таким элементам относятся:

  • дистанционные кольца;
  • втулки;
  • крышки;
  • колпаки;
  • маховики;
  • стаканы для подшипников;
  • прихваты, планки.

В качестве отдельной категории выделяют сварные каркасные конструкции, корпусные изделия, поскольку в этом случае низкая прочность данного вида сталей компенсируется толщиной несущего сечения. Тогда как податливость материала обработке сваркой обеспечивает более высокий уровень общей технологичности.

Для деталей, которые ожидают большие нагрузки в процессе эксплуатации, выбирают среднеуглеродистые стали для дальнейшей закалки. Либо могут использоваться марки металла с низким содержанием углерода при условии цементации.

Данные требования распространяются на следующие виды продукции:

  • шкивы ременных передач;
  • звездочки цепных передач;
  • зубчатые колеса, шестерни, валы-шестерни;
  • валы, оси;
  • шпиндели;
  • рычаги;
  • ролики;
  • штока, поршни цилиндров.

Влияние углерода на свойства сплавов черных металлов

В первую очередь, производят заготовку – на этом этапе осуществляется резка проката, отливка, штамповка или поковка. После чего переходят к механической и температурной стадии.

В конце приступают к доводочным, отделочным операциям при помощи абразива, то есть к шлифовке, хонингованию, притирке, суперфинишированию. Нужно учитывать, что невозможно эффективно обработать незакаленные стали абразивным инструментом, так как процесс сопровождается засаливанием режущих зерен.

Высокоуглеродистые рессорно-пружинные разновидности стали применяют лишь в особых случаях, поскольку такой металл с углеродом в составе предполагает значительно более сложную обработку. Кроме того, любые промахи трудно устранить, например, заварить дефект.

Обычно подобные стали выбирают для навивки спиральных пружин, производства рессор, цанг, направляющих скольжения и прочих элементов, от которых требуется упругость в сочетании с твердостью.

Читайте также:  Как пользоваться водяным уровнем: устройство и преимущество, принцип действия

Производство инструмента

Назначение углеродистых инструментальных сталей очевидно уже из названия. Ограничением в их применении является повышенная температура: при превышении +250…+300 °C закаленный металл отпускается, утрачивает прочность, твердость.

Также важно учитывать, что углеродистые стали уступают легированным по функциональности. Ими нельзя резать или давить материалы, имеющие более высокие показатели прочности.

Из-за всех названных особенностей такие металлы используют для изготовления ручного инструмента, позволяющего осуществлять холодную обработку дерева, пластика, мягких цветных металлов.

Влияние углерода на свойства сплавов черных металлов

В производстве задействуются исключительно кованые заготовки, а не литье. Среди проката выбирают упрочненный сортамент, созданный непосредственно для изготовления инструмента.

Далее металл с необходимой долей углерода в составе точат, сверлят, фрезеруют, закаляют, после чего доводят до нужного состояния при помощи абразива. Стоит отметить, что шлифовка является наиболее трудоемким этапом изготовления, так как именно в это время инструменту сообщаются требуемые параметры.

Кроме того, эти операции позволяют удалить с металла поверхностный слой, содержащий дефекты, которые остались после термической обработки.

Производство крепежа

ГОСТ 1759.4-87 содержит в себе требования к механическим свойствам резьбового крепежа. В соответствии с этим документом, болты, винты, шпильки могут изготавливаться из таких углеродистых сталей:

  • 10 и 20 – для классов прочности 3.6, 4.6, 4.8, 5.8 и 6.8, не предполагающих проведение термической обработки;
  • 30, 35, 45 – для классов прочности 5.6 и 6.6 с термической обработкой;
  • 35 – для классов прочности 8.8, 9.8, 10.9 и 12.9, где термическая обработка является обязательным этапом.

Массовое и крупносерийное производство метизов из металла, в составе которого есть углерод, предполагает использование технологии горячей или холодной штамповки и высадочных автоматов. После чего на заготовки нарезают либо накатывают резьбу.

Влияние углерода на свойства сплавов черных металлов

Если речь идет о мелкой серии, доступен заказ нестандартного крепежа – партия изготавливается на универсальном оборудовании для металлорезки.

Для производства крепежа нередко используют особую группу углеродистых сталей. Речь идет о марках, отличающихся повышенной обрабатываемостью – у них в начале маркировки стоит буква «А». Такие металлы отличаются от всех остальных максимальной однородностью структуры и химического состава по всему объему проката.

Поэтому при обработке на станках-автоматах отсутствует риск перепада нагрузки на инструмент, что обычно возможно из-за разной твердости сплава, присутствия микродефектов в виде неметаллических включений.

Углеродистые стали подходят для решения большей части технических задач от производства элементов машин до сборки несущих металлоконструкций. Такие марки отличаются долей углерода в металле, что позволяет легко понять область их использования.

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Влияние углерода на свойства сплавов черных металлов Гарантируем лучшую цену. Пришлите чертеж или расчет проекта от других компаний,

и мы с вероятностью 96% предложим условия выгоднее

Механические свойства черных металлов

Общие сведения о металлах

Главным физическим критерием металлического состояния является изменение электросопротивления у металлов в зависимости от его температурного состояния.

Свойствами металлов являются также высокая прочность, пластичность и ковкость, непрозрачность и металлический блеск.

Металлы представляют собой поликристаллические тела, состоящие из большого числа мелких различно ориентированных один по отношению к другому кристаллов.

  • Все металлы разделяются на две большие группы- черные и цветные металлы.
  • Черные металлы имеют темно-серый цвет, большую плотность, высокую температуру плавления, относительно высокую твердость и подразделяются следующим образом:
  • а) железные металлы — железо, кобальт, никель, марганец;

б) тугоплавкие металлы, температура плавления которых выше, чем у железа (т.е. выше 1539оС);

  1. Цветные металлы подразделяются на:
  2. а) легкие металлы -бериллий, магний, алюминий, обладающие малой плотностью;
  3. б) благородные металлы- серебро, золото, металлы платиновой группы ;
  4. в) легкоплавкие металлы — цинк, кадмий, ртуть, олово, свинец и некоторые другие.
  5. Важнейшим промышленным металлом является железо, которое в сплавах с углеродом и другими элементами относится к группе черных металлов.
  6. В технике железо применяется в виде сплавов.
  7. Сплавом называется вещество, полученное переплавлением двух или более элементов и представляют собой как механическую смесь компонентов, так и химическое соединение.
  8. Механическая связь двух компонентов А и Б образуется тогда, когда они не способны к взаимному растворению в твердом состоянии.

При этих условиях сплав будет состоять из кристаллов А и Б (рисунок 1), выявляемых при исследовании под микроскопом полированных и протравленных в специальных травителях шлифов. В качестве примера можно привести наличие свободно выделившегося углерода (А) в сплошной матрице железа (В).

Влияние углерода на свойства сплавов черных металлов

  • Рисунок 1 – Сплав под микроскопом
  • Химическое соединениеобразуется при взаимном растворении одного элемента в другом при высоких температурах с последующим получением твердых растворов.
  • Твердые растворы являются однофазными, состоящими из одного вида кристаллов, имеют одну кристаллическую решетку, в отличие от химического соединения твердый раствор существует не при определенном состоянии компонентов, а в интервале концентраций.

Элементом, оказывающим наибольшее влияние на свойства черных металлов, является углерод и в зависимости от его содержания образуется сталь или чугун.

Чугуном называется сплав, содержащий более 2,14% углерода, сталью-2,14% и менее. Если в стали содержится 0,6-2,14% углерода, то ее называют высокоуглеродистой, при содержании ≤ 0,25%-низкоуглеродистой.

Помимо углерода в стали в небольшом количестве содержится марганец, кремний, фосфор и сера.

