Электрическая проводимость металла это

Содержание
  1. Проводимость тока материалами
  2. Электрическая проводимость | это… Что такое Электрическая проводимость?
  3. Удельная проводимость
  4. Связь с коэффициентом теплопроводности
  5. Электропроводность металлов
  6. Опыты Толмена и Стюарта
  7. Удельная проводимость некоторых веществ
  8. См. также
  9. Примечания
  10. Таблица удельных сопротивлений проводников и металлов. – Магазин "Электрик" в Рогачеве, услуги электрика
  11. Проводимость и сопротивление
  12. Проводники и диэлектрики
  13. Сопротивление провода
  14. Какое сопротивление меди и алюминия
  15. Свойства резистивных материалов
  16. Удельное сопротивление металлов, электролитов и веществ (Таблица)
  17. Удельное сопротивление металлов и изоляторов
  18. Таблица удельное сопротивление металлов
  19. Таблица удельное сопротивление изоляторов
  20. Удельное сопротивление чистых металлов при низких температурах
  21. Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К
  22. Удельное сопротивление электролитов
  23. Состав и структура железа
  24. Классическая электронная теория проводимости Друде-Лоренца
  25. Формула Друде
  26. Опыт Толмена и Стюарта

Подробности Просмотров: 637

«Физика — 10 класс»

Как движутся электроны в металлическом проводнике, когда в нём нет электрического поля? Как изменяется движение электронов, когда к металлическому проводнику прикладывают напряжение?

Электрический ток проводят твёрдые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

Вы познакомились с электрическим током в металлических проводниках и с установленной экспериментально вольт-амперной характеристикой этих проводников — законом Ома.

Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ — плазма. Эти проводники широко используются в технике.

В вакуумных электронных приборах электрический ток образуют потоки электронов.

Металлические проводники находят самое широкое применение в передаче электроэнергии от источников тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д.

Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников.

Долгое время полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, когда сначала была предсказана теоретически, а затем обнаружена и изучена легкоосуществимая возможность управления электрической проводимостью полупроводников.

Нет универсального носителя тока. В таблице приведены носители тока в различных средах.

Электрическая проводимость металла это

Электронная проводимость металлов.

Начнём с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её объяснении с точки зрения молекулярнокинетической теории.

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 10 28 1/м 3 .

Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10-4 м/с.

Экспериментальное доказательство существования свободных электронов в металлах.

Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Мандельштама и Папалекси (1913), Стюарта и Толмена (1916). Схема этих опытов такова.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 16.1). К концам дисков при помощи скользящих контактов подключают гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают.

После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток.

Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока в этом опыте говорит о том, что он создаётся движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m.

Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 • 1011 Кл/кг.

Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов.

Движение электронов в металле.

Свободные электроны в металле движутся хаотично. При подключении проводника к источнику тока в нём создаётся электрическое поле, и на электроны начинает действовать кулоновская сила = qe. Под действием этой силы электроны начинают двигаться направленно, т. е. на хаотичное движение электронов накладывается Скорость направленного движения увеличивается в течение некоторого времени t0 до тех пор, пока не произойдёт столкновение электронов с ионами кристаллической решётки. При этом электроны теряют направление движения, а затем опять начинают двигаться направленно. Таким образом, скорость направленного движения электрона изменяется от нуля до некоторого максимального значения, равного В результате средняя скорость упорядоченного движения электронов оказывается равной т. е. пропорциональной напряжённости электрического поля в проводнике: υ ~ Е и, следовательно, разности потенциалов на концах проводника, так как где l — длина проводника.

Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~ U.

В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Назад в раздел «Физика — 10 класс, учебник Мякишев, Буховцев, Сотский»

Электрический ток в различных средах — Физика, учебник для 10 класса — Класс!ная физика

Электрическая проводимость различных веществ. Электронная проводимость металлов — Зависимость сопротивления проводника от температуры. Сверхпроводимость — Электрический ток в полупроводниках.

Собственная и примесная проводимости — Электрический ток через контакт полупроводников с разным типом проводимости. Транзисторы — Электрический ток в вакууме. Электронно-лучевая трубка — Электрический ток в жидкостях. Закон электролиза — Электрический ток в газах.

Несамостоятельный и самостоятельный разряды — Плазма — Примеры решения задач по теме «Электрический ток в различных средах»

Проводимость тока материалами

Электрическая проводимость металла это

Для того, чтобы говорить об электропроводности, нужно вспомнить о природе электрического тока как такового. Так, при помещении какого-либо вещества внутрь электрического поля происходит передвижение зарядов. Данное движение провоцирует действие как раз электрического поля. Именно поток электронов и есть электроток. Сила тока, как известно нам из школьных уроков по физике, измеряется в Амперах и обозначается латинской буквой I. 1 А представляет собой электроток, при котором за время равное одной секунде проходит заряд в 1 Кулон.

Электрический ток бывает нескольких видов, а именно:

  • постоянный ток, который не изменяется в отношении показателя и траектории движения в любой момент времени;
  • переменный ток, который изменяет свой показатель и траекторию во времени (производится генераторами и трансформаторами); 
  • пульсирующий ток претерпевает изменения в величине, но при этом не изменяет своего направления.

Под влиянием электрического поля разного рода материалы способны проводить электроток. Именно данное свойство называется электропроводность, которая у каждого вещества индивидуальна.

Показатель электропроводности напрямую связан с содержанием в материале свободно движущихся зарядов, которые не имеют связи с кристаллической сеткой, молекулами или атомами.

Таким образом, по степени проводимости тока материалы делятся на следующие типы:

  • проводники;
  • диэлектрики;
  • полупроводники.

Самый большой показатель электрической проводности свойственен проводникам. Они представлены в виде металлов или электролитов. Внутри металлических проводников ток обуславливается движением свободных заряженных частиц, таким образом, электропроводимость металлов электронная. Электролитам же свойственна электропроводность ионная, обусловленная движением именно ионов.

Высокая способность к электропроводности трактуется в электронной теории. Так, электроны курсируют среди атомов по всему проводнику из-за их слабой валентной связи с ядрами.

То есть, свободно движущиеся заряженные частицы внутри металла закрывают собой пустоты среди атомов и характеризуются хаотичностью передвижения.

Если же в электрическое поле будет помещен проводник из металла, электроны примут порядок в своем передвижении, перейдя к полюсу с положительным зарядом. Именно за счет этого и создается электрический ток. Скорость распространения электрического поля в пространстве аналогична скорости света.

Именно с данной скоростью электроток движется внутри проводника. Стоит отметить, что это не скорость движения непосредственно электронов (их скорость совсем мала и равняется максимум нескольким мм/сек), а скорость распространения электроэнергии по всему веществу.

При свободном передвижении зарядов внутри проводника они встречают на своем пути различные микрочастицы, с которыми происходит столкновение и некоторая энергия отдается им. Проводники, как известно, испытывают нагрев. Это происходит как раз из-за того, что преодолевая сопротивление, энергия электронов распространяется в качестве теплового выделения.

Такие «аварии» зарядов создают препятствие передвижению электронов, что именуется в физике сопротивлением. Небольшое сопротивление несильно нагревает проводник, а при высоком достигаются большие температуры. Последнее явление используется в нагревательных устройствах, а также в традиционных лампах накаливания. Измерение сопротивления происходит в Омах. Обозначается латинской буквой R.

Читайте также:  Металлы с низкими температурами плавления

Электропроводность – явление, которое отображает способность металла или электролита проводить электроток. Данная величина обратная величине электрического сопротивления. Измеряется электропроводность Сименсами (См), а обозначается буквой G.

Поскольку атомы создают препятствие прохождению тока, показатель сопротивления у веществ различный. Для обозначения было введено понятие удельного сопротивления (Ом-м), которое как раз дает информацию о способностях проводимости веществ.

Современные проводящие материалы имеют форму тонких ленточек, проволок с конкретной величиной площади поперечного сечения и определенной длиной. Удельная электропроводность и удельное сопротивление измеряется в следующих единицах: См-м/мм.кв и Ом-мм.кв/м соответственно.

Таким образом,удельное электрической сопротивление и удельная электропроводность являются характеристиками проводящей способности того или иного материала, площадь сечения которого равняется 1 мм.кв., а длина 1 м. Температура для характеристики – 20 градусов по Цельсию.

Хорошими проводниками электрического тока среди металлов являются драгоценные металлы, а именно золото и серебро, а также медь, хром и алюминий. Стальные и железные проводники имеют более слабые характеристики.

Стоит отметить, что металлы в чистом виде отличаются более лучшими электропроводными свойствами по сравнению со сплавами металлов.

Для высокого сопротивления, если это необходимо, применяют вольфрамовые, нихромовые и константные проводники.

Имея знания о показателях удельного сопротивления или удельной проводимости очень просто вычислить сопротивление и электропроводность определенного проводника. При этом в расчетах должна использоваться длина и площадь поперечного сечения конкретного проводника.

Важно знать, что показатель электропроводности, а также сопротивление любого материала напрямую зависит от температурного режима.

Это объясняется тем, что при изменении в температуре происходят и изменения в частоте и амплитуде колебаний атомов. Таким образом, при росте температуры параллельно возрастет и сопротивление потоку движущихся зарядов.

А при снижении температуры, соответственно, снижается сопротивление, а электропроводность возрастает.

В некоторых материалах зависимость температуры от сопротивления выражена очень ярко, в некоторых более слабо.

Электрическая проводимость | это… Что такое Электрическая проводимость?

Электри́ческая проводи́мость (электропроводность, проводимость) — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В СИ единицей измерения электрической проводимости является сименс (называемая также в некоторых странах Мо)[1].

Удельная проводимость

Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

  • где
  • В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.
  • Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

векторы же плотности тока и напряжённости поля в этом случае, вообще говоря, не коллинеарны.

Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) ортогональную систему координат (собственные оси тензора проводимости), в которой тензор проводимости диагонализуется. В таких координатах соотношение упрощается и записывается так:

(но такое соотношение для анизотропной среды реализуется только в одних выделенных координатах)[2]

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае[3] приближённо, причём приближение это хорошо только для сравнительно малых величин E.

Впрочем, и при таких величинах E, когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность.

В случае нелинейной зависимости J от E вводится дифференциальная удельная электропроводность (для анизотропных сред: ).

Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:

В системе СИ удельная электропроводность измеряется в сименсах на метр (См/м) или в Ом−1·м−1. В СГСЭ единицей удельной электропроводности является обратная секунда (с−1).

Связь с коэффициентом теплопроводности

Закон Видемана — Франца устанавливает однозначную связь удельной электрической проводимости с коэффициентом теплопроводности :

где k — постоянная Больцмана, e — элементарный заряд.

Электропроводность металлов

Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускался постоянный электрический ток.

После этого исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока.

Эти опыты показали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос о природе носителей заряда в металлах.

Опыты Толмена и Стюарта

Прямым доказательством, что электрический ток в металлах обуславливается движением электронов, были опыты Толмена и Стюарта, проведённые в 1916 г. Идея этих опытов была высказана Мандельштамом и Папалекси в 1913 г.

Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.

При достаточно плотной намотке и тонких проводах можно считать, что линейное ускорение катушки при торможении направлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции — направленная противоположно ускорению ( — масса электрона). Под её действием электрон ведёт себя в металле так, как если бы на него действовало некоторое эффективное электрическое поле:

  1. Поэтому эффективная электродвижущая сила в катушке, обусловленная инерцией свободных электронов, равна
  2. где L — длина провода на катушке.[4]
  3. Введём обозначения: I — сила тока, протекающего по замкнутой цепи, R — сопротивление всей цепи, включая сопротивление проводов катушки и проводов внешней цепи и гальванометра. Запишем закон Ома в виде:
  4. Количество электричества, протекающее через поперечное сечение проводника за время dt при силе тока I, равно
  5. Тогда за время торможения через гальванометр пройдёт заряд

Значение Q находится по показаниям гальванометра, а значения L, R, v0 известны, что позволяет найти значение Эксперименты показывают, что соответствует отношению заряда электрона к его массе. Тем самым доказано, что наблюдаемый с помощью гальванометра ток обусловлен движением электронов.

Удельная проводимость некоторых веществ

Удельная проводимость приведена при температуре 20 °C[5]:

См. также

  • Адмиттанс
  • Зонная теория
  • Эффект Холла
  • Сверхпроводимость

Примечания

  1. Электропроводность (физич.) — статья из Большой советской энциклопедии
  2. В случае совпадения двух из трех собственных чисел , есть произвол в выборе такой системы координат (собственных осей тензора ), а именно довольно очевидно, что можно произвольно повернуть ее относительно оси с отличающимся собственным числом, и выражение не изменится. Однако это не слишком меняет картину. В случае же совпадения всех трех собственных чисел мы имеем дело с изотропной проводимостью, и, как легко видеть, умножение на такой тензор сводится к умножению на скаляр.
  3. Для многих сред линейное приближение является достаточно хорошим или даже очень хорошим для достаточно широкого диапазона величин электрического поля, однако существуют среды, для которых это совсем не так уже при весьма малых E.
  4. Все точки провода движутся с одинаковым ускорением, поэтому можно выносить за знак интеграла.
  5. Кухлинг Х. Справочник по физике. Пер. с нем., М.: Мир, 1982, стр. 475 (табл. 39); значения удельной проводимости вычислены из удельного сопротивления и округлены до 3 значащих цифр.
  • А. Н. Матвеев. Электричество и магнетизм. (Первое изд. М.: Высшая школа, 1983. 463с.)
Читайте также:  Шлифовальное оборудование по металлу

Таблица удельных сопротивлений проводников и металлов. – Магазин "Электрик" в Рогачеве, услуги электрика

Электрическое сопротивление, одно из составляющих закона Ома, выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный резистор, изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ – это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны.

На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева.

В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

  • В растворах носителями заряда являются ионы.
  • Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:
  • Читать также: Фото лесоруба с бензопилой

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

где: R — сопротивление провода (Ом) ρ — удельное сопротивление металла (Ом.m) L — длина провода (м) А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Какое сопротивление меди и алюминия

Алюминий — это легкий металл, который легко поддается обработке и литью. Обладает высокой электропроводностью: он стоит на 4 месте после серебра, меди и золота.

Важно! Несмотря на ряд достоинств (невысокую стоимость, малый вес, простоту обработки и другие) в долгосрочной перспективе алюминиевые провода менее выгодны, чем медные.

В электротехнике значение имеют 2 термина:

  • Электропроводность: отвечает за передачу тока от одной точки к другой. Чем выше проводимость металла, тем лучше он передает электричество. При +20 градусах проводимость меди составляет 59,5 миллионов сименс на метр (См/м), алюминия — 38 миллионов См/м. Проводимость медного кабеля практически не зависит от температуры.
  • Электросопротивление: чем выше это понятие, тем хуже вещество будет пропускать ток. Удельное сопротивление меди составляет 0,01724-0,0180 мкОм/м, алюминия — 0,0262-0,0295.
  1. Вам это будет интересно Особенности мощности постоянного тока
  2. Алюминиевые кабели востребованы не меньше медных
  3. Иными словами, медь обладает более высокой проводимостью и меньшим сопротивлением, чем алюминий.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект. Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов.

Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов.

Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко поддается пайке и имеет более низкий температурный коэффициент.

Источники: joyta.ru, dpva.ru

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное сопротивление металлов и изоляторов

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см.

Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно.

Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы 104 ρ (ом·см) Чистые металлы 104 ρ (ом·см)
Серебро 0,016 Хром 0,131
Медь 0,017 Тантал 0,146
Золото 0,023 Бронза 1) 0,18
Алюминий 0,029 Торий 0,18
Дюралюминий 0,0335 Свинец 0,208
Магний 0,044 Платинит 2) 0,45
Кальций 0,046 Сурьма 0,405
Натрий 0,047 Аргентан 0,42
Марганец 0,05 Никелин 0,33
Иридий 0,063 Манганин 0,43
Вольфрам 0,053 Константан 0,49
Молибден 0,054 Сплав Вуда 3) 0,52 (0°)
Родий 0,047 Осмий 0,602
Цинк 0,061 Сплав Розе 4) 0,64 (0°)
Калий 0,066 Хромель 0,70-1,10
Никель 0,070
Кадмий 0,076 Инвар 0,81
Латунь 0,08 Ртуть 0,958
Кобальт 0,097 Нихром 5) 1,10
Железо 0,10 Висмут 1,19
Палладий 0,107 Фехраль 6) 1,20
Платина 0,110 Графит 8,0
Олово 0,113

Таблица удельное сопротивление изоляторов

Изоляторы ρ (ом·см) Изоляторы ρ (ом·см)
Асбест 108 Слюда 1015
Шифер 108 Миканит 1015
Дерево сухое 1010 Фарфор 2·1015
Мрамор 1010 Сургуч 5·1015
Целлулоид 2·1010 Шеллак 1016
Бакелит 1011 Канифоль 1016
Гетинакс 5·1011 Кварц _|_ оси 3·1016
Алмаз 1012 Сера 1017
Стекло натр 1012 Полистирол 1017
Стекло пирекс 2·1014 Эбонит 1018
Кварц || оси 1014 Парафин 3·1018
Кварц плавленый 2·1014 Янтарь 1019

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Читайте также:  Винт самонарезающий кровельный по металлу с шайбой гост

Чистые металлы t (°С) Удельное сопротивление, 104 ρ (ом·см)
Висмут -200 0,348
Золото -262,8 0,00018
Железо -252,7 0,00011
Медь -258,6 0,00014 1
Платина -265 0,0010
Ртуть -183,5 0,0697
Свинец -252,9 0,0059
Серебро -258,6 0,00009

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлы Т (°К) RT/R0
Алюминий 77,7 1,008
20,4 0,0075
Висмут 77,8 0,3255
20,4 0,0810
Вольфрам 78,2 0,1478
20,4 0,0317
Железо 78,2 0,0741
20,4 0,0076
Золото 78,8 0,2189
20,4 0,0060
Медь 81,6 0,1440
20,4 0,0008
Молибден 77,8 0,1370
20,4 0,0448
Никель 78,8 0,0919
20,4 0,0066
Олово 79,0 0,2098
20,4 0,0116
Платина 91,4 0,2500
20,4 0,0061
Ртуть 90,1 0,2851
20,4 0,4900
Свинец 73,1 0,2321
20,5 0,0301
Серебро 78,8 0,1974
20,4 0,0100
Сурьма 77,7 0,2041
20,4 0,0319
Хром 80,0 0,1340
20,6 0,0533
Цинк 83,7 0,2351
20,4 0,0087

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

c (%) NH4Cl NaCl ZnSO4 CuSO4 КОН NaOH H2SO4
5 10,9 14,9 52,4 52,9 5,8 5,1 4,8
10 5,6 8,3 31,2 31,3 3,2 3,2 2,6
15 3,9 6,1 24,1 23,8 2,4 2,9 1,8
20 3,0 5,1 21,3 2,0 3,0 1,5
25 2,5 4,7 20,8 1,9 3,7 1,4

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, — М.: 1960.

Состав и структура железа

Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.

Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.

Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:

  • α-Fe – существует от нуля до +769 С. Имеет объемно-центрированную кубическую решетку и является ферромагнетиком, то есть, сохраняет намагниченность в отсутствие внешнего магнитного поля. +769 С – точки Кюри для металла;
  • от +769 до +917 С появляется β-Fe. От α-фазы она отличается лишь параметрами решетки. Практически все физические свойства при этом сохраняются за исключением магнитных: железо становится парамагнетиком, то есть, способность намагничиваться оно утрачивает и втягивается в магнитное поле. Металловедение β-фазу как отдельную модификацию не рассматривает. Поскольку переход не влияет на значимые физические характеристики;
  • в диапазоне от 917 до 1394 С существует γ-модификация, которой присуща гранецентрированная кубическая решетка;
  • при температуре выше +1394 С появляется δ-фаза, для которой характерна объемно-центрированная кубическая решетка.

При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.

Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.

Теперь настал черед свойств металла железа.

О структуре железа рассказывает этот видеосюжет:

( 1 оценка, среднее 5 из 5 )

Классическая электронная теория проводимости Друде-Лоренца

Теория Друде была разработана в 1900 году, через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов.

Электронная теория Друде-Лоренца

Согласно теории, носителями тока в металлах являются свободные электроны.

Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют «электронный газ».

Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ. 

Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.

Приведем основные положения теории Друде:

  1. Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
  2. Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
  3. Вероятность для электрона испытать столкновение за единицу времени равна 1τ.
  4. Состояние термодинамического равновесия достигается благодаря столкновениям.

Важно.

Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.

В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.

  • Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.
  • Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.
  • Терия Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.
  1. Среднюю скорость электронов можно вычислить по формуле для идеального газа:
  2. v=8kTπm
  3. Здесь k — постоянная Больцмана, T — температура металла, m — масса электрона.
  4. При включении внешнего электрического поля, на хаотичное движение частиц «электронного газа» накладывается упорядоченное движение электронов под действием сил поля, когда электроны начинают упорядоченно двигаться со средней скоростью u. Величину этой скорости можно оценить из соотношения:
  5. j=nqu,
  6. где j — плотность тока, n — концентрация свободных электронов, q — заряд электрона.
  7. При больших плотностях тока рассчеты дают следующий результат: средняя скорость хаотичного движения электронов во много раз (≈108) больше скорости упорядоченного движения под действием поля. При вычислении суммарной скорости полагают, что
  8. u→+v→≈v→

Формула Друде

  • Формула Друде выводится из кинетического уравнения Больцмана и имеет вид:
  • σ=nq2τm*
  • Здесь m* — эффективная масса электрона, τ — время релаксации, то есть время, за которое электрон «забывает» о том, в какую сторону двигался после соударения.
  • Друде вывел закон Ома для токов в металле:
  • j=σ·E→

Опыт Толмена и Стюарта

В 1916 году опыт Толмена и Стюарта дал прямое доказательство тому, что носителями тока в металлах являются электроны.

Суть опыта была в следующем. 

Опыт Толмена и Стюарта

Проводящая катушка с проводом длиной L вращалась вокруг своей оси с большой скоростью, а ее концы были замкнуты на гальванометр. Когда катушку резко тормозили, свободные электроны в металле продолжали двигаться по инерции, и гальванометр регистрировал импульс тока.

Считая, что свободные электроны подчиняются законам механики Ньютона, можно записать, что при остановке проводника электрон приобретает ускорение v' (в катушке направлено вдоль проводов). При этом на электрон действует сила, направленная противоположно ускорению.

  1. F=-mv'
  2. Под воздействием этой силы электрон ведет себя так, как если бы на него действовало поле E=-mv'q. Эдс, возникающую в катушке при торможении можно записать, как:
  3. ε=∫LEdl=-mv'q∫Ldl=-mv'qL
  4. Считая, что ускорение одинаково в каждом витке, можно записать закон Ома для катушки, а затем вычислить заряд, проходящий в ней за время dt:
  5. IR=-mv'qL
  6. dq=Idt=-mLdvqRdtdt=-mLdvqR
  7. Заряд, прошедший от момента начала торможения до остановки:
  8. q=-mLqR∫v00dv=-mLv0qR
  9. Опыт Толмена и Стюарта получил хорошее согласование с теорией, полученное экспериментально отношение qmсоответствовало отношению заряда электрона к его массе.

Пример

  • При T=300К  вычислите среднюю скорость теплового движения свободных электронов.
  • Решение.
  • Вычислим среднюю скорость, применяя формулу для идеального газа:
  • v=8kTπm
  • k=1,38·10-23 ДжК
  • m=9,31·10-31кг
  • Подставляем значения и вычисляем:
  • v=8·1,38·10-23·3·1023,14·9,31·10-31≈105 мс
Понравилась статья? Поделиться с друзьями:
Станок