Ряд напряженности металлов полный

Электрохимический ряд напряжений металлов опытным путем установил Алессандро Вольта, на тот момент он выглядел следующим образом: Zn, Pb, Sn, Fe, Cu, Ag, Au. Величина электродного потенциала зависела оттого, насколько далеко отстояли друг от друга члены ряда.

Но причина этого была неизвестна. В 1853 г. русский учёный Николай Николаевич Бекетов (1827-1911) сделал в Париже сообщение на тему “Исследование над явлениями вытеснения одних элементов другими”.

В этой работе он обобщил различные исследования способности одних металлов вытеснять другие из растворов их солей.

Первоначально Бекетов предполагал, что способность одних металлов вытеснять из растворов солей другие металлы связана с их плотностью: более лёгкие металлы способны вытеснять металлы более тяжелые. Но опыты говорили о ином.

Непонятно было и то, как связан “вытеснительный ряд” с рядом напряжений Алессандро Вольта. Со временем накапливалось всё больше экспериментальных данных того, что некоторые правила вытеснения нарушаются при определенных условиях.

Бекетов обнаружил, что водород под давлением 10 атмосфер вытесняет серебро из раствора нитрата серебра. Английский химик Уильям Одлинг (1829-1921) описал множество случаев подобных аномалий.

Например, медь вытесняет олово из концентрированного подкисленного раствора хлорида олова (II) и свинец – из кислого раствора хлорида свинца (II). Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора хлорид кадмия.

Теоретическую основу ряда активности (и ряда напряжений) заложил немецкий физикохимик Вальтер Нернст (1864-1941).

Вместо качественной характеристики – “склонности” металла и его иона к тем или иным реакциям – появилась точная количественная величина.

Такой величиной стал стандартный электродный потенциал металла, а соответствующий ряд, выстроенный в порядке изменения потенциалов, называется рядом стандартных электродных потенциалов.

Электрохимический ряд напряжений металлов (ряд Бекетова) это последовательность расположения металлов и их ионов в порядке возрастания стандартных электродных потенциалов в растворах электролитов. Электродом сравнения обычно служит стандартный водородный электрод, электродный потенциал которого условно принимается равным нулю.

Восстановленная форма Число отданных електронов Окисленная форма Стандартный электродный потенциал, В
Li 1e Li+ -3,05
K 1e K+ -2,925
Rb 1e Rb+ -2,925
Cs 1e Cs+ -2,923
Ba 2e Ba2+ -2,91
Sr 2e Sr2+ -2,89
Ca 2e Ca2+ -2,87
Na 1e Na+ -2,71
Mg 2e Mg2+ -2,36
Al 3e Al3+ -1,66
Mn 2e Mn2+ -1,18
Zn 2e Zn2+ -0,76
Cr 3e Cr3+ -0,74
Fe 2e Fe2+ -0,44
Cd 2e Cd2+ -0,40
Co 2e Co2+ -0,28
Ni 2e Ni2+ -0,25
Sn 2e Sn2+ -0,14
Pb 2e Pb2+ -0,13
Fe 3e Fe3+ -0,04
H2 2e 2H+ 0,00
Cu 2e Cu2+ 0,34
Cu 1e Cu+ 0,52
2Hg 2e Hg2 2+ 0,79
Ag 1e Ag+ 0,80
Hg 2e Hg2+ 0,85
Pt 2e Pt2+ 1,20
Au 3e Au3+ 1,50

Место каждого элемента в ряду напряжений условно, т.к. величина электродного потенциала зависит от температуры и состава раствора, в который погружены электроды, в частности от концентрации ионов.

Большое значение также имеет состояние поверхности электрода (гладкая, шероховатая).

Стандартный электродный потенциал относится к водным растворам при температуре 25 °С, давлении газов 1 атмосфера и концентрации ионов 1 моль/л.

