Как определить шаг поперечной арматуры

Содержание
  1. Шаг 1. Подбираем продольную арматуру колонны
  2. Шаг 2. Подбираем поперечную арматуру
  3. Шаг 3. Окончательно вычерчиваем хомуты и сечение колонны
  4. Шаг 4. Конструируем рабочую арматуру колонны
  5. Армирование колонн: схемы, максимальный процент, класс арматуры, диаметр поперечной и продольной арматуры
  6. Выбор арматуры по характеристикам
  7. Защитный слой
  8. Расстояния в свету
  9. Продольное армирование колонн
  10. Поперечное армирование колонн
  11. Анкеровка
  12. Соединения
  13. Гнутые стержни
  14. Выпуски
  15. Схемы армирования колонн
  16. Процент армирования колонн
  17. Чтение результатов подбора арматуры
  18. Рекомендации по подбору армирования стержней
  19. Чтение результатов подбора продольной арматуры для пластин
  20. Рекомендации по подбору армирования пластин
  21. Чтение результатов подбора поперечной арматуры
  22. Армирование колонн: схемы, чертежи, минимальный и максимальный процент, нормы и правила
  23. Зачем армировать колонны?
  24. Материал для усиления колонн
  25. Технологические нормы по созданию армирующего каркаса
  26. Диаметр арматуры
  27. Минимальный и максимальный процент армирования колонны
  28. Расположение продольных стержней
  29. Размер и расположение поперечных элементов
  30. Конструктивные требования по армированию балок и плит перекрытия
  31. Поперечное армирование

Как определить шаг поперечной арматуры

Содержание:

Шаг 1. Подбираем продольную арматуру колонны.

Шаг 2. Подбираем поперечную арматуру.

Шаг 3. Окончательно вычерчиваем хомуты и сечение колонны.

Шаг 4. Конструируем рабочую арматуру колонны.

После расчета у конструктора на руках оказываются габариты сечения колонны и площадь продольной и поперечной арматуры. В какой последовательности нужно действовать?

Рассмотрим конструирование на примере.

  • Понятно, что с опытом конструирования так дотошно выполнять каждый пункт нет необходимости, но в данной статье я хочу изложить все очень подробно.
  • Пусть у нас будет монолитная колонна второго этажа многоэтажного здания сечением 300х300 мм, высотой 3 м, площадь продольной арматуры колонны Аs = Аs' = 9,3 см2 (момент в колонне действует в одном направлении); площадь одного хомута в нижнем сечении колонны 0,20 см2 (при шаге хомутов 150 мм), в среднем сечении по расчету поперечная арматура не требуется.

Арматура колонны принята по ДСТУ 3760, класс арматуры А400С (периодического профиля), класс арматуры хомутов А240С (гладкая арматура). Каркас колонны – вязаный. Стержни стыкуются путем нахлестки. Класс бетона В25.

На колонну опирается монолитная балка сечением 350х400(h) cо следующим армированием: нижняя арматура балки 3d16, верхняя арматура балки 2d16.

Шаг 1. Подбираем продольную арматуру колонны

Заглянем в таблицу из приложения 5 руководства:

Как определить шаг поперечной арматуры

Мы видим, что нам подходит либо 2 диаметра 22мм (9,82 см2 > 9,3 см2), либо 3 диаметра 20мм (9,42 см2 > 9,3 см2), либо 4 диаметра 18мм (10,18 см2 > 9,3 см2).

Столько вариантов выбрано для примера, обычно можно обойтись и двумя вариантами, а то и сразу на одном остановиться. Посчитаем для начала площадь арматуры в итоге.

Если у одной грани будет 2 стержня, то всего их будет 4. Тогда площадь сечения четырех стержней d25 равна 19,64 см2. Если у одной грани будет 3 стержня, то всего их будет 8. Тогда площадь сечения восьми стержней d20 равна 25,13 см2.

Если у одной грани будет 4 стержня, то всего их будет 12. Тогда площадь сечения двенадцати стержней d18 равна 30,54 см2.

На первый взгляд, можно принять армирование стержнями d25, т.к. площадь сечения в этом случае самая экономичная.

  1. До принятия окончательного решения стоит прорисовать оба сечения арматуры и посмотреть, во что выльется армирование.
  2. При этом не забываем, что при прорисовке нужно учитывать не номинальный, а реальный диаметр стержней, заглянув в ДСТУ 3760:2006, мы узнаем, что размер одного выступа арматуры h равен 0,07dн (для стержней диаметром 18 мм и меньше) и 0,065dн (для стержней диаметром 20 мм и больше).
  3. Определим реальный диаметр стержней (с учетом двух выступов):
  4. d18: 18 + 0,07∙18∙2 = 21 мм;
  5. d20: 20 + 0,065∙20∙2 = 23 мм;
  6. d25: 25 + 0,065∙25∙2 = 28 мм.

Определимся с защитным слоем для рабочей арматуры колонны (таблица 23 руководства): защитный слой должен быть больше 20 мм и больше диаметра стержня рабочей арматуры (18, 20 или 25 мм). По опыту проектирования рекомендую принимать защитный слой для монолитных колонн не менее 25-30 мм.

Расставим стержни для трех вариантов:

Как определить шаг поперечной арматуры

Все получилось неплохо. Во всех случаях стержни располагаются равномерно, защитный слой около 25 мм выдержан, минимальное расстояние 50 мм между стержнями в свету (см. 3.68 руководства) соблюдено.

Но теперь мы возвращаемся к исходным данным и вспоминаем, что стержни в колонне стыкуются нахлесткой, а значит, в сечении у нас будут не только нарисованные стержни, а еще и выпуски из колонны нижнего этажа.

Добавим к нашим рисунками выпуски (розовым цветом) и посмотрим, что получилось. Выпуски всегда нужно стараться располагать так, чтобы просветы между стержнями были как можно больше (для лучшего бетонирования).

Как определить шаг поперечной арматуры

Что мы видим теперь? В колонне, заармированной d18 встречается расстояние между стержнями 32 мм, что меньше допустимых 50 мм. А это значит, что при стыковке стержней внахлестку вариант армирования с 12 стержнями недопустим – качественно забетонировать такие колонны будет невозможно.

  • Армирование колонн d20 и d25 нас устраивает. Чтобы сделать окончательный выбор, сравним суммарную площадь арматуры (пользуясь таблицей из приложения 5 руководства) и выберем самый экономичный вариант:
  • 8d20: Аsum = 25,13 см2;
  • 4d25: Аsum = 19,64 см2.

Итак, мы останавливаемся на варианте армирования восьмью стержнями d25, т.к. он однозначно экономичнее и менее трудоемок для строителей.

Шаг 2. Подбираем поперечную арматуру

  1. Из исходных данных мы имеем:
  2. площадь одного хомута в нижнем сечении колонны 0,2 см2 (при шаге хомутов 150 мм), в среднем сечении по расчету поперечная арматура не требуется
  3. Прежде, чем определять диаметр хомутов, определим их шаг. Для начала заглянем в таблицу 25 руководства:

Как определить шаг поперечной арматуры

У нас поперечная арматура класса А240С с расчетным сопротивлением 2250 кг/см2 < 4000 кг/см2, значит при диаметре рабочей арматуры 25 мм шаг стержней не должен быть больше 350 мм. Значит, шаг арматуры в колонне должен быть не больше 350 мм. Даже там, где эта арматура по расчету не требуется, т.к. у нас есть требование п. 3.69 руководства:

Поперечная арматура должна устанавливаться у всех поверхностей колонны, вблизи которых ставится продольная арматура.

Идем далее. Рабочая арматура в колонне стыкуется внахлестку. Читаем пункт 3.71 руководства:

В стыках продольной рабочей арматуры внахлестку без сварки независимо от того, армируется ли колонна сварными или вязаными каркасами, рекомендуется применять, хомуты. Расстояния между хомутами в зоне стыка должны быть не более 10 d .

  • Здесь d — диаметр сжатых продольных стержней рабочей арматуры (меньший).
  • Таким образом, в нижней зоне колонны, в месте перенахлеста рабочей арматуры шаг хомутов должен быть не более 10d = 10∙25 = 250 мм.
  • Заглянем в таблицу 24 руководства и подберем минимально допустимый диаметр хомутов – 8 мм:

Как определить шаг поперечной арматуры

Площадь арматуры при шаге 150 мм по расчету равна 0,20 см2, по таблице приложения 5 руководства определяем возможный диаметр хомута с ближайшей большей площадью d = 6 мм (0,283 см2), но так как для диаметра рабочих стержней 25 мм у нас есть ограничение, мы вынуждены принять хомуты d = 8 мм (0,503 см2)

Как определить шаг поперечной арматуры

Но 0,503 см2 значительно больше 0,20 см2. Мы можем попытаться пересчитать шаг 150 мм на шаг 250 мм (т.к. в нашем случае шаг 250 мм – максимально допустимый).

  1. При шаге 150 мм в метре колонны размещается 7 хомутов, а при шаге 250 мм – 4 хомута.
  2. Вычисляем требуемую площадь одного хомута при шаге хомутов 250 мм:
  3. 0,20∙7/4 = 0,35 см2 < 0,503 cм2 – мы вполне можем увеличить шаг хомутов до 250 мм.
  4. Принимаем в месте перенахлеста рабочей арматуры хомуты диаметром 8 мм с шагом 250 мм, в остальной колонне – хомуты диаметром 8 мм с шагом 350 мм.

Шаг 3. Окончательно вычерчиваем хомуты и сечение колонны

У нас есть уже сечение с расстановкой рабочей арматуры. Осталось «обогнуть» ее хомутом. Не забываем при этом, что нам нужно учитывать не номинальный диаметр рабочей арматуры 25 мм, а реальный – 28 мм.

Расстояние в осях между угловыми рабочими стержнями 220 мм. Чтобы узнать размер хомута (по внутренней грани), нужно к этому размеру прибавить диаметр стержня 220 + 28 = 248 мм. Округляем до 5 мм в большую сторону, получаем 250 мм.

Теперь определим размер «хвостов» хомутов, заглянув в таблицу 2 руководства.

Как определить шаг поперечной арматуры

Мы видим, что при диаметре продольных стержней 25 мм и диаметре хомута 8 мм добавка на один крюк составляет 75 мм.

В итоге, мы получаем вот такой хомут, как показано на рисунке ниже

Обратите внимание, это важно: размеры хомутов всегда даются по внутреннему размеру, т.к. именно этот внутренний размер диктует размер защитного слоя для рабочей арматуры.

Также следует обратить внимание на следующий момент. Согласно п. 5.10 «Руководства по проектированию железобетонных конструкций» очень важно обращать внимание на следующие моменты:

  1. 10. При проектировании железобетонных конструкций, в особенности с большим насыщением арматуры, следует учитывать следующие характеристики арматурных стержней:

фактические размеры поперечных сечений стержней периодического профиля с учетом допускаемых отклонений от них;

радиусы загиба стержней и соответствующие фактические габариты гнутых элементов;

допускаемые отклонения от проектных размеров при размещении стержней сварных сеток, каркасов, закладных деталей и т.п.

Фактические размеры сечения стержней мы учли. Сейчас поговорим о радиусах загиба. Всегда, когда гнутся стержни, нужно указывать их радиус загиба и делать это согласно с таблицей 33 «Руководства по проектированию» (в руководстве по конструированию данных для отдельных стержней нет).

В чем суть этого требования? Дело в том, что при загибе стержня с закруглением наиболее щадящим образом передается усилие, нет разрушение сцепления арматуры с бетоном, в общем, арматура работает корректно.

Вторая причина в том, что очень часто строители делают отгибы путем нагрева стержня, такие отгибы, во-первых, безо всяких скруглений, а во-вторых, при нагреве есть риск пережечь арматуру и снизить ее прочностные характеристики в этом месте.

По правилам нужно гнуть арматуру специальными гибочными устройствами, тогда и все диаметры загиба соблюдаются, и прочность стержней остается прежней.

Итак, для нашего хомута класс стали А240С (мы можем приравнять его к А-I) минимально допустимый диаметр загиба будет равен 2,5d = 2.5*8 = 20 мм.

Но лучше учесть, что в углах хомут охватывает стержни, реальный диаметр которых равен 28 мм, и увеличить диаметр загиба хомутов до 28 мм – так вязать арматуру будет гораздо удобнее.

И еще следует учесть, что диаметр загиба обычно не указывают, а указывают радиус, поэтому сразу пересчитаем: R = 28/2 = 14 мм. Эти данные мы должны будем указать на чертеже.

Шаг 4. Конструируем рабочую арматуру колонны

В чем заключается этот шаг?

Сначала мы определяем длину стержней – ведь нам нужно сделать выпуски в следующий этаж. Итак, прежде всего нам нужно определить длину нахлестки для арматуры. Этот расчет я вынесла в отдельную статью, причем в Украине и в России расчеты разные, нужно выбрать свой.

Итак, определяем величину нахлестки здесь. У нас получилось 1350 мм по украинскому и 1120 мм по российскому варианту. Предлагаю, чтобы не усложнять пример, остановиться для дальнейшего конструирования на худшем варианте 1350 мм.

Далее нам нужно прорисовать стержень арматуры.

Высота колонны – 3 м, высота балки – 0,4 м. Реальный диаметр стержней 28 мм.

Чтобы стержень колонны следующего этажа стал в проектное положение, нам необходимо изогнуть стержень колонны в пределах балки, чтобы он сместился относительно своей оси не менее, чем на 28 мм (округлим в большую сторону до 30 мм, хотя это не обязательно). На рисунке ниже видно, что синий стержень отгибается в теле балки и «выныривает» из нее уже со сбивкой, чтобы дать разместиться розовому стержню колонны следующего этажа.

Но это еще не все особенности конструирования стержней колонны. Мы не должны забывать о радиусах загиба арматуры (мы о них говорили выше). Заглядываем в таблицу 33 «Руководства по проектированию…» (она тоже выложена выше) и видим, что для стержня d25 мм минимальный диаметр загиба равен 8d = 8∙25 = 200 мм, значит радиус загиба будет равен R = 100 мм.

Теперь мы можем прорисовать наш стержень (длину стержней можно утрировать для наглядности).

Читайте также:  Напольные подставки цветов металла

На этом все этапы конструирования пройдены. Переходим к выполнению чертежа колонны.

Армирование колонн: схемы, максимальный процент, класс арматуры, диаметр поперечной и продольной арматуры

Выполняется армирование колонн пространственными каркасами. Вяжут и сваривают каркасы из арматуры рабочей и конструкционной. Используются схемы армирования с продольными стержнями, поперечными хомутами, сетками, усиливающими спиралями и стяжками.

Как определить шаг поперечной арматуры

Выбор арматуры по характеристикам

Стальные пространственные каркасы работают внутри железобетонных колонн на растяжение, изгиб, кручение и сдвиг. Поэтому основная характеристика арматуры предел текучести. Для лучшего сцепления с бетоном наружная поверхность имеет неровную поверхность – рифление.

Как определить шаг поперечной арматуры

По этим двум показателям арматуре присваивается «класс»:

  • АI – соответствует зарубежному А240;
  • АII – аналог А300;
  • АIII – то же самое, что и А400;
  • АIV – аналог А600;
  • АV – соответствует А800;
  • Специальный – А500С.

Цифра указывает предел текучести в МПа. Вся арматура рифленая, кроме гладкой АI (А240). В документации используется двойная запись, российская снаружи, по западным стандартам в скобках.

До 90-х годов прошлого века применялось только кольцевое рифление. Позже появились варианты серповидного двух и четырехстороннего, резьбового рифления.

Прутки и рулонный прокат могут соединяться между собой по длине обжимными и резьбовыми муфтами. Арматура с серповидным и кольцевым рифлением стоит дешевле в производстве. Но, требует применения более дорогой техники на стройплощадке для гидравлического обжима муфт.

Как определить шаг поперечной арматуры

Арматура с резьбовым рифлением фактически является длинными шпильками. Ее соединять по длине на порядок легче. Нужен лишь газовый ключ. Но производство обходится дороже.

Армирующий каркас собирается из продольных стержней и поперечных П-образных хомутов. Либо проволочными стяжками, либо точечной сваркой. Устанавливается в опалубку, остается в бетоне весь срок эксплуатации. В круглых колоннах поперечные хомуты имеют вид кольца, соответственно.

Как определить шаг поперечной арматуры

Такая технология называется ненапрягаемым армированием. Расход стального проката просто гигантский. Рабочими в схеме являются продольные прутки. Поэтому их диаметр больше, от 12 мм до 40 мм. Поперечные хомуты могут относиться и к рабочему и к конструктивному типу армирования.

Они необходимы для обеспечения проектной геометрии каркаса. И предотвращают раскрытие трещин в бетоне. Гораздо меньший  процент арматуры расходуется в технологии преднапряженного бетонирования. Вместо прутков здесь используются тросы.

Их натягивают с проектным усилием внутри опалубки.

Как определить шаг поперечной арматуры

Что позволяет создать внутри монолитной конструкции внутренние усилия. Которые компенсируют внешние нагрузки во время эксплуатации.

Как определить шаг поперечной арматуры

К сожалению, методика преднапряженных конструкций из железобетона не пригодна для строительства по месту. Чаще применяется в готовых плитах перекрытия, которые проще укладывать на место.

Самый экономичный вариант для отливки ЖБ колонн по месту – это использовать стержневую арматуру с серповидным рифлением класса А500С и А500СП.

 Из типовых марок сталей Ст3 спокойного, полуспокойного раскисления, 18ГС и 20ГСФ.

Как определить шаг поперечной арматуры

Кроме продольных стержней и поперечных хомутов в каркасы могут добавляться сетки. Например, с их помощью легче устанавливать пояса армирования пилонов – узких длинных колонн. Внутрь колонны 500х500 мм может закладываться спираль из арматуры или диагональные перемычки.

Защитный слой

Защитным слоем принято называть корку бетона поверх арматурного стержня, хомута. Назначение защитного слоя не ограничивается предотвращением коррозии стальной арматуры. Еще от повышает огнестойкость конструкции, обеспечивает устройство стыковки и анкеровки, совместной работы цементного камня и стали.

Как определить шаг поперечной арматуры

Толщина защитного слоя регламентируется СП 28.13330:

Условия эксплуатации конструкций зданий Толщина защитного слоя бетона, мм, не менее
В закрытых помещениях при нормальной и пониженной влажности 20
В закрытых помещениях при повышенной влажности (при отсутствии дополнительных защитных мероприятий) 25
На открытом воздухе (при отсутствии дополнительных защитных мероприятий) 30
В грунте (при отсутствии дополнительных защитных мероприятий), в монолитных фундаментах при наличии бетонной подготовки 40
В монолитных фундаментах при отсутствии бетонной подготовки (только для нижней рабочей арматуры) 70

В сборных конструкциях армирование круглых колонн выполняется с защитным слоем рабочей арматуры на 5 мм меньше табличных значений. Для конструкционной арматуры табличные размеры уменьшают на 10 мм. С другой стороны, запрещено армирование колонны 400х400 мм с размером защитного слоя меньше 10 мм либо диаметра стержня, конструкционной или рабочей.

При толщине защитного слоя стойки больше 50 мм в него дополнительно укладывается согнутая в цилиндр сетка с площадью сечения от 0,05 мм. Это конструкционное армирование.

Расстояния в свету

Выполняется армирование колонны 300х300 мм и других типоразмеров, в том числе, с учетом расстояния между прутками в свету:

  • не менее трех диаметров прутка;
  • больше среднего размера фракции наполнителя бетона;
  • до 400 мм для рабочей продольной арматуры.

Как определить шаг поперечной арматуры

При несоблюдении последнего максимального размера в каркас между рабочими прутками добавляется конструкционная арматура или сетка.

Продольное армирование колонн

В СП 28.13330 указан минимальный диаметр арматуры в колонне от 12 мм. Рекомендовано использовать стержни одинакового диаметра. Однако допускается применение двух типоразмеров. В этом случае толстая арматура смещается в углы, тонкая располагается на гранях.

Как определить шаг поперечной арматуры

В идеале берутся стержни или разматывается бухта необходимой длины. Стыки допускаются в нахлест, с обвязкой проволочными хомутами или сварным соединением. Их нужно стараться располагать в местах изменения сечения стоек.

Поперечное армирование колонн

В нижней таблице приведена зависимость диаметров арматуры продольной и поперечной:

Каркас Диаметр арматуры поперечной в зависимости от диаметра арматуры продольной, мм
40 36 32 28 25 22 20 18 16 12
Вязаный 10 10 8 8 8 6 5 5 5 5
Сварной 10 10 8 8 8 6 5 5 4 3

Зачем нужна поперечная арматура в колонне из железобетона, можно понять из характеристик конструкционных материалов:

  • бетон воспринимает колоссальные нагрузки на сжатие;
  • сталь работает на растяжение, кручение, изгиб, сдвиг;
  • в железобетоне свойства материалов объединяются.

Допустимый минимальный шаг поперечной арматуры в колонне составляет 12 и 15 диаметров прута для вязаных, сварных каркасов, соответственно. Максимальный шаг 400 мм и 500 мм при показателе расчетного сопротивления сжатию 450 – 500 кгс/см² и менее 400 кгс/см², соответственно.

Для колонн 300х300 мм и 400х400 мм допускается один цельный хомут П-образного или Т-образного профиля. Для больших сечений опор применяются два П-образных хомута, уложенных навстречу друг другу (П) или поперек друг друга (Т).

Проволочные и стержневые сетки косвенного армирования в колонне необходимы для придания каркасам проектной формы, усиления защитного бетонного слоя, прочих вспомогательных задач.

Анкеровка

В регламенте СП 63.13330 допускается  армирование колонны 500х500 мм с анкеровкой следующих типов:

  • при помощи анкерных устройств – головка высаженная, гайка, шайба, пластина регулировочная и так далее;
  • с монтажом изделий типа сварных сеток и П-образных стержней;
  • с приваренными поперечными стержнями;
  • при помощи загнутого конца в форме петли, лапки или крюка;
  • прямым стержнем.

Длина выпуска анкеров зависит от напряжения в этой зоне, качества бетона, схемы армирования, класса рифленого стержня и его поперечного сечения.

Анкеры применяются для замоноличивания консоли опоры с балками и плитами перекрытий. При этом в плиту может вмуровываться подошва, средняя часть, оголовок стойки. Длина анкеровки минимальная либо 200 мм, либо 15 диаметров прутка.

Соединения

Для ненапрягаемой арматуры допустимы следующие варианты соединения:

  • муфты – резьбовые или под опрессовку;
  • сварка – только внахлест;
  • вязка – проволочными хомутами, с загибом или с прямыми концами.

Без сварки по ГОСТ допускается армирование колонн 400х400 мм с наращиванием стержней не более 40 мм в диаметре. В поперечном сечении места стыка процент армирования не должен превышать 50% или 25% для рифленого, гладкого прутка, соответственно.

Минимальное расстояние соединений в свету на чертеже составляет 30 мм или 2 диаметра стержня. Перепуск в нахлесте должен быть больше 250 мм или 20d.

Гнутые стержни

В 75% случаев армирование монолитной колонны выполняется с выпуском концов прутков в плиты и балки для обеспечения монолитной конструкции силового пространственного каркаса здания.

По умолчанию чертеж изгиба, отгиба должен обеспечивать безопасность бетона внутри загнутого участка. Другими словами, цементный камень не должен крошиться и трескаться внутри петли, крюка.

Поэтому гнутся прутки при помощи оправки, диаметр которой зависит от аналогичного параметра стержня. Дополнительно следует учесть шаг прямой и косвенной арматуры в колоне, плите, балки. Чтобы торчащий хвост можно было связать с соседним каркасом ж/б изделия.

Выпуски

Кроме анкеровки выпуски арматуры из колонны используются еще и в местах перехода поперечного ее сечения. В этом случае форма выпущенных стержней прямая. Но концы еще и отогнуты внутри с уклоном 1/8 – 1/6, как на нижней схеме.

При этом шаг поперечной арматуры в колонне может меняться или оставаться прежним. В зависимости от сборных нагрузок этажа.

Схемы армирования колонн

Кроме тела колонна в большинстве случаев имеет дополнительные элементы:

  • подколонник – стакан, жестко связанный с фундаментом, в который устанавливается стойка;
  • капитель – уширение оголовка опоры;
  • консоль – боковой выступ под укладку плит, балок.

И если сама схема армирования колонны достаточно простая – вертикальные прутки, обвязанные рядами горизонтальных хомутов. То, для капителей и консолей разработаны специальные схемы армирования.

  • Например, типовое армирование консоли колонны производится по следующим схемам:
  • Для капителей поперечная арматура в колонне располагается следующим образом в месте уширения оголовка:

И это гораздо сложнее, чем арматурные выпуски из кирпичной колонны в балку из железобетона. Но и значительно прочнее, долговечнее.

Процент армирования колонн

Так как определяется процент армирования колонны простым арифметическим действием:

Ра/Рк

То, с его вычислением никаких проблем не возникает. Это показатель количества металла в поперечном разрезе бетона. Рекомендуется максимальный процент армирования колонн 5%. Оптимальным значением является 0,3 – 4%.

Минимальный процент армирования колонн нормативными документами в РФ не ограничен. Но, при содержании в поперечном сечении бетона меньше 0,25% стали колонна из разряда железобетонных автоматически переходит в категорию бетонных конструкций.

Таким образом, в клонах используются сварные, вязанные каркасы. Состоящие из продольной рабочей, поперечной косвенной и конструкционной вспомогательной арматуры. Концы которой могут отгибаться для связки с каркасами балок, плит перекрытия.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU.

Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер.

Читайте также:  Можно ли восстановить предстательную железу

Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Чтение результатов подбора арматуры

Результаты подбора арматуры для стержней заносятся в три строки:

  • СТРОКА 1 — полная арматура в сечении;
  • СТРОКА 2 — арматура, подобранная по I группе предельных состояний;
  • СТРОКА 3 — арматура, обусловленная кручением (отмечена знаком '*'). * Поперечная арматура от кручения – площадь сечения замкнутого внешнего хомута.
  • Структура строки результатов:
  • Знаком * отмечена арматура, обусловленная кручением.
  • ПРОДОЛЬНАЯ АРМАТУРА — площади подобранной продольной арматуры (см2) и процент армирования.

ЭЛЕМЕНТ — номер элемента в расчетной схеме; СЕЧЕНИЕ — номер армируемого сечения стержневого элемента; C/Н симметричное и несимметричное армирование; Как определить шаг поперечной арматуры

Схема расположения арматуры в привязке к местным осям стержня

  1. AU1 — площадь угловой нижней продольной арматуры (в левом нижнем углу сечения — против осей Z1 и Y1); AU2 — площадь угловой нижней продольной арматуры (в правом нижнем углу сечения — против оси Z1 и по направлению оси Y1); AU3 — площадь угловой верхней продольной арматуры (в левом верхнем углу сечения — против оси Y1 и по направлению оси Z1);
  2. AU4 — площадь угловой верхней продольной арматуры (в правом верхнем углу сечения — по направлению осей Z1 и Y1);
  3. Угловая арматура выводится только для тех стержней, в параметрах армирования «Тип» которых установлен признак «Выделять угловые арматурные стержни».
  4. AS1 — площадь нижней продольной арматуры (нижняя грань против направления оси Z1); AS2 — площадь верхней продольной арматуры (верхняя грань по направлению оси Z1);
  5. Если в материале «Тип» признак «Выделять угловые арматурные стержни» не установлен, то площадь угловых стержней входит в площадь нижнего AS1 и верхнего AS2 армирования.
  6. AS3 — площадь боковой продольной арматуры (левая грань против направления оси Y1); AS4 — площадь боковой продольной арматуры (правая грань по направлению оси Y1).

Для стержней есть 2 варианта алгоритма армирования: 1. «Дискретное армирование» – включено по умолчанию (галка «выделять угловые стержни» включена), в этом случае площадь угловых стержней не входит в площади армирования у граней, выводится отдельно как площади AUi. 2. «Распределенное армирование» – выключено по умолчанию (нужно выключить галку «выделять угловые стержни»), в этом случае площадь угловых стержней входит в площадь верхней (As2) и нижней (As1) арматуры. В общем случае «дискретное армирование» более экономное, поскольку в нем сначала наращиваются угловые стержни (которые на косой изгиб и кручение работают эффективнее, т.е. с большим плечом), пока не упрутся в ограничение углового стержня, заданного в материале «Арматура». И только затем начинается наращивание армирования между угловыми стержнями. А если включено «распределенное армирование», то при подборе идет наращивание всех площадок армирования у граней As1 и As2 (т.е. угловых и между ними).

  • ПОПЕРЕЧНАЯ АРМАТУРА — площади поперечной арматуры. ASW1 — вертикальная поперечная арматура (вдоль оси Z1);
  • ASW2 — горизонтальная поперечная арматура (вдоль оси Y1);
  • ШИРИНА РАСКРЫТИЯ ТРЕЩИН — ширина кратковременного и длительного раскрытия трещин (мм).

Рекомендации по подбору армирования стержней

Основное влияние на результат подбора армирования стержня оказывает привязка ц.т. арматуры к грани сечения. Данную величину следует назначать с учётом требований нормативных документов по величине защитного слоя см. СП 63.13330.2012 п.10.3.2, табл. 10.1.

Для предварительного расчёта рекомендуется задать привязку ц.т. арматуры стержня 5 см. После получения результата в виде требуемой площади арматуры, следует определить, какое количество стержней выбранного диаметра может перекрыть требуемую площадь арматуры.

После подбора нужного количества стержней, следует выполнить их расстановку в пределах габаритов сечения стержня.

Если первоначально планировалось устанавливать стержни в один ряд, то следует проверить — можно ли их расставить одним рядом, но так, чтобы соблюдались требования по минимальному расстоянию между стержнями в конструкции — см. СП 63.13330.2012, п.10.3.5.

Если расстановку стержней с соблюдением всех требований выполнить не удаётся, то следует внести изменения в конструкцию:

  • изменить классы бетона/арматуры;
  • увеличить сечение элемента;

Рекомендуется расстояние до ц.т. арматуры назначать с так, чтобы толщина защитного слоя бетона была кратной 5 мм. Фиксаторы арматуры имеют высоту, кратную 5 мм, но высота измеряется до нижней грани арматуры, вследствие чего, необходимо добавлять к величине привязки ц. т. арматуры половину диаметра стержня.

Если расчёт выполняется только по I группе предельных состояний, то выбирать диаметр арматуры следует исходя из возможности расстановки арматуры в сечении. Если выполняется расчёт по II группе предельных состояний, то при расстановке стержней в сечении, следует применять стрежни диаметром, не превышающим диаметр, указанный при задании характеристик материалов для расчёта ж.б. конструкций.

Чтение результатов подбора продольной арматуры для пластин

Структура строки Результатов:

ЭЛЕМЕНТ — номер элемента в расчетной схеме; ПРОДОЛЬНАЯ АРМАТУРА — площади подобранной продольной арматуры.

Как определить шаг поперечной арматуры

Схема расположения продольной арматуры плит и оболочек

AS1 — площадь нижней (для балок-стенок посредине) арматуры по направлению X (см2/пм); AS2 — площадь верхней арматуры по направлению X (см2/пм); AS3 — площадь нижней (для балок-стенок посредине) арматуры по направлению Y (см2/пм); AS4 — площадь верхней арматуры по направлению Y (см2/пм);

ПОПЕРЕЧНАЯ АРМАТУРА — площади поперечной арматуры: ASW1 — поперечная арматура по направлению X (см2/пм); ASW2 — поперечная арматура по направлению Y (см2/пм);

Рекомендации по подбору армирования пластин

Рекомендации аналогичны тем, что приведены выше, для стержней, с той лишь разницей, что при расчёте пластин по II группе предельных состояний при назначении материалов следует задавать шаг стержней, равный шагу фоновой арматуры, принимаемой в проекте.

Программа подберёт нужный диаметр стержня, который, при выбранном шаге, позволит обеспечить требуемую площадь арматуры. Допускается принимать меньший диаметр арматуры и располагать его с меньшим шагом, чем было принято изначально. После выбора сочетания шаг/диаметр, следует откорректировать привязки ц.т.

арматуры и выполнить повторный расчёт, по результатам которого удостовериться, что подобранная арматура обеспечивает выполнения требований прочности и трещиностойкости.

Фрагмент окна настройки материалов для расчёта ж.б. конструкций тип ПЛАСТИНА

Чтение результатов подбора поперечной арматуры

Реализованный в ЛИРЕ САПР вариант расчета на поперечную силу предполагает следующее:

  • из каждого расчетного сечения стержня простраивается ряд наклонных сечений;
  • проекция наклонного сечения С изменяется в пределах от ho до 2ho;
  • перебором с изменением С на 10% вычисляются: Qb→Qsw=Q-Qb→qsw=Qsw/(С*φsw)→(Asw/sw)=qsw/Rsw;
  • за расчетное поперечное армирование принимается max из полученных Asw/sw [см2/1.м.п.] (Asw/sw – интенсивность поперечного армирования на 1 м.п.)

Для стержней чтобы перейти к конкретному диаметру арматуры следует задаться шагом sw, тогда Asw=(Asw/sw)*sw. Зная Asw и количество срезов хомута в поперечном сечении n, площадь одного стержня Asw,i=Asw/n[см2].

Но также следует проверить достаточно ли при этом поперечного армирования на кручение, т.к.

арматура на кручение должна быть обеспечена замкнутым хомутом, поэтому в строке 3 выводится площадь одного замкнутого хомута с различным шагом вдоль стержневого элемента. Т.е.

нужно выбрать из строки 3 максимальное значение вертикальной (ASW1) и горизонтальной (ASW2). У одной грани элемента площадь крайнего поперечного стержня Asw,i должна быть больше, чем требуется из расчета на кручение.

К примеру, получили результат:

Т.е. Asw1/sw=8,8см2/1м.п. Принимаем шаг sw=0,2м, тогда Asw=8,8*0,2=1,76см2. При 4 срезах хомута (n=4) Asw,i=1,76/4=0,44см2→d8A240C c Asw,i=0,503см2.

Проверим достаточность поперечного армирования на кручение: Арматура исходя из прочности на кручение: Asw*=3,24*0,2=0,648см2>Asw,i=0,503см2 Т.к. Asw* — арматура у одной грани, то окончательно принимаем хомут d10A240C c Asw,i=0,785см2.

Для пластин следует помнить, что результаты выводятся на 1п.м. ширины элемента, а площадь поперечного армирования получена при шаге стержней 100см (Asw/sw). Т.е. при определении диаметра стержня следует задаться шагом стержней вдоль наклонного сечения и поперек его (sw и sw┴).

Так, если требуемое поперечное армирование 100(см2/1.м.п.)/1м. ширины, шаг стержней в направлении наклонного сечения 0,06м, а в перпендикулярном 0,1м, то площадь одного стержня Asw,i=(100*0,06)*0,1=0,6см2.

При отметке флажка Подбирать поперечную арматуру на 1 кв.м в диалоговом окне Общие характеристики при задании параметров для ж/б конструкций поперечная арматура подбирается в расчете на 1м2 (Asw). Расчетный шаг поперечной арматуры принят равным 1 метру для облегчения перехода к произвольному шагу поперечной арматуры.

Инструкция по осреднению поперечной арматуры в пластинах: https://rflira.ru/kb/2/123/

Армирование колонн: схемы, чертежи, минимальный и максимальный процент, нормы и правила

Как определить шаг поперечной арматуры

В монолитном строительстве, колоннами называют железобетонные вертикальные протяженные элементы, предназначенные для восприятия и передачи нагрузки от вышележащих конструкций. Для того чтобы они смогли обеспечить одноэтажным и многоэтажным сооружениям необходимый уровень жесткости и прочности, по вертикали, их усиливают арматурным каркасом. Разберем, как правильно и чем выполнить армирование колонны, чтобы она выдержала все будущие нагрузки на сжатие, скручивание и изгиб.

Зачем армировать колонны?

Арматурный каркас увеличивает такие показатели бетонной колонны, как:

  • Прочность.
  • Сейсмостойкость.
  • Устойчивость к появлению трещин.
  • Долговечность.

На сколько, сильно увеличатся данные показатели, зависит от диаметра используемой арматуры и марки бетона. Так же армирование даёт возможность заливать колонны не только с простой формой поперечного сечения –  квадратной и прямоугольной. Но и более сложной – двутавровой и круглой (сплошной и полой).

Материал для усиления колонн

Для армирования колонн используют арматуру следующих классов:

Как определить шаг поперечной арматуры

Технологические нормы по созданию армирующего каркаса

Для того чтобы правильно выполнить армирование монолитной колонны необходимо соблюдать следующие нормы по его устройству.

Диаметр арматуры

Минимальный диаметр стальных рабочих продольных стержней для сборных колонн должен быть равен не менее 16 мм. Для монолитных допускается применять арматуру диаметром 12 мм.

Рекомендуется, для создания армирующего каркаса колонны, использовать пруты одинаковой диаметра. Но допускается и применение двух разных, в этом случае стержни большего размера располагаются по углам колонны, а меньшего между ними по центру.

Минимальный и максимальный процент армирования колонны

Минимальный размер сечения арматуры для всех колонн разный. Определяется он расчетными действиями, учитываются все будущие нагрузки, которые будут действовать на колонну, временные, длительные и постоянные.

Максимальная площадь сечения рабочей продольной арматуры не рекомендуется делать более 5% площади поперечного сечения колонны. Так как в этом случае тяжело расположить стержни в пределах сечения.

Оптимальный процент армирования колонн находиться в пределах 0,4-3%. В местах стыковки это значение будет в 2 раза больше.

Пример расчета процента армирования колонны 400 на 400 мм, арматурой 16 диаметра – 4 шт.

Расположение продольных стержней

Максимально допустимое значение расстояния между осями продольных стержней не должно превышать 400 мм. Если расстояние более 400 мм, то следует между ними установить дополнительные стержни диаметром не менее 12 мм.

Читайте также:  Ящик для хранения патронов металл

Рекомендуемое значение расстояния между стержнями в свету для сборных колонн рекомендуется делать не менее 30 мм, а для монолитных от 50 мм. В обоих случаях минимальное значение следует принимать не менее диаметра используемой арматуры.

Размер и расположение поперечных элементов

Размер поперечных стержней, зависит от наибольшего размера продольного прута в сечении колонны, а также от способа их соединения (вязка или сварка). Минимальный диаметр поперечных прутов указан в таблице ниже:

Как определить шаг поперечной арматурыТаблица зависимости размера поперечных стержней от диаметра продольной арматуры.

На размер шага расположения хомутов в колонне влияет класс арматуры, и  ее показатели расчетного сопротивления сжатию Rас.

  • Для Rа.с.

Конструктивные требования по армированию балок и плит перекрытия

Согласно СП 52-101-2003 «Бетонные и железобетонные конструкции без предварительного напряжения арматуры» п.8.3.

6: «В железобетонных линейных конструкциях и плитах наибольшие расстояния между осями стержней продольной арматуры, обеспечивающие эффективное вовлечение в работу бетона, равномерное распределение напряжений и деформаций, а также ограничение ширины раскрытия трещин между стержнями арматуры, должны быть не более:

  • — в железобетонных балках и плитах:
  • 200 мм — при высоте поперечного сечения, h ≤ 150 мм;
  • 1,5h и 400 мм — при высоте поперечного сечения h > 150 мм;»

Понимать этот пункт следует так. Например рассчитывается однопролетная плита перекрытия высотой до 150 мм и по расчету для армирования 1 м ширины такой плиты требуется 3.43 см2 арматуры. Согласно таблицы 170.

2 для армирования можно использовать 1 стержень диаметром 22 мм, 2 стержня диаметром 16 мм, 3 стержня диаметром 14 мм, 4 стержня диаметром 12 мм, 5 стержней диаметром 10 мм, 7 стержней диаметром 8 мм и т.д. Так вот, для армирования такой плиты следует принимать не менее 5 стержней диаметром 10 мм.

Именно это и обеспечит более равномерное распределение напряжений и деформаций и более эффективное вовлечение в работу бетона.

Потому как расчетная схема и реальная работа конструкции — две большие разницы и когда мы рассматриваем материал 1 м ширины железобетонной плиты, как обладающий одинаковыми свойствами по всей ширине, мы делаем очень большое допущение. А чем более равномерно по рассматриваемой ширине будет распределена арматура, тем ближе будет расчетная схема к реальной работе конструкции.

А в Пособии к СП 52-101.2003 данный пункт дополнен следующей рекомендацией (п. 5.13):

«При армировании неразрезных плит сварными рулонными сетками допускается вблизи промежуточных опор все нижние стержни переводить в верхнюю зону.

Неразрезные плиты толщиной не более 80 мм допускается армировать одинарными плоскими сетками без отгибов.»

В данном случае речь идет о плитах перекрытия, которые могут рассматриваться как многопролетные балки (пример расчета такого перекрытия см. в статье «Расчет монолитного ребристого перекрытия»). Соответственно в таких плитах возникает момент не только в пролете, но и на промежуточных опорах.

И если подобрать арматуру таким образом, что она будет воспринимать моменты, действующие на промежуточных опорах, то армирование можно выполнять одной сеткой для верхней и для нижней зоны сечения, выполняя переход из верхней зоны в нижнюю или наоборот в местах, где расчетный момент, действующий на поперечное сечение плиты, равен нулю. Выглядит это примерно так:

Как определить шаг поперечной арматуры

Рисунок 401.1. Варианты армирования монолитной неразрезной плиты б) сварными рулонными сетками с переходом в верхнюю зону сечения на промежуточных опорах, в) сварными одинарными плоскими сетками г) отдельными стержнями (одиночной арматурой).

Ну а теперь пора переходить к не менее важному п. 8.3.7 (5.14 в Пособии): «В балках и ребрах шириной более 150 мм число продольных рабочих растянутых стержней в поперечном сечении должно быть не менее двух. При ширине элемента 150 мм и менее допускается устанавливать в поперечном сечении один продольный стержень.»

Данная рекомендация основана все на том же требовании обеспечить эффективное вовлечение в работу бетона, а также максимально возможное перераспределение напряжений и деформаций.

Дело в том, что в балках и ребрах монолитного ребристого перекрытия шириной > 150 мм может поместиться 2 стержня арматуры с учетом требуемой толщины защитного слоя бетона и соблюдении минимального расстояния между стержнями при ожидаемом максимальном размере крупного наполнителя бетонной смеси и этим нужно пользоваться.

Согласно п. 8.3.8 (5.15): «В балках до опоры следует доводить стержни продольной рабочей арматуры с площадью сечения не менее 1/2 площади сечения стержней в пролете и не менее двух стержней.

В плитах до опоры следует доводить стержни продольной рабочей арматуры на 1 м ширины плиты с площадью сечения не менее 1/3 площади сечения стержней на 1 м ширины плиты в пролете и не менее двух стержней.»

Данный пункт повествует нам о крайних опорах многопролетных неразрезных плит и балок или просто об опорах однопролетных балок и плит.

А также о том что даже если изгибающий момент в точках начала опоры однопролетных балок и плит, а также на крайних опорах многопролетных плит и балок равен нулю, то все равно для надлежащей анкеровки арматуру следует предусматривать до опоры и даже дальше.

Насколько дальше, на то есть отдельный пункт (5.35). Тем не менее этот пункт не запрещает заводить за грань опоры всю расчетную арматуру, если это арматура периодического профиля.

А в СНиП 2.03.01-84 подобный пункт ((5.20)) дополнен следующей рекомендацией: «В плитах расстояния между стержнями, заводимыми за грань опоры, не должны превышать 400 мм, причем площадь сечения этих стержней на 1 м ширины плиты должна составлять не менее 1/3 площади сечения стержней в пролете, определенной расчетом по наибольшему изгибающему моменту.»

Из чего следует, что даже если расстояние между стержнями продольной арматуры будет принято согласно указанных выше рекомендаций, а именно не более 200 мм, то все равно за грань опоры придется заводить половину всех продольных стержней. И только если расстояние между стержнями продольной арматуры будет приниматься около 130 мм, то можно заводить за грань опоры третью часть стержней.

И тут возникает очень важный вопрос: а на сколько можно не доводить до грани опоры продольные стержни арматуры в однопролетных балках и плитах и на крайних опорах многопролетных балок и плит? К сожалению ни один из вышеперечисленных нормативных документов прямого ответа на этот вопрос не дает, а приводятся только формулы, да таблицы, в которых мы и попробуем сейчас разобраться.

Например, все для той же однопролетной плиты, рассматриваемой как балка на шарнирных опорах длиной l = 3 м, требуемое сечение составляет 3.43 см2. Однако арматура с таким сечением необходима только посредине плиты, где изгибающий момент максимальный.

На опорах, согласно принятой расчетной схеме момент равен нулю и арматура вроде как вообще не требуется, однако с целью анкеровки часть арматуры все же заводится за грань опоры.

И хотя нет прямой зависимости между значением изгибающего момента и требуемой площадью арматуры мы все же предположим такую зависимость, получив в итоге небольшой запас по прочности.

Итак, если планируется не доводить до опор половину продольных стержней, то эту половину следует доводить до точки, в которой согласно эпюре моментов значение изгибающего момента будет в 2 раза меньше, т.е. М = ql2/16 плюс расстояние, необходимое для анкеровки арматуры в растянутом бетоне.

  1. Согласно уравнению моментов:
  2. Мx = qlx/2 — qx2/2 = ql2/16
  3. тогда
  4. x = 0.146l или примерно 438 мм (методы решения квадратных уравнений здесь не приводятся)

Для арматуры периодического профиля минимально допустимая длина анкеровки в растянутом бетоне составляет согласно Таблице 328.1 не менее 20d = 200 мм, не менее 250 мм, а также не менее (0.7·3600/117 + 11)10 = 325 мм (пояснения к формуле там же, где и таблица). Таким образом обрываемую арматуру можно не доводить до граней опор на 438 — 325 = 113 мм.

Как видим, экономия при обрывании арматуры в пролете не то чтобы сумасшедшая и потому при выполнении 1-2 плит лучше довести все продольные стержни до опор. Так оно надежней будет. Да и перераспределение усилий в плите при этом будет более равномерным.

Ну и еще одно требование, относящееся к балкам, достаточно редко встречающимся в малоэтажном строительстве, но тем не менее (п. 5.

16): «В изгибаемых элементах при высоте сечения более 700 мм у боковых граней должны ставиться конструктивные продольные стержни с расстояниями между ними по высоте не более 400 мм и площадью сечения не менее 0,1% площади сечения бетона, имеющего размер, равный по высоте элемента расстоянию между этими стержнями, по ширине — половине ширины ребра элемента, но не более 200 мм.»

На первый взгляд такое требование выглядит нелогичным — зачем устанавливать арматуру приблизительно посредине высоты сечения, т.е.

там, где растягивающие или сжимающие напряжения минимальны или их вовсе нет? Тем не менее нельзя забывать о том, что стержни поперечной арматуры могут работать на сжатие, а значит чем меньше их расчетная длина, тем больше устойчивость.

Соответственно установка дополнительных продольных стержней, особенно при сварном каркасе, уменьшает расчетную длину стержней поперечного армирования как минимум вдвое.

Примечание: выражение в данном пункте «имеющего размер, равный по высоте элемента расстоянию между этими стержнями, по ширине — половине ширины ребра элемента, но не более 200 мм» для меня тайна великая есмь. Причем в СНиПе этот пункт формулируется практически также. Предполагаю, что это как-то связано с балками таврового сечения, но утверждать не буду.

Кстати, пора поговорить о поперечном армировании.

Поперечное армирование

п.8.3.9: «Поперечную арматуру следует устанавливать исходя из расчета на восприятие усилий, а также с целью ограничения развития трещин, удержания продольных стержней в проектном положении и закрепления их от бокового выпучивания в любом направлении.

Поперечную арматуру устанавливают у всех поверхностей железобетонных элементов, вблизи которых ставится продольная арматура.»

Суть этого требования в том, что поперечная арматура никогда не помешает. И даже если по расчету не требуется, тем не менее будет способствовать более равномерному распределению напряжений в сечениях ж/б элемента.

Согласно п. 8.3.10 «…Диаметр поперечной арматуры в вязаных каркасах изгибаемых элементов принимают не менее 6 мм.

В сварных каркасах диаметр поперечной арматуры принимают не менее диаметра, устанавливаемого из условия сварки с наибольшим диаметром продольной арматуры.»

Требования данного пункта, на мой взгляд очевидны и дополнительных комментариев не требуют. В том смысле, что арматуру диаметром 5 мм трудно приварить к арматуре диаметром 30 мм.

Понравилась статья? Поделиться с друзьями:
Станок