  1. Легированная сталь может содержать кроме названных и другие элементы.
  2. Классификация металлов.
  3. Металлы делятся на две группы:
  • Черные – металлы, которые имеют темно-серый цвет, большую плотность (кроме щелочноземельных), высокую температуру плавления, относительно высокую твердость и во многих случаях обладают полиморфизмом. Наиболее типичным металлом этой группы является железо.
  • Цветные – металлы, которые чаще всего имеют характерную окраску: красную, желтую, белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления, для них характерно отсутствие полиморфизма. Наиболее типичным металлом этой группы является медь.

Черные металлы в свою очередь можно подразделить следующим образом:

Железные металлы – железо, кобальт, никель (так называемые ферромагнетики) и близкий к ним по свойствам марганец. Кобальт, никель и марганец часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.

Тугоплавкие металлы, температура плавления которых выше, чем железа (т.е. 1539 °С). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов.

Урановые металлы – актиниды, имеющие преимущественное применение в сплавах для атомной энергетики.

Цветные металлы по разным признакам делятся на подгруппы:

Легкие металлы, имеющие плотность до 5000 кг/м3 (литий, натрий, магний, калий, алюминий и др.).

Тяжелые металлы, имеющие плотность более 5000 кг/м3 (цинк, медь, олово, свинец, серебро, золото и др.).

Легкоплавкие металлы – цинк, кадмий, ртуть, олово, свинец, висмут, таллий, сурьма и элементы с ослабленными металлическими свойствами – галлий, германий.

Тугоплавкие металлы, температура плавления которых выше, чем у железа (ниобий, молибден, вольфрам и др.).

3. Структурно-механические свойства металлов в процессе их деформации

Напряжения, развиваемые в металлах под воздействием приложенных сил, могут вызывать упругие и пластические деформации.

По степени пластической деформации непосредственно перед разрушением судят о пластичности металла (резерв пластичности). Малым резервом пластичности обладает » хрупкий» материал.

Пластичность в сочетании с высокой прочностью делает металлы незаменимыми конструкционными материалами.

Наиболее высокой прочностью при достаточной пластичности обладают стали, поэтому они шире всего применяются в технике по сравнению с другими металлами.

Пластическая деформация сопровождается не только изменением формы, но и изменением структуры металла, которая заключается в вытягивании зерен и измельчении блочной структуры.

При деформации под действием напряжений блочная структура измельчается, что приводит к значительному увеличению плотности дислокаций и резкому возрастанию внутрикристаллических и межкристаллических напряжений. Все это приводит к повышению твердости, пределов прочности, текучести, упругости и уменьшению пластичности деформируемого материала.

Важнейшими свойствами металла, характеризующими его работу во времени, являются: релаксация напряжений, ползучесть, выносливость, ударная вязкость и внутреннее трение.

Релаксация напряжений является процессом уменьшения во времени напряжений деформируемого материала в результате перехода упругой деформации в пластическую при условии постоянства общей деформации.

Читайте также:  Эмаль ко 811 расход на 1 м2 металла

Под ползучестью понимают процесс увеличения деформации во времени при постоянном напряжении. Он начинается сразу после возникновения мгновенной деформации.

Под действием длительно приложенной нагрузки может развиваться значительная деформация конструкции, а иногда и ее разрушение. Ползучесть лимитирует длительность эксплуатации конструкций, работающих под постоянной нагрузкой, особенно в условиях повышенных температур.

Процесс ползучести способен существенно изменить структуру металла, а следовательно, и его механические характеристики.

Между основными реологическими характеристиками металлов — ползучестью и релаксацией — существует тесная связь, так как физико-механические основы обоих явлений одинаковы.

В зависимости от вида и условий нагружения металлы могут разрушаться вязко или хрупко. Вид разрушения образца зависит, в первую очередь, от соотношения его предела текучести, определяющего сопротивление металла пластической деформации, и сопротивления отрыву.

Переход от статических испытаний (статическое растяжение, сжатие и др.) к динамическим (ударный изгиб) позволяет определить склонность металла к хрупкому разрушению в условиях неоднородности напряженного состояния и динамического нагружения.

4. Строение металлов.

В металлах, которые находятся в жидком и твёрдом состоянии, между составляющими их частицами существует особый вид химической связи. Обратим внимание, что типичные металлы отличаются малым числом электронов в наружном слое атомов. Для их ионизации требуется относительно небольшая энергия.

Когда атомы при конденсации паров металла сближаются, их наружные электроны переходят в общее пользование всех атомов данного металла. Возникающие положительные ионы металла удерживаются все вместе за счёт притяжения ко всем свободно движущимся в металле электронам. Такой вид химической связи называют металлической.

Металлическая связь имеет сходства и различия с ионной и валентной связями.

С ковалентной связью металлическая сходна тем, что при возникновении этих видов связи валентные электроны переходят в общее пользование атомов. Однако, в случае металлической связи эти электроны связывают все атомы данного куска металла, а в случае с ковалентной – два объединившихся атома.

С ионной связью металлическая связь сходна наличием ионов. Однако в металлах положительно заряженные ионы удерживаются свободно перемещающимися электронами, а не отрицательно заряженными ионами, как в веществах с ионной связью.

Металлическая связь имеется в металлах, находящихся в жидком и твёрдом состоянии. Твёрдые металлы – вещества кристаллические. Их кристаллические решётки сходны с атомными решётками алмаза, кремния, но в узлах металлических решёток расположены положительно заряженные ионы.

Вследствие притяжения всех свободных электронов всеми положительно заряженными ионами металлическая связь очень прочна. Поэтому для металлов характерны кристаллические решётки с плотной упаковкой ионов, которая

Влияние углерода на свойства сплавов черных металлов

достигается в металлах с решёткой гексагонального типа (цинк, магний и др.) или кубического гранецентрированного (медь, серебро, алюминий и др.). Менее плотной является решётка кубическая объемно-центрированная. Такую решётку при кристаллизации образуют железо, натрий, барий и др.

  • Некоторые металлы (например, олово) могут кристаллизоваться в зависимости от температуры с образование решёток то одного, то другого ти
  • Способы выплавки стали.
  • Существует несколько способов получения стали: конверторный, мартеновский и электроплавка.

Конверторный способ основан на продувке сжатым воздухом расплавленного чугуна. При продувке кислород воздуха вступает в реакцию с примесями чугуна и окисляет их, в результате чего получается сталь. Для конверторного способа используют жидкий чугун, полученный в доменных печах и выдержанный в специальных металлоприемниках (миксерах).

Достоинствами конверторного способа являются: высокая производительность агрегатов, компактность оборудования и т. д.

К недостаткам этого способа относятся невозможность переработки большого количества стального и железного лома, а также передел чугунов только определенного химического состава.

Мартеновский способ вызван к жизни необходимостью перерабатывать стальной лом и отходы производства. Требовалось создать печь, в которой температура была бы настолько высокой, чтобы можно было плавить сталь и железо.

Получение высокой температуры в мартеновской печи дало возможность не только использовать промышленные отходы в качестве шихтовых материалов, но и получать стали с весьма разнообразными свойствами.

Мартеновская сталь поступает в виде листовой и сортовой, рельсов, отливок, заготовок для ковки и штамповки.

Область применения

Стандарт распространяется на горячекатаную круглую сталь гладкого и периодического профиля, предназначенную дляармирования обычных и предварительно напряженных железобетонных конструкций (арматурная сталь). В части нормхимического состава низколегированных сталей стандарт распространяется также на слитки, блюмсы и заготовки.

  1. Классификация
  2. Арматурная сталь изготовляется:
  3. • класса А-I – гладкой;
  4. • класса А-II, А-III, А-IV, A-V, A-VI – периодического профиля.
  5. Арматурную сталь изготавливают из углеродистой и низколегированной стали марок, указанных в таблице:
Класс арматурной стали Диаметр профиля, мм. Марка стали
А-I (А240) 6 – 40 Ст3кп, Ст3пс, Ст3сп
А-II (А300) 10 – 40 40 – 80 Ст5сп, Ст5пс 18Г2С
Ас-II (Ас300) 10 — 32 (36 — 40) 10ГТ
А-III (А400) 6 — 40 6 — 22 35ГС, 25Г2С, 32Г2Рпс
А-IV (А600) 10 — 18 (6 — 8) 10 — 32 (36 — 40) 80С   20ХГ2Ц
А-V (А800) (6 — 8) 10 — 32 (36 — 40) 23Х2Г2Т
А-VI (А1000) 10 — 22 22Х2Г2Ю,22Х2Г2Р, 20Х2Г2СР

Арматура А3 A400C

Арматура А3 A400C — это горячекатаная круглая сталь периодического профиля, предназначенная для армирования обычных и предварительно напряженных железобетонных конструкций, которая используется в малоэтажном строительстве.

Из-за низкого предела текучести, арматуру A400C не рекомендуется использовать в ответственных конструкциях, высотных зданиях, монолитных строениях, в конструкциях с постоянной переменной нагрузкой. Основная область применения арматуры А3 A400C с — это строительство коттеджей, армирование дорожного полотна, армирование стен, полов, железобетонных изделий.

Арматурная сталь класса А400С диаметром до 10мм включительно изготавливают в прутках и бухтах, а больших диаметров — только в прутках.

А3 A400C в прутках 6-36 мм диаметр А3 А400С в бухтах 6,8,10 мм диаметр

Влияние углерода на свойства стали — Экобаланс

2 октября 2018

Углерод – не случайная примесь, а важнейший компонент углеродистой стали, от количества которого завичсят ее свойства.

Машиностроительные заводы получают сталь с металлургических предприятий в отожженном или горячекатаном состоянии.

Влияние углерода на структуру и свойства сталей

Механические свойства углеродистой стали зависят главным образом от содержания углерода. С ростом содержания углерода в стали увеличивается количество цементита и соответственно уменьшается количество феррита, т.е. повышаются прочность и твердость и уменьшается пластичность. Прочность повышается только до 1% С, а при более высоком содержании углерода она начинает уменьшаться. Происходит это потому, что образующаяся по границам зерен в заэвтектоидных сталях сетка вторичного цементита снижает прочность стали.

С увеличением содержания углерода в структуре стали увеличивается количество цементита – очень твердой и хрупкой фазы. Твердость цементита превышает твердость феррита примерно в 10 раз (800HB и 80HB соответственно). Поэтому прочность и твердость стали растут с повышением содержания углерода, а пластичность и вязкость, наоборот, снижаются .

При повышении содержания углерода до 0,8% увеличивается доля перлита в структуре (от 0 до 100%), поэтому растут и твердость, и прочность. Но при дальнейшем росте содержания углерода появляется вторичный цементит по границам перлитных зерен. Твердость при этом почти не увеличивается, а прочность снижается из-за повышенной хрупкости цементитной сетки.

C увеличением содержания углерода в стали изменяются и физические свойства: снижается плотность, повышаются удельное электросопротивление и коэрцитивная сила, понижаются теплопроводность и магнитная проницаемость.

Кроме того, увеличение содержания углерода приводит к повышению порога хладноломкости: каждая десятая доля процента повышает t50 примерно на 20є. Это значит, что уже сталь с 0,4%С переходит в хрупкое состояние примерно при 0ºС, т. е. менее надежна в эксплуатации.

Углерод в железоуглеродистом сплаве находится главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита он содержится в чугунах. С увеличением содержания углерода возрастает твердость, прочность и уменьшается пластичность.

Влияет содержание углерода и на все технологические свойства стали: чем больше в стали углерода, тем она труднее обрабатывается резанием, хуже деформируется (особенно в холодном состоянии) и хуже сваривается.

Качество углеродистых сплавов

По категории качества различают углеродистые сплавы обыкновенного качества, качественные, высококачественные и особо высококачественные. Главными признаками повышения качества являются более жесткие требования по химическому составу и прежде всего по содержанию основных вредных примесей, таких как сера и фосфор.

Под качеством понимается совокупность свойств, определяемых металлургическим процессом производства. Однородность хим.состава, строения и свойств стали, а также ее технологичность во многом зависят от содержания таких газов, как кислород, азот и водород.

Обозначение марок – буквенно-цифровое.

Так углеродистые конструкционные стали обыкновенного качества (ГОСТ 380-88) маркируют буквенно-цифровым кодом и по гарантии свойств, при поставке подразделяют на три группы: А, Б и В. Буквы Ст означают сталь, цифры от 0 до 6 – условный номер марки, например Ст0, Ст2 и т. д.

  • Группа – А – сплавы, поставляемые с гарантией механических свойств, химический состав их не регламентируется, его только указывают в сертификатах металлургического завода-изготовителя. Они применяются для изготовления деталей механической обработкой.
  • Стали группы Б поставляют с гарантией по химическому составу, так как они в дальнейшем обычно подвергаются различной обработке с целью получения нужного заказчику комплекса механических свойств, а именно горячей обработке давлением и ТО.
  • Сплавы группы – В поставляются с гарантией совместно по химическому составу и механическим свойствам – по нормам для сталей групп А и Б. Их употребляют в производстве сварных конструкций.
Читайте также:  Толщина металла сила тока диаметр электрода таблица

Степень раскисленности, обозначают буквами кп – кипящие, пс – полуспокойные и сп – спокойные. Кипящими являются стали марки Ст0 – Ст4, полуспокойными и спокойными могут выплавляться все марки от Ст1 до Ст6.

При маркировке указывают только группы Б и В, например Ст2кп или ВСтЗпс, что означает сталь 2, группы А, кипящая или сталь 3, группы В, полуспокойная и т. п.

В качественных сплавах максимальное содержание вредных примесей составляет не более чем 0,04 % серы и фосфора. Они менее загрязнены неметаллическими включениями и имеют меньшее количество растворенных газов. Их поставляют по химическому составу и механическим свойствам.

Марки углеродистых качественных конструкционных сталей (ГОСТ 1050-74 и ГОСТ 4543-71) обозначают цифрами, указывающими среднее содержание углерода в сотых долях процента, степень раскисленности – буквами, например сталь 10кп (это 0,10 % С, кипящая); 20пс (0,20 % С, полуспокойная). Для спокойных сталей индекс не ставится.

Углеродистые качественные инструментальные сплавы (ГОСТ 1435-74) маркируются буквой – У, которая означает что сталь углеродистая, и следующим за ней числом, показывающим среднее содержание углерода в десятых долях процента – 0,7 – 1,5 %, например У7, У7А, У13, У13А. Высококачественные сплавы характеризуются минимально возможным количеством серы и фосфора в них менее 0,035 %. Для обозначения высокого качества стали в конце марки ставят букву – А. например У7А, У13А, У10А.

По структуре в отожженном (равновесном) состоянии различают следующие группы сталей:

1) техническое железо с содержанием углерода менее 0,02%. Структура сплава однофазная – феррит;

2) доэвтектоидные стали с содержанием углерода от 0,02 до 0,8%. Структура сплавов состоит из феррита и перлита, причем с увеличением содержания углерода доля перлита в структуре возрастает (рис.20.а);

3) эвтектоидная сталь с содержанием углерода 0,8%. Структура стали – перлит: чередующиеся пластинки феррита и цементита (рис.20, б, в);

4) заэвтектоидные стали с содержанием углерода от 0,8 до 2,14%. Структура состоит из участков перлита, разделенных хрупкими цементитными оболочками (рис.20, г).

  • Влияние углерода на свойства сплавов черных металлов
  • Рис.20 Микроструктуры сталей:
  • а – доэвтектоидная сталь (феррит+перлит); б – эвтектоидная сталь (пластинчатый перлит); в – эвтектоидная сталь (зернистый перлит); г – заэвтектоидная сталь (перлит + вторичный цементит).

Легированные стали – это сплавы на основе железа, в состав которых специально введены химические элементы, обеспечивающие ему требуемую структуру и свойства.

В свою очередь легированные стали в зависимости от числа легирующих добавок делят на одно- и многокомпонентные. Более применяемым является название с указанием легирующих элементов, например, стали хромистые, хромоникелевые, хромоникельмолибденовые и др.

Обычно концентрация легирующих добавок больше, чем количество этих же элементов в виде примесей. По степени легирования, т. е. по содержанию специально введенных добавок сплавы условно подразделяют на низко-, средне- и высоколегированные. Количество этих элементов, в общем, составляет 2,5 – 5,0%; до 10 % и более 10 % соответственно.

Понятие специальные стали более широкое, чем легированные сплавы, так как к первым, кроме легированных могут относиться и углеродистые, которым приданы специальные свойства посредством определенных способов производства и обработки

В легированных сплавах (ГОСТ 5632-72, ГОСТ 20072-74) содержатся специально вводимые в различных количествах легирующие элементы, обозначаемые буквами русского алфавита: хром – X, никель – Н, молибден – М, вольфрам – В, кобальт – К, титан – Т, марганец – Г, медь – Д, ванадий – Ф, кремний – С, фосфор – П, алюминий –Ю, кобальт-К, бор – Р, ниобий – Б, цирконий – Ц, азот – А. Цифры после буквы указывают примерное содержание данной добавки в процентах округленное до целого числа. Если после буквы не стоит цифра, то это означает, что количество элемента меньше или около 1,0 %. Стоящая цифра 1, показывает, что концентрация добавки от 1,5 до 2,0%.

Марка стали обозначается сочетанием букв и цифр. Для конструкционных марок первые две цифры указывают среднее содержание углерода в сотых долях процента. Количество легирующих элементов, если они превышают 1,0 %, ставят после соответствующей буквы в целых единицах. Например, сталь марки 18ХГТ содержит около 0,18 % углерода; 1,0 % хрома, 1,0 % марганца и около 0,1 % титана.

У стали, легированной азотом, букву А ставят в середине обозначения марки, например 15X17AГI4, если же она поставлена в конце марки, это говорит о том, что сплав высококачественный – 30ХГСА. Буква – А, находящаяся в начале марки, указывает, что сталь автоматная, повышенной обрабатываемости, например, А35Г2.

Особовысококачественными являются только легированные железоуглеродистые сплавы. Они содержат не более 0,015 % серы и 0,025 % фосфора. К ним предъявляют высокие требования и по содержанию других примесей.

Как влияет содержание углерода на свойства сталей | Полезные статьи о металлопрокате

Содержание углерода и легирующих элементов определяет свойства углеродистых сталей. Состав сплава содержит железо, углерод, магний, кремний, марганец, серу и фосфор.

Количество одного компонента по отношению к общей массе определяет вязкость, пластичность, прочность и твердость металла. Углеродистые стали классифицируют по химическому составу, способу изготовления, назначению и степени раскисления. Металлопрокат производят из разных марок стали.

Компания «Стальмет» продает металлопродукцию из углеродистых сталей, соответствующих ГОСТу 380-2005 и 1050-2005.

Состав стали с углеродом

Технология производства не полностью удаляет примеси из стали. Они занимают малую процентную долю, но присутствуют во всех углеродистых сталях.

Содержание углерода разделяет сталь на углеродистую и легированную. Углерод добавляют намеренно, чтобы изменить технические характеристики и механические свойства сталей.

Наличие примесей зависит от выбранной плавки сталей. Процентное содержание разных элементов в составе стали:

  • железо — до 99 %;
  • углерод — до 2,14 %;
  • кремний — до 1 %;
  • марганец — до 1 %;
  • фосфор — до 0,6 %;
  • сера — до 0,5 %.

Сталь содержит незначительное количество водорода, кислорода и азота.

Какие свойства у стали с разным содержанием углерода?

Механические свойства стали зависят от количества углерода. Увеличение или снижение содержания углерода, даже в сотых долях процента, предопределяет сферу применения металла.

Структура углеродистой стали меняется от содержания цементита и феррита. Когда в сталь добавляют больше углерода, сплав становится твердым, прочным и упругим.

Когда уменьшают, улучшают ее пластичность и сопротивление удару.

В зависимости от того, сколько углерода в составе сплава, различают несколько видов стали:

  • Низкоуглеродистые содержат меньше 0,25 % углерода. Пластичные, но легко деформируемые. Обрабатываются в холодном состоянии и под действием высокой температуры.
  • Среднеуглеродистые — 0,3-0,6 %. Пластичные, текучие и среднепрочные. Из них изготавливают детали и конструкции, которые будут использовать в нормальных условиях.
  • Высокоуглеродистые — 0,6-2 %. Износостойкие, прочные и дорогие углеродистые стали с низкой вязкостью. Плохо поддаются сварке без предварительного разогрева обрабатываемой зоны до +225оС.

Низкоуглеродистые и среднеуглеродистые стали обрабатывать и варить проще, чем высокоуглеродистые.

Виды углеродистой стали по степени раскисления

У углеродистой стали разная степень раскисления. Бывают спокойные, кипящие и полуспокойные сплавы. Названия связаны с содержанием вредных примесей — оксидом железа. Чем меньше кислорода в сплаве, тем стабильнее и долговечнее стали. После разливки сталь выделяет газы и затвердевает.

В спокойных сталях кислород удален почти полностью, поэтому у них однородная структура и равномерное распределение состава. Полуспокойные чаще содержат 0,15-0,3 % углерода.

Таким сталям свойственна неравномерная структура из-за частичного раскисления сплава. Больше всего кислорода у кипящих сталей. Такое раскисление приводит к разному химическому составу.

В кипящих сталях много примесей: углерода, азота, серы и фосфора.

Чем отличаются инструментальные и конструкционные стали?

Сфера применения и способ изготовления — главные отличия сталей. Конструкционные углеродистые стали выплавляют в конвертерах и мартеновских печах. Они бывают высокого и обыкновенного качества. Их разделяют на группы А, Б и В.

Маркируют соответственно буквами и цифрами. В обозначении буква говорит о группе стали, а цифры указывают на содержание углерода, увеличенное в 100 раз. Чем больше значение, тем прочнее сталь.

Стали обыкновенного качества с повышенным содержанием марганца маркируются буквой «Г».

Сталь группы А поставляют по механическим свойствам, группы Б — по химическому составу, группы В — по механическим свойствам и химическому составу. Это означает, что сталь группы А обладает заявленными свойствами, а сталь группы Б отвечает нормативной документации.

Углеродистую инструментальную сталь выплавляют в мартеновской или электрической печи. Она бывает спокойной, полуспокойной и кипящей. Ее разделяют на качественную и высококачественную сталь.

Доля примесей в качественной инструментальной стали регламентирована: серы должно быть не более 0,4 %, фосфора — не больше 0,6 %. Цифра в маркировке говорит о содержании углерода в сотых долях.

Также она обозначает условный номер марки материала.

Сферы применения углеродистых сталей

Углеродистые стали обыкновенного качества используют для изготовления двутавра, уголка, швеллера, прута, листа и другого проката. В производстве инструментов и деталей для разных областей машиностроения применяют углеродистую сталь высокого качества.

Ссылка на основную публикацию
Adblock
detector