На чем основано производство металла

На чем основано производство металла

Выплавку железа во 2-м тысячелетии до н. э. в промышленных масштабах освоили хетты, основавшие империю на территории хаттов (современная Турция), переняв у них навыки работы с железом и сделав это государственной тайной. Известно, что хетты дарили фараонам железные кинжалы, что считалось царским подарком, а железные слитки (крицу) фараоны держали как стратегический запас драгметалла.

На чем основано производство металла

Во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно как драгоценный металл. Железные изделия получили широкое распространение только после Троянской войны. Раскопки в Афинах показали, что уже около 1100 года до н. э.

и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В Китае производство железа развилось к середине I тысячелетия до н. э., в «славной» своими «идеальными» мечами Японии железный век наступил только в VII веке нашей эры (!) В Северной Америке в I тысячелетии до н. э.

появилось железо, в Южную сталь принесли конкистадоры.

На чем основано производство металла

В древности основным методом его получения был сыродутный процесс: слои железной руды и древесного угля прокаливались в горнах — от древнего «Horn» — рог, труба, первоначально это была просто одноразовая труба, вырытая в земле, обычно горизонтально в склоне оврага.

В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота.

Полученный брусок железа (в котором всё же оставалось 2—4 % шлака) назывался «кричной болванкой». Долгое время ковка была основным процессом в технологии производства железа, причём, с приданием изделию формы она была связана в последнюю очередь, ковкой получали железо.

На изготовление меча поэтому или скорее нужного количества металла, могло уйти несколько месяцев, доспехов того больше – выковать широкие равномерной толщины пластины молотом сложно и долго, поэтому латный доспех дорого стоил.

На чем основано производство металла

Гладии, спаты, каролинги, меровинги, отчасти романского типа мечи и конечно японские катаны заложники низкого качества стали, поэтому они были из сварного дамаска, то есть составными — мягкая сердцевина и наварные твёрдые лезвия.

Дамаск или дамасская сталь — цель процесса была не получить красивый узор сварных харалугов (так называли сталь на Руси), а добиться выгорания вредных примесей (фосфор, сера, шлак) и равномерного распределения углерода в заготовке.

Основным и немаловажным недостатком дамасской стали является ее низкая коррозионная стойкость, обусловленная большим содержанием углерода в компонентах поковки и практически полным отсутствием легирующих элементов.

Узоры на поверхности этого вида дамаска — оптический эффект неравномерного распределения углерода в связи с неоднородностью материала.

На чем основано производство металла

В Индии в начале I тысячелетия до нашей эры получали булат (под названием вуц), поскольку имели отличную руду, из неё получались стали с великолепной дендритной решёткой.

Аль-Бируни – средневековый персидский ученый отмечал, что подобная сталь хрупка на морозе, поэтому широкого распространения такие клинки в Европе не имели. Поэтому рыцари не покупали их на «вес золота» и они не «резали кольчугу как масло» или газовый платок.

Дамаск и булат покрыты мифами о разрубании всадника вместе с доспехами, камней и прочего голливудского мифотворчества, что совершенно не соответствует действительности, это в полной мере относится и к катанам.

И булатные и дамасские клинки имеют довольно посредственное качество по сравнению с современной сталью и находятся на уровне качества современных массовых китайских ножей.

На чем основано производство металла

Производство стали

Сталь является одним из самых распространенных материалов на сегодняшний день. Она представляет собой сочетание железа и углерода в определенном процентном соотношении. Существует огромное количество разновидностей этого материала, так как даже незначительное изменение химического состава приводит к изменению физико-механических качеств.

Сырье для производства стали сегодня представлено отработанными стальными изделиями. Также было налажено производство конструкционной стали из чугуна. Страны-лидеры в металлургической промышленности проводят выпуск заготовок согласно стандартам, установленным в ГОСТ.

Рассмотрим особенности производства стали, а также применяемые методы и то, как проводится маркировка полученных изделий.