Из электрохимического ряда напряжений металлов вытекает ряд важных следствий:

  1. Каждый металл способен вытеснять (замещать) из растворов солей все другие металлы, стоящие правее данного металла;
  2. Все металлы, расположенные левее водорода, способны вытеснять его из кислот;
  3. Чем дальше расположены друг от друга два металла в ряду напряжений, тем большее напряжение может давать созданный из них гальванический элемент.

Восстановление водородом из оксидов

Металлы, которые водород не восстанавливает из их оксидов Металлы, которые водород восстанавливает из их оксидов
K,  Ba,  Sr,  Ca,  Na,  Mg,  Al,  Mn,  Zn,  Cr Fe,  Cd,  Co,  Ni,  Sn,  Pb,  W,  Sb,  As,  Bi,  Cu,  Hg,  Ag
BaO + H2  ≠ FeO + H2 = Fe + H2O

версия для печати

Сводная таблица свойств

Li K Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb H Cu Hg Ag Pd Pt Au

Восстановительные свойства металлов ослабевают
В природе встречаются только в виде соединений Встречаются в чистом виде и в виде соединений Встречаются в самородном виде
Хранят в плотно закрытых сосудах под керосином или вазелином Хранят в плотно закрытых сосудах Хранят в любых сосудах
Окисляются при н. у. При н. у. окисляются только с поверхности Окисляются только при нагревании Не окисляются
С Н2О взаимодействуют при н. у.
с выделением Н2↑ и МеОН
С Н2О взаимодействуют при нагревании с выделением Н2↑ и МеО С водой не взаимодействуют
При взаимодействии с растворами кислот вытесняют водород Н2 (кроме HNO3) Из растворов кислот не вытесняют водород Растворяются в «царской водке»
С H2SO4 конц. в зависимости от условий, восстановительных свойств металлов образуются SO2, S, H2S, сульфат и вода (Fe, Ni пассивируют) С H2SO4 конц. образуется  SO2 Не взаимодей-ствуют
С HNO3 конц. образуется NO2, нитрат, Н2О  (Fe, Cr, Al пассивируются при обычной температуре) Не взаимод.
С HNO3 разб. образуется NН3, нитрат, Н2О (так же с Fe, Sn) С HNO3 разб. образуется NО, нитрат, Н2О Не взаимодей-ствуют
Ве, Аl, Zn, Sn, Pb вытесняют водород из растворов щелочей. Zn + 2NaOH + 2H2O = Na2[Zn(OH)4]+H2↑
Оксиды растворяются в воде с образованием МеОН Оксиды в воде не растворяются
При нагревании оксиды не разлагаются При нагревании оксиды разлагаются
Гидроксиды при нагревании не разлагаются Гидроксиды при нагревании разлагаются на оксид и Н2О Гидроксиды разлагаются в воде
Более активный металл вытесняет из раствора соли менее активный
Нитраты при нагревании  разлагаются на MeNO2, и O2 Нитраты при нагревании  разлагаются на оксид, NO2 и O2 Нитраты при нагревании  разлагаются на металл, NO2 и O2
Гидролиз не идет у солей, образованных сильными кислотами Соли, образованные сильными кислотами гидролизуются с образованием кислой среды
Соли, образованные слабыми кислотами гидролизуются с образованием щелочной среды Существующие и растворимые соли, образованные слабыми кислотами, гидролизуются полностью
При электролизе водных растворов солей на катоде восстанавливается вода до Н2 На катоде восстанавливаются одновременно вода до Н2 и катионы  металла На катоде восстанавливаются катионы  металла

версия для печати

Электрохимический ряд активности металлов | это… Что такое Электрохимический ряд активности металлов?

Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me

Читайте также:  Расчет балки на прочность: онлайн-калькуляторы, пример, последовательность действий

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительные реакциях в водных растворах.

История

Последовательность расположения металлов в порядке изменения их химической активности в общих чертах была известна уже алхимикам[1]. Процессы взаимного вытеснения металлов из растворов и их поверхностное осаждение (например, вытеснение серебра и меди из растворов их солей железом) рассматривались как проявление трансмутации элементов.

Поздние алхимики вплотную подошли к пониманию химической стороны взаимного осаждения металлов из их растворов.

Так, Ангелус Сала в работе «Anatomia Vitrioli» (1613) пришёл к выводу, что продукты химических реакций состоят из тех же «компонентов», которые содержались в исходных веществах.

Впоследствии Роберт Бойль предложил гипотезу о причинах, по которым один металл вытесняет другой из раствора на основе корпускулярных представлений[2].

В 1793 году Алессандро Вольта, конструируя гальванический элемент («Вольтов столб»), установил относительную активность известных тогда металлов: Zn, Pb, Sn, Fe, Cu, Ag, Au. «Сила» гальванического элемента оказывалась тем больше, чем дальше стояли друг от друга металлы в этом ряду («ряд напряжений»). Однако Вольта не связал этот ряд с химическими свойствами металлов.

В 1798 году Иоганн Вильгельм Риттер указал, что ряд Вольта эквивалентен ряду окисления металлов (т. е. последовательности уменьшения их сродства с кислородом). Таким образом, Риттер высказал гипотезу о возникновении электрического тока вследствие протекания химической реакции[3].

В эпоху становления классической химии способность элементов вытеснять друг друга из соединений стала важным аспектом понимания реакционной способности. Й. Берцелиус на основе электрохимической теории сродства построил классификацию элементов, разделив их на «металлоиды» (сейчас применяется термин «неметаллы») и «металлы» и поставив между ними водород.

Последовательность металлов по их способности вытеснять друг друга, давно известная химикам, была в 1860-е и последующие годы особенно основательно и всесторонне изучена и дополнена Н. Н. Бекетовым. Уже в 1859 году он сделал в Париже сообщение на тему «Исследование над явлениями вытеснения одних элементов другими».

В эту работу Бекетов включил целый ряд обобщений о зависимости между взаимным вытеснением элементов и их атомным весом, связывая эти процессы с «первоначальными химическими свойствами элементов – тем, что называется химическим сродством»[4].

Открытие Бекетовом вытеснения металлов из растворов их солей водородом под давлением и изучение восстановительной активности алюминия, магния и цинка при высоких температурах (металлотермия) позволило ему выдвинуть гипотезу о связи способности одних элементов вытеснять из соединений с их плотностью: более лёгкие простые вещества способны вытеснять более тяжёлые («вытеснительный ряд Бекетова»).

Не отрицая значительных заслуг Бекетова в становлении современных представлений об ряде активности металлов, следует считать ошибочным бытующее в отечественной популярной и учебной литературе представление о нём как единственном создателе этого ряда.[5][6].

Многочисленные экспериментальные данные, полученные в конце XIX века, опровергали гипотезу Бекетова. Так, Уильям Одлинг описал множество случаев «обращения активности».

Например, медь вытесняет олово из концентрированного подкисленного раствора SnCl2 и свинец — из кислого раствора PbCl2; она же способна к растворению в концентрированной соляной кислоте с выделением водорода.

Медь, олово и свинец находятся в ряду правее кадмия, однако могут вытеснять его из кипящего слабо подкисленного раствора CdCl2.

Бурное развитие теоретической и экспериментальной физической химии указывало на иную причину различий химической активности металлов. С развитием современных представлений электрохимии (главным образом в работах Вальтера Нернста) стало ясно, что эта последовательность соответствует «ряду напряжений» – расположению металлов по значению стандартных электродных потенциалов.

Таким образом, вместо качественной характеристики — «склонности» металла и его иона к тем или иным реакциям — Нерст ввёл точную количественную величину, характеризующую способность каждого металла переходить в раствор в виде ионов, а также восстанавливаться из ионов до металла на электроде, а соответствующий ряд получил название ряда стандартных электродных потенциалов.

Теоретические основы

Значения электрохимических потенциалов являются функцией многих переменных и поэтому обнаруживают сложную зависимость от положения металлов в периодической системе. Так, окислительный потенциал катионов растёт с увеличением энергии атомизации металла, с увеличением суммарного потенциала ионизации его атомов и с уменьшением энергии гидратации его катионов.

В самом общем виде ясно, что металлы, находящиеся в начале периодов характеризуются низкими значениями электрохимических потенциалов и занимают места в левой части ряда напряжений. При этом чередование (щелочных и щёлочноземельных металлов отражает явление диагонального сходства.

Металлы, расположенные ближе к серединам периодов, характеризуются большими значениями потенциалов и занимают места в правой половине ряда.

Последовательное увеличение электрохимического потенциала (от −3,395 В у пары Eu2+/Eu[источник не указан 228 дней] до +1,691 В у пары Au+/Au) отражает уменьшение восстановительной активности металлов (свойство отдавать электроны) и усиление окислительной способности их катионов (свойство присоединять электроны). Таким образом, самым сильным восстановителем является металлический европий, а самым сильным окислителем — катионы золота Au+.

В ряд напряжений традиционно включается водород, поскольку практическое измерение электрохимических потенциалов металлов производится с использованием стандартного водородного электрода.

Практическое использование ряда напряжений

Ряд напряжений используется на практике для сравнительной оценки химической активности металлов в реакциях с водными растворами солей и кислот и для оценки катодных и анодных процессов при электролизе:

  • Металлы, стоящие левее, являются более сильными восстановителями, чем металлы, расположенные правее: они вытесняют последние из растворов солей. Например, взаимодействие Zn + Cu2+ → Zn2+ + Cu возможно только в прямом направлении.
  • Металлы, стоящие в ряду левее водорода, вытесняют водород при взаимодействии с водными растворами кислот-неокислителей; наиболее активные металлы (до алюминия включительно) — и при взаимодействии с водой.
  • Металлы, стоящие в ряду правее водорода, с водными растворами кислот-неокислителей при обычных условиях не взаимодействуют.
  • При электролизе металлы, стоящие правее водорода, выделяются на катоде; восстановление металлов умеренной активности сопровождается выделением водорода; наиболее активные металлы (до алюминия) невозможно при обычных условиях выделить из водных растворов солей.

Таблица электрохимических потенциалов металлов

Металл
Катион
φ0, В
Реакционная способность
Электролиз (на катоде):
Li Li+ -3,0401 реагирует с водой выделяется водород
Cs Cs+ -3,026
Rb Rb+ -2,98
K K+ -2,931
Ra Ra2+ -2,912
Ba Ba2+ -2,905
Fr Fr+ -2,92
Sr Sr2+ -2,899
Ca Ca2+ -2,868
Eu Eu2+ -2,812
Na Na+ -2,71
Sm Sm2+ -2,68
Md Md2+ -2,40 реагирует с кислотами
La La3+ -2,379
Y Y3+ -2,372
Mg Mg2+ -2,372
Ce Ce3+ -2,336
Pr Pr3+ -2,353
Er Er3+ -2,331
Ho Ho3+ -2,33
Nd Nd3+ -2,323
Tm Tm3+ -2,319
Sm Sm3+ -2,304
Pm Pm3+ -2,30
Fm Fm2+ -2,30
Dy Dy3+ -2,295
Tb Tb3+ -2,28
Lu Lu3+ -2,28
Gd Gd3+ -2,279
Es Es2+ -2,23
Ac Ac3+ -2,20
Dy Dy2+ -2,2
Pm Pm2+ -2,2
Cf Cf2+ -2,12
Sc Sc3+ -2,077
Am Am3+ -2,048
Cm Cm3+ -2,04
Pu Pu3+ -2,031
Er Er2+ -2,0
Pr Pr2+ -2,0
Eu Eu3+ -1,991
Lr Lr3+ -1,96
Cf Cf3+ -1,94
Es Es3+ -1,91
Th Th4+ -1,899
Fm Fm3+ -1,89
Np Np3+ -1,856
Be Be2+ -1,847
U U3+ -1,798
Al Al3+ -1,700
Md Md3+ -1,65
Ti Ti2+ -1,63 конкурирующие реакции: и выделение водорода, и выделение металла в чистом виде
Hf Hf4+ -1,55
Zr Zr4+ -1,53
Pa Pa3+ -1,34
Ti Ti3+ -1,208
Yb Yb3+ -1,205
No No3+ -1,20
Ti Ti4+ -1,19
Mn Mn2+ -1,185
V V2+ -1,175
Nb Nb3+ -1,1
Nb Nb5+ -0,96
V V3+ -0,87
Cr Cr2+ -0,852
Zn Zn2+ -0,763
Cr Cr3+ -0,74
Ga Ga3+ -0,560
Ga Ga2+ -0,45
Fe Fe2+ -0,441
Cd Cd2+ -0,404
In In3+ -0,3382
Tl Tl+ -0,338
Co Co2+ -0,28
In In+ -0,25
Ni Ni2+ -0,234
Mo Mo3+ -0,2
Sn Sn2+ -0,141
Pb Pb2+ -0,126
H2 H+
W W3+ +0,11 низкая реакционная способность выделение металла в чистом виде
Ge Ge4+ +0,124
Sb Sb3+ +0,240
Ge Ge2+ +0,24
Re Re3+ +0,300
Bi Bi3+ +0,317
Cu Cu2+ +0,338
Po Po2+ +0,37
Тс Тс2+ +0,400
Ru Ru2+ +0,455
Cu Cu+ +0,522
Te Te4+ +0,568
Rh Rh+ +0,600
W W6+ +0,68
Tl Tl3+ +0,718
Rh Rh3+ +0,758
Po Po4+ +0,76
Hg Hg22+ +0,7973
Ag Ag+ +0,799
Pb Pb4+ +0,80
Os Os2+ +0,850
Hg Hg2+ +0,851
Pt Pt2+ +0,963
Pd Pd2+ +0,98
Ir Ir3+ +1,156
Au Au3+ +1,498
Au Au+ +1,691
Читайте также:  Гитар риг пресеты для металла

Ссылки

Литература

  • Корольков Д.В. Основы неорганической химии. — М.:Просвещение, 1982. — 271 с.

Примечания

  1. Рабинович В. Л. Алхимия как феномен средневековой культуры. — М.: Наука, 1979
  2. Пути познания / Головнер В.Н. Взгляд на мир глазами химика
  3. Штрубе В. Пути развития химии: в 2-х томах. Том 2. От начала промышленной революции до первой четверти XX века
  4. Беляев А.И. Николай Николаевич Бекетов – выдающийся русский физико-химик и металлург. М., 1953
  5. Леенсон И. А. Ряд активности металлов Бекетова: миф или реальность? // Химия в школе. — 2002. — № 9. — С. 90-96.
  6. Мчедлов-Петросян Н. О.Труды Н. Н. Бекетова и ряд активности металлов // Вестник Харьковского национального университета. — 2003. — № 596. — Химия. Вып. 10 (33). — С. 221-225.

Ряд активности металлов

Что же из себя представляет ряд активности металлов давайте разбираться. Металлы — группа химических элементов, обладающих сходными свойствами. Среди них — электропроводность, пластичность, температурная зависимость сопротивления.

По виду металлы можно отличить по характерному блеску, который так и назвали — металлический. Но химические свойства элементов отличаются в зависимости от строения их молекул и кристаллической решетки. Особенно ярко отличия проявляются по отношению взаимодействия с кислотами и щелочами.

Всего на данный момент насчитывается 96 металлов. Общие свойства металлов показаны в таблице:

Все металлы в той или иной степени являются восстановителями, то есть, отдают электроны при течении окислительно-восстановительных реакций.

Таблица электроотрицательности металлов показывает, какой металл является наиболее активным восстановителем.

Если цифра напротив элемента больше 2, то это окислитель с характерными свойствами и выходит из ряда металлов, проявляя типичные свойства неметалла.

Электрохимический ряд активности металлов показывает, какие из металлов более активные, какие менее. Расположение элементов в горизонтальном ряду слева направо показывает направление снижения восстановительной способности и возрастание окислительной.

  • Восстановительная способность — свойство отдавать электроны в химических реакциях с водными растворами солей и щелочей.
  • Окислительная способность — свойство присоединять электроны в реакциях с теми же веществами.

Металлы в правой стороне  более слабые восстановители, они вытесняются при реакциях с солевыми растворами металлами, расположенными левее.

Пример реакции — Zn + Cu2+ → Zn2+ + Cu, которая протекает только в одном направлении.

Цинк вытесняет медь, реагируя с водным раствором любой соли меди. Цинковая пластинка, при этом, растворяется, а медная восстанавливается.

Такую последовательность элементов  еще называют ряд напряженности металлов, или ряд Бекетова. На всех вариантах записи ряда можно заметить, что последовательность металлов разделена знаком водорода (гидрогена), который металлом никак не является.

Это своеобразный маркер, показывающий, что стоящие левее металлы вытесняют водород из водных растворов кислот, не обладающих  окислительными свойствами.

Некоторые металлы, например, литий, кальций, барий и остальные, стоящи до алюминия, вытесняют водород и при реакции с водой.

  1. 2Al +3H2SO4 = Al2(SO4)3 + 3H2
  2. Fe + 2HCl = FeCl2 + H2
  3. Стоящие правее знака водорода металлы с кислотами-неокислителями не взаимодействуют при нормальных условиях.

Шкала активности металлов широко используется для практических целей, например, в гальванике. Если электроды сделаны из разных металлов, то разрушаться будет тот, который стоит левее. Чем больше промежуток между металлами в ряду, тем активнее проходит процесс коррозии.

Например, метод оцинковки позволяет защитить железо именно потому, что  цинк находится левее железа в ряду активности. Пока он не разрушится, то ржавчина на железе не появится. При электролизе, расположенные за водородом металлы осаживаются на катоде, а самые активные, занимающее места до алюминия, выделить из солевых растворов в не получится при нормальных температуре и давлении.

Малоактивные металлы, так называемые переходные элементы с электроотрицательностью в пределах 1,5 – 2. Это:

  • Ртуть;
  • Олово;
  • Серебро;
  • Никель;
  • Рений;
  • Медь;
  • Марганец и еще несколько элементов.

К металлам средней активности относятся элементы с числом электроотрицательности от 1 до 1,5. В эту группу входят такие известные элементы, как магний, плутоний, неодим, кальций. Остальные элементы обладают высокой химической активностью.

Лидирует в этом списке Франций, который практически не встречается в чистом виде. Из более известных можно назвать калий и натрий, которые приходится хранить в керосине, чтобы они не взаимодействовали с водой и воздухом.

Если извлечь их из керосина, то металлы практически мгновенно сгорают.

  • Реакции кальция и натрия с водой при комнатной температуре выглядят так:
  • 2Na + 2H2O = 2NaOH + H2
  • Сa + 2H2O = Сa(OH)2 + H2Стоящие в ряду электронапряжения металлов правее элементы тоже взаимодействуют с водой, но реакция протекает при более высокой температуре с образованием оксида и водорода.
  • 3Fe + 4H2O = Fe3O4 + 4H2
Читайте также:  Аллергия на металл как лечить

Если вступает в реакцию металл и неметалл, то электрический ряд напряжений металлов тоже дает возможность заранее узнать, в каком направлении будет протекать реакция.

Скорость реакции зависит как от восстановительной активности металла, так и от окислительных свойств неметалла.

Стоящие до водорода металлы реагируют с кислородом уже при комнатной температуре, некоторые — достаточно бурно, например, литий и кальций.

4Li + O2 = 2Li2O

2Ca + O2 = 2CaO.

При таком взаимодействии образуются оксиды. Менее активные металлы, например железо, реагируют с кислородом спокойнее, а некоторые, например, золото и серебро,  платина не окисляются вовсе, благодаря чему получили определение благородных.

С хлором реагируют практически все активные металлы с выделением теплоты.

2Fe + 3Cl2 = 2FeCl3

Также выделяется теплота при реакции активных металлов с серой, но начинается она при нагревании. После начала реакции нагрев не нужен — образовавшегося тепла достаточно для поддержания реакции.

2Al + 3S = Al2S3

Внимательно изучив ряд металлов, несложно определить тип реакции при контакте с другими элементами в зависимости от места в последовательности. Также легко назвать основные характеристики металла, как химического элемента, и возможность его использования на практике.

Мир современных материалов — Электрохимический ряд напряжений металлов

 В электрохимической ячейке (гальваническом элементе) электроны, остающиеся после образования ионов, удаляются через металлический провод и рекомбинируют с ионами другого вида. Т.е.заряд во внешней цепи переносится электронами, а внутри ячейки, через электролит, в который погружены металлические электроды, ионами. Таким образом получается замкнутая электрическая цепь.

 Разность потенциалов, измеряемая в электрохимической ячейке, oбъясняется различием в способности каждого из металлов отдавать электроны. Каждый электрод имеет собственный потенциал, каждая система электрод-электролит представляет собой полуэлемент, а любые два полуэлемента образуют электрохимическую ячейку.

Потенциал одного электрода называют потенциалом полуэлемента, он определят способность электрода отдавать электроны. Очевидно, что потенциал каждого полуэлемента не зависит от наличия другого полуэлемента и его потенциала. Потенциал полуэлемента определяется концентрацией ионов в электролите и температурой.

В качестве «нулевого» полуэлемента был выбран водород, т.е. считается, что для него при добавлении или удалении электрона с образованием иона никакой работы не совершается. «Нулевое» значение потенциала необходимо для понимания относительной способности каждого из двух полуэлементов ячейки отдавать и принимать электроны.

Потенциалы полуэлементов, измеряемые относительно водородного электрода, называются водородной шкалой.

Если термодинамическая склонность отдавать электроны в одной половине электрохимической ячейки выше, чем в другой, то потенциал первою полуэлемента выше, чем потенциал второго.

Под действием разности потенциалов будет происходить переток электронов. При сочетании двух металлов можно выяснить возникающую между ними разность потенциалов и направление потока электронов.

Электроположительный металл обладает более высокой способностью принимать электроны, поэтому он будет катодным или благородным. С другой стороны находятся электроотрицательные металлы, которые способны самопроизвольно отдавать электроны. Эти металлы являются реакционноспособными, а, следовательно, анодными:

  • —                                     →0→                +
  • Al  Mn Zn  Fe  Sn  Pb  H2  Cu  Ag  Au
  • Например, Cu отдает электроны легче Ag, но хуже Fe. В присутствии медного электрода ноны серебра начнут соединяться с электронами, приводя к образованию ионов меди и осаждению металлического серебра:
  • 2Ag+ + Cu→Cu2+ + 2Ag
  • Однако та же самая медь менее реакционноспособна, чем железо. При контакте металлического железа с нонами меди та будет осаждаться, а железо переходить в раствор:
  • Fe+ Cu2+→Fe2+ + Cu.
  • Можно говорить, что медь является катодным металлом относительно железа и анодным — относительно серебра.

Стандартным электродным потенциалом считается потенциал полуэлемента из полностью отожженого чистого металла в качестве электрода в контакте с ионами при 250С. В этих измерениях водородный электрод выступает в роли электрода сравнения. В случае двухвалентного металла можно записать реакцию, протекающую в соответствующей электро-химической ячейке:

М + 2Н+ → М2+ + Н2.

Если упорядочить металлы по убыванию их стандартных электродных потенциалов, то получается так называемый электрохимический ряд напряжений металлов (табл. 1).

Таблица 1. Электрохимический ряд напряжений металлов

Равновесие металл-ионы (единичной активности) Электродный потенциал относительно водородного электрода при 25°С, В (восстановительный потенциал)
Благородные или катодные Au-Au3+ + 1,498
Pt-Pt2+ + 1,2
Pd-Pd2+ +0,987
Ag-Ag+ +0,799
Hg-Hg2+ +0,788
Cu-Cu2+ +0,337
Н2-Н+ 0
Pb-Pb2+ -0,126
Sn-Sn2+ -0,140
Ni-Ni2+ -0,236
Co-Co2+ -0,250
Cd-Cd2+ -0,403
Fe-Fe2+ -0,444
Cr-Cr2+ -0,744
Zn-Zn2+ -0,763
Активные или анодные Al-Al2+ -1,662
Mg-Mg2+ -2,363
Na-Na+ -2,714
K-K+ -2,925

Например, в гальваническом элементе медь-цинк возникает поток электронов от цинка к меди. Медный электрод является в этой схеме положительным полюсом, а цинковый — отрицательным. Более реакционноспособный цинк теряет электроны:

  1. Zn→Zn2+ + 2е-; E°=+0,763 В.
  2. Медь же является менее реакционноспособной и принимает электроны от цинка:
  3. Cu2+ + 2е-→Cu; E°=+0,337 В.
  4. Напряжение на соединяющем электроды металлическом проводе составит:
  5. 0,763 В + 0,337 В = 1,1 В.

Таблица 2. Стационарные потенциалы некоторых металлов и сплавов в морской воде по отношению к нормальному водородному электроду (ГОСТ 9.005-72).

Металл Стационарный потенциал, В Металл Стационарный потенциал, В
Магний -1,45 Никель (активное coстояние) -0,12
Магниевый сплав (6 % Аl, 3 % Zn, 0,5 % Mn) -1,20 Медные сплавы ЛМцЖ-55 3-1 -0,12
Цинк -0,80 Латунь (30 % Zn) -0,11
Алюминиевый сплав (10 % Mn) -0,74 Бронза (5-10 % Al) -0,10
Алюминиевый сплав (10 % Zn) -0,70 Томпак (5-10 % Zn) -0,08
Алюминиевый сплав К48-1 -0,660 Медь -0,08
Алюминиевый сплав В48-4 -0,650 Купроникель (30 % Ni) -0,02
Алюминиевый сплав АМг5 -0,550 Бронза «Нева» +0,01
Алюминиевый сплав АМг61 -0,540 Бронза Бр. АЖН 9-4-4 +0,02
Алюминий -0,53 Нержавеющая сталь Х13 (пассивное состояние) +0,03
Кадмий -0,52 Никель (пассивное состояние) +0,05
Дюралюминий и алюминиевый сплав АМг6 -0,50 Нержавеющая сталь Х17 (пассивное состояние) +0,10
Железо -0,50 Титан технический +0,10
Сталь 45Г17Ю3 -0,47 Серебро +0,12
Сталь Ст4С -0,46 Нержавеющая сталь 1Х14НД +0,12
Сталь СХЛ4 -0,45 Титан йодистый +0,15
Сталь типа АК и углеродистая сталь -0,40 Нержавеющая сталь Х18Н9 (пассивное состояние) и ОХ17Н7Ю +0,17
Серый чугун -0,36 Монель-металл +0,17
Нержавеющие стали Х13 и Х17 (активное состояние) -0,32 Нержавеющая сталь Х18Н12М3 (пассивное состояние) +0,20
Никельмедистый чугун (12-15 % Ni, 5-7 % Си) -0,30 Нержавеющая сталь Х18Н10Т +0,25
Свинец -0,30 Платина +0,40
Олово -0,25

Примечание. Указанные числовые значения потенциалов н порядок металлов в ряду могут изменяться в различной степени в зависимости от чистоты металлов, состава морской воды, степени аэрации и состояния поверхности металлов.

Понравилась статья? Поделиться с друзьями:
Станок