На чем основано производство металла

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства.

Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки.

Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

На чем основано производство металла

Выплавка стали в электропечи

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

  1. Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
  2. Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
  3. Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

  1. Спокойные, которые прошли процесс раскисления до конца.
  2. Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.

При производстве материала в состав могут добавляться чистые металлы и ферросплавы. За счет этого получаются легированные составы, которые обладают своими определенными свойствами.

Способы производства стали

Существует несколько методов производства стали, каждый обладает своими определенными достоинствами и недостатками. От выбранного способа зависит то, с какими свойствами можно получить материал. Основные способы производства стали:

  1. Мартеновский метод. Данная технология предусматривает применение специальных печей, которые способны нагревать сырье до температуры около 2000 градусов Цельсия. Рассматривая способы производства легированных сталей, отметим, что этот метод также позволяет проводить добавление различных примесей, за счет чего получаются необычные по составу стали. Мартеновский метод основан на применении специальных печей.
  2. Электросталеплавильный метод. Для того чтобы получить материал высокого качества проводится производство стали в электропечах. За счет применения электрической энергии для нагрева сырья можно точно контролировать прохождение процесса окисления и выделения шлаков. В данном случае важно обеспечить появление шлаков. Они являются передатчиком кислорода и тепла. Данная технология позволяет снизить концентрацию вредных веществ, к примеру, фосфора и серы. Электрическая плавка может проходить в самой различной среде: избыточного давления, вакуума, при определенной атмосфере. Проводимые исследования указывают на то, что электросталь обладает самым высоким качеством. Применяется технология для производства качественных высоколегированных, коррозионностойких, жаропрочных и других видов стали. Для преобразования электрической энергии в тепловую применяется дуговая печь цилиндрической формы с днищем сферического типа. Для обеспечения наиболее благоприятных условий плавки внутреннее пространство отделывается при использовании жаропрочного металла. Работа устройства возможна только при подключении к трехфазной сети. Стоит учитывать, что сеть электрического снабжения должна выдерживать существенную нагрузку. Источником тепловой энергии становится электрическая дуга, возникающая между электродом и расплавленным металлом. Температура может быть более 2000 градусов Цельсия.
  3. Кислородно-конвертерный. Непрерывная разливка стали в данном случае сопровождается с активным вдуванием кислорода, за счет чего существенно ускоряется процесс окисления. Применяется этот метод изготовления и для получения чугуна. Считается, что данная технология обладает наибольшей универсальностью, позволяет получать металлы с различными свойствами.
Читайте также:  Пример расчета ндс налоговым агентом при покупке металлолома

Способы производства оцинкованной стали не сильно отличаются от рассматриваемых. Это связано с тем, что изменение качеств поверхностного слоя проходит путем химико-термической обработки.

Существуют и другие технологии производства стали, которые обладают высокой эффективностью. Например, методы, основанные на применении вакуумных индукционных печей, а также плазменно-дуговой сварки.

Мартеновский способ

Суть данной технологии заключается в переработке чугуна и другого металлолома при применении отражательной печи. Производство различной стали в мартеновских печах можно охарактеризовать тем, что на шихту оказывается большая температура. Для подачи высокой температуры проводится сжигание различного топлива.

На чем основано производство металла

Схема мартеновской печи

Рассматривая мартеновский способ производства стали, отметим нижеприведенные моменты:

  1. Мартеновские печи оборудованы системой, которая обеспечивает подачу тепла и отвода продуктов горения.
  2. Топливо подается в камеру сгорания поочередно, то с правой, то с левой стороны. За счет этого обеспечивается образование факела, который и приводит к повышению температуры рабочей среды и ее выдерживание на протяжении длительного периода.
  3. На момент загрузки шихты в камеру сгорания попадает достаточно большое количество кислорода, который и необходим для окисления железа.

При получении стали мартеновским способом время выдержки шихты составляет 8-16 часов. На протяжении всего периода печь работает непрерывно. С каждым годом конструкция печи совершенствуется, что позволяет упростить процесс производства стали и получить металлы различного качества.

В кислородных конвертерах

Сегодня проводится производство различной стали в кислородных конвертерах. Данная технология предусматривает продувку жидкого чугуна в конвертере. Для этого проводится подача чистого кислорода. К особенностям этой технологии можно отнести нижеприведенные моменты:

  1. Конвертор – специальное оборудование, которое представлено стальным сосудом грушевидной формы. Вместительность подобного устройства составляет 100-350 тонн. С внутренней стороны конструкция выкладывается огнеупорным кирпичом.
  2. Конструкция верхней части предполагает горловину, которая необходима для загрузки шихты и жидкого чугуна. Кроме этого, через горловину происходит удаление газов, образующихся в процессе плавления сырья.
  3. Заливка чугуна и добавление другой шихты проводится при температуре около 1400 градусов Цельсия. Для того чтобы обеспечить активное окисление железа чистый кислород подается под давлением около 1,4 МПа.
  4. При подаче большого количества кислорода чугун и другая шихта окисляется, что становится причиной выделения большого количества тепла. За счет сильного нагрева происходит расплавка всего шихтового материала.
  5. В тот момент, когда из состава удаляется излишек углерода, продувка прекращается, фурма извлекается из конвертора. Как правило, продувка продолжается в течение 20 минут.
  6. На данном этапе полученный состав содержит большое количество кислорода. Именно поэтому для повышения эксплуатационных качеств в состав добавляют различные раскислители и легирующие элементы. Образующийся шлак удаляется в специальный шлаковый ковш.
  7. Время конверторного плавления может меняться, как правило, оно составляет 35-60 минут. Время выдержки зависит от типа применяемой шихты и объема получаемой стали.

На чем основано производство металла

Кислородно-конвертерный способ

Стоит учитывать, что производительно подобного оборудования составляет порядка 1,5 миллионов тонн при вместительности 250 тонн. Применяется данная технология для получения углеродистых, низкоуглеродистых, а также легированных сталей.

Кислородно-конвертерный способ производства стали был разработан довольно давно, но сегодня все равно пользуется большой популярностью.

Это связано с тем, что при применении этой технологии можно получить качественные металлы, а производительность технологии весьма высока.

В заключение отметим, что в домашних условиях провести производство стали практически невозможно. Это связано с необходимостью нагрева шихты до достаточно высокой температуры. При этом процесс окисления железа весьма сложен, как и удаления вредных примесей

Что такое металлургия, история, области, технологии, специальности — SNTA

На чем основано производство металла

Металлургия — широкое понятие, относящееся к технике и науке. Это мощная промышленная отрасль, главная задача которой заключается в производстве и обработке металлов. Металлы выделяют из различных руд, после чего изучают их физикохимические свойства и производят современные высокотехнологичные сплавы.

В данном материалы мы рассмотрим основные области деятельности металлургии, ее особенности и технологии, а также пути овладения специальность. «Металлургия».

Области металлургии

В металлургии различают несколько областей:

  • Чёрную. Она включает в себя производство таких металлов как чугун, сталь и железо. Это чёрные металлы, производство которых требует много материалов, в том числе и каменный уголь;
  • Цветную. Это добыча разных руд и процесс их дальнейшего обогащения. Цветные металлы обрабатывают разными способами, получая из них новые сплавы;
  • Плазменную. Из руд извлекают металлы, а затем подвергают их обработке. Для обработки применяют мощные плазменные реакторы и печи, а также технологию плазменного нагрева, чтобы придать процессу плавления максимальную интенсивность;
  • Порошковую. Задача порошковой металлургии — получение из металлов разных порошков, которые применяют для изготовления изделий. Также в этой отрасли используют композитные технологии, соединяя металлы и неметаллы.

На чем основано производство металла

В металлургии используют специальные технологии добычи металлов:

  • пирометаллургию. Все процессы плавления, обжига и другие технологии протекают в условиях высоких температур;
  • гидрометаллургию. Металлы извлекают из руды, а потом выделяют из них растворы, применяя электролиз;
  • биотехнологии. Извлечь из руды металл можно, используя живые микроорганизмы для реакций биоокисления или биосорбции.

Ежегодно развитие экономики требует новых запасов металлов. Известно, что природные ресурсы не безграничны, поэтому одна из основных задач металлургов, кроме развития геологоразведочной отрасли — повторное применение того или иного металла.

Есть несколько металлов, которые уже давно нашли широкое применение в разных отраслях человеческой деятельности. Это сталь (её ежегодное потребление составляет больше 90%), свинец, а также медь и алюминий. Из редких металлов следует отметить добычу платины, теллура, осмия и золота.

Сферу строительства невозможно представить без использования железа и стали. Они обладают высокой износостойкостью и замену им найти практически невозможно. Что касается прочного алюминия, именно он, благодаря его низкой плотности, применяется при строительстве самолётов.

Одно из главных свойств меди — высокая степень теплопроводности, поэтому она широко применяется для изготовления электрических кабелей. Золото активно используют для производства ювелирных украшений. Также из него делают электрические соединения, не подверженные реакции окисления.

Раньше в металлургической промышленности использовали чистые металлы, но со временем высокотехнологичные сплавы уверенно вытеснили их из производственной сферы. Сплавы обладают особыми качествами, которых нет у чистых металлов. Наиболее популярными из них являются «нержавейка», углеродистая сталь, сплавы из никеля и меди.

История металлургии

Металлургия начала развиваться ещё в эпоху каменного века. Есть несколько исторических вех её развития. Согласно археологическим раскопкам, наши древние предки уже в 6 в. до н.э. активно использовали железо, попавшее на Землю в составе метеоритов. Люди постепенно осваивали обработку серебра и олова.

Читайте также:  Нормы расхода металла при проектировании

В эпоху бронзового века (5500 лет назад) люди научились получать из горных пород олово и медь, из которых у них случайно вышла бронза. Во времена железного века (1200 лет назад) из руды стали извлекать железо. Его главными добытчиками считают древних римлян, преуспевших в искусстве ковки, а четь изобретений технологий металлообработки и добычи принадлежит китайцам.

Независимо от того, в каком уголке земного шара развивалась металлургия, все люди пользовались классическим сыродутным методом, с помощью которого осуществлялась выплавка меди и свинца.

Далее последовала эпоха, называемая этапом цементации. Железо стали закаливать, оно превратилось в металл гораздо прочнее бронзы. Однако процесс освоения людьми этой технологии занял около тысячи лет.

В период Средневековья высота плавильных печей уже составляла три метра, а работали они с применением энергии, получаемой через воду.

Эти печи назывались штукофенами и стали стимулом для того, чтобы чёрная металлургия вышла на очередной виток развития. В эпоху Возрождения появились новые виды печей, которые назвали блауофенами.

После них появились доменные печи громадных размеров. Они работали 24 часа в сутки, выпуская до полутора тысяч тонн чугуна отменного качества.

В конце XIX, начале XX века появились новые технологии производства металлов. Речь идёт о бессемеровском, томасовском и, наконец, мартеновском способах.

Они помогли людям в разы увеличить производственные объёмы с выпуском металлов от шести тонн в час. Спустя 50 лет появились безостановочная разливка стали и метод кислородного дутья.

На современном этапе учёные активно развивают разные технологии обогащения руд и производства стали в электрических печах.

На чем основано производство металла

Газы в металлургии

Пирометаллургия — отрасль, подразумевающая постоянное газообразование. Газы должны регулярно удаляться из печей вместе с пылью. Они бывают технологическими и топливными.

Образование технологических газов происходит во время протекания сложных процессов. Они состоят из углекислоты, водных паров, оксида углерода и сернистого ангидрида.

Также при некоторых процессах в металлургии наблюдается выделение газообразного хлора и других хлоридов. Когда топливо сгорает, происходит выделение углекислоты и водного пара.

Температура газов, выделяющихся во время реакций, составляет от 800 до 1300С, но иногда она бывает и больше.

Сейчас на любом металлургическом производстве используются комплексные технологии переработки газов:

  • с применением оксида серы;
  • высокие температуры;
  • процесс обезвоживания и т.д.

Специальность «Металлургия»

Профессия металлурга включает несколько специализаций. Есть рабочие-металлурги, а есть инженеры. Среди рабочих направлений выделяют:

  • сталеваров. Они владеют всеми известными технологиями производства стали;
  • плавильщики. Они занимаются плавлением металлов, знают, из чего они состоят и при каких температурах процесс плавления будет наиболее эффективным;
  • специалисты доменных печей. Их задача — убирать из печей отходы производства, чтобы качество металлов всегда оставалось на должном уровне;
  • разливщики. Они принимают жидкие металлы и разливают их в специальные формы;
  • нагревальщики. Они не только нагревают доменные печи, но и готовят их к работе;
  • машинисты кранов. Они перемещают с помощью металлургических кранов необходимые производственные элементы. Такой крановщик занимается организацией всего рабочего процесса в цехе.

Задача инженеров-металлургов — управление производственным процессом от и до. Они разрабатывают способы, применяемые при плавлении разных металлов и изготовлении разных изделий. Инженеры занимаются вопросами безопасности на производстве — с целью сохранения экологического фона. Также они контролируют качество производимой продукции и проводят ряд мероприятий в области маркетинга.

Таким образом, профессия металлурга объединяет несколько разных специальностей, а металлургия — это динамично развивающаяся сфера, без которой невозможно себе представить развитое и цивилизованное общество. И поскольку внутри отрасли есть большое число направлений, то каждый может выбрать наиболее интересную и подходящую ему профессию.

На чем основано производство металла

Стоит отметить, что выучиться на одно из направлений металлургической отрасли возможно не только в университетах и средних профессиональных образовательных учреждениях, но и в рамках дополнительного профессионального образования. Так, Современная научно-технологическая академия реализует курсы профессиональной переподготовки и повышения квалификации по профилю «Металлургия».

Курсы повышения квалификации «Металлургия» направлены на специалистов, которые уже работают в отрасли и хотят повысить уровень своих знаний и компетенций.

А вот профессиональная переподготовка ориентирована на тех, кто ставит перед собой цель овладеть новой профессией.

Обучение на базе СНТА позволяет овладеть актуальные навыками и компетенциями, которые станут отличным толчком для дальнейшего профессионального роста и развития специалиста.

Не нашли нужную информацию? Задайте вопрос менеджеру

Металлургия как отрасль промышленности

На чем основано производство металлаМеталлургия — (от греч. metallurgeo-добываю руду, обрабатываю металлы) — область науки и техники, отрасль промышленности[1] . К металлургии относятся:

  • — производство металлов из природного сырья и других металлсодержащих продуктов;
  • — получение сплавов;
  • — обработка металлов в горячем и холодном состоянии;
  • — сварка;
  • — нанесение покрытий из металлов;
  • — область материаловедения, изучающая физическое и химическое поведение металлов, интерметаллидов и сплавов.
  • К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности.

Разновидности металлургии

Металлургия подразделяется на чёрную и цветную. Чёрная металлургия включает добычу и обогащение руд чёрных металлов, производство чугуна, стали и ферросплавов.

К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов. К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов.

С металлургией тесно связаны коксохимия, производство огнеупорных материалов.

К чёрным металлам относят железо. Все остальные — цветные. По физическим свойствам и назначению цветные металлы условно делят на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний).

По основному технологическому процессу подразделяется на пирометаллургию (плавка) и гидрометаллургию (извлечение металлов в химических растворах). Разновидностью пирометаллургии является плазменная металлургия.

  1. Самыми распространенными металлами являются:
  2. 1) Алюминий
  3. 2) Железо
  4. 3) Медь
  5. 4) Цинк
  6. 5) Магний

Чёрная металлургия

  • Чёрная металлургия служит основой развития машиностроения (одна треть производимого металла идёт в машиностроение) и строительства (1/4 металла идёт в строительство).
  • Состав черной металлургии
  • В состав чёрной металлургии входят следующие основные подотрасли:
  • — добыча и обогащение руд чёрных металлов (железная, хромовая и марганцевая руда)

— добыча и обогащение нерудного сырья для чёрной металлургии (флюсовых известняков, огнеупорных глин и т. п.);

  1. — производство чёрных металлов (чугуна, углеродистой стали, проката, металлических порошков чёрных металлов);
  2. — производство стальных и чугунных труб;
  3. — коксохимическая промышленность (производство кокса, коксового газа и пр.);
  4. — вторичная обработка чёрных металлов (разделка лома и отходов чёрных металлов).
  5. Металлургический цикл черной металлургии
  6. Собственно металлургическим циклом является производство
  7. 1) чугунно-доменное производство,
  8. 2) стали (мартеновское, кислородноконвертерное и электросталеплавильное), (непрерывная разливка, МНЛЗ),
  9. 3) проката (прокатное производство).
  10. Предприятия, выпускающие чугун, углеродистую сталь и прокат, относятся к металлургическим предприятиям полного цикла.

Предприятия без выплавки чугуна относят к так называемой передельной металлургии. «Малая металлургия» представляет собой выпуск стали и проката на машиностроительных заводах. Основным типом предприятий чёрной металлургии являются комбинаты.

В размещении чёрной металлургии полного цикла большую роль играет сырьё и топливо, особенно велика роль сочетаний железных руд и коксующихся углей.

Цветная металлургия

Цветная металлургия — отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов.

По физическим свойствам и назначению цветные металлы условно можно разделить на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний).

На основании этого деления различают металлургию лёгких металлов и металлургию тяжёлых металлов.

Размещение предприятий отрасли

Размещение предприятий цветной металлургии зависит от многих экономических и природных условий, особенно от сырьевого фактора. Заметную роль, помимо сырья, играет топливно-энергетический фактор.

Читайте также:  Металл листовой 4мм вес

На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии лёгких металлов (алюминиевая, титано-магниевая промышленность) и тяжёлых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности).

Тяжёлые металлы

Производство тяжёлых цветных металлов в связи с небольшой потребностью в энергии приурочено к районам добычи сырья.

По запасам, добыче и обогащению медных руд, а также по выплавке меди ведущее место в России занимает Уральский экономический район, на территории которого выделяются Красноуральский, Кировградский, Среднеуральский, Медногорский комбинаты.

Свинцово-цинковая промышленность в целом тяготеет к районам распространения полиметаллических руд. К таким месторождениям относятся Садонское (Северный Кавказ), Салаирское (Западная Сибирь), Нерченское (Восточная Сибирь) и Дальнегорское (Дальний Восток).

Центром Никель-Кобальтовой промышленности являются города: Норильск (Восточная Сибирь), Никель и Мончегорск (Северный экономический район).

Лёгкие металлы

Для получения лёгких металлов требуется большое количество энергии. Поэтому сосредоточение предприятий, выплавляющих легкие металлы, у источников дешёвой энергии — важнейший принцип их размещения.

Сырьём для производства алюминия являются бокситы Северо-Западного района (Бокситогорск), Урала (город Североуральск), нефелины Кольского полуострова (Кировск) и юга Сибири (Горячегорск).

Из этого алюминиевого сырья в районах добычи выделяют окись алюминия — глинозём. Получение из него металлического алюминия требует больших затрат электроэнергии.

Поэтому алюминиевые заводы строят вблизи крупных электростанций, преимущественно ГЭС (Братской, Красноярской и др.)

Титано-магниевая промышленность размещается преимущественно на Урале, как в районах добычи сырья (Березниковский титано-магниевый завод), так и в районах дешёвой энергии (Усть-Каменогорский титано-магниевый завод). Заключительная стадия титано-магниевой металлургии — обработка металлов и их сплавов — чаще всего размещается в районах потребления готовой продукции.

История

Первые свидетельства того, что человек занимался металлургией, относятся к 5-6 тысячелетиям до н. э. и были найдены в Майданпеке, Плочнике[2] и других местах в Сербии (в том числе медный топор 5500 лет до н. э.

, относящийся к культуре Винча)[3], Болгарии (5000 лет до н. э.), Палмеле (Португалия), Испании, Стоунхендже (Великобритания).

Однако, как это нередко случается со столь давними явлениями, возраст не всегда может быть точно определён.

В культуре ранних времён присутствуют серебро, медь, олово и метеоритное железо, позволявшие вести ограниченную металлообработку. Так, высоко ценились «Небесные кинжалы» — египетское оружие, созданное из метеоритного железа 3000 лет до н. э. Но, научившись добывать медь и олово из горной породы и получать сплав, названный бронзой, люди в 3500 годы до н. э. вступили в Бронзовый век.

Получение железа из руды и выплавка металла было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э., что стало началом Железного века. Секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян.

Следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях.

Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока, древний Египет и Анатолия (Турция), Карфаген, греки и римляне античной и средневековой Европы, Китай, Индия, Япония и т. д.

Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретя доменные печи, чугун, сталь, гидромолоты и т. п.).

Тем не менее, последние исследования свидетельствуют о том, что технологии римлян были гораздо более продвинутыми, чем предполагалось ранее, особенно в области горной добычи и ковки.

Добывающая металлургия

Добывающая металлургия заключается в извлечении ценных металлов из руды и переплавке извлечённого сырья в чистый металл. Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть отделена физическим, химическим или электролитическим способом.

Металлурги работают с тремя основными составляющими: сырьём, концентратом (ценный оксид или сульфид металла) и отходами. После добычи большие куски руды измельчаются до такой степени, когда каждая частица является либо ценным концентратом либо отходом.

Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание. Таким путём можно растворить минерал и получить обогащённый минералом раствор.

Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.

Свойства металлов

  • Металлы в целом обладают следующими физическими свойствами:
  • Твердость.
  • Звукопроводность.
  • Высокая температура плавления.
  • Высокая температура кипения.
  • При комнатной температуре металлы находятся в твёрдом состоянии (за исключением ртути, единственного металла, находящегося в жидком состоянии при комнатной температуре).
  • Отполированная поверхность металла блестит.
  • Металлы — хорошие проводники тепла и электричества.
  • Обладают высокой плотностью.

Применения металлов

Медь обладает пластичностью и высокой электропроводностью. Именно поэтому она нашла свое широкое применение в электрических кабелях.

Золото и серебро очень тягучи, вязки и инертны, поэтому используются в ювелирном деле (особенно золото, которое не окисляется). Золото также используется для изготовления неокисляемых электрических соединений.

Железо и сталь обладают твердостью и прочностью. Благодаря этим их свойствам они широко используются в строительстве.

Алюминий ковок и хорошо проводит тепло. Он используется для изготовления кастрюль и фольги. Благодаря своей низкой плотности — при изготовлении частей самолётов.

Сплавы

Сплав — макроскопически однородная смесь двух или большего числа химических элементов с преобладанием металлических компонентов. Основной или единственной фазой сплава, как правило, является твёрдый раствор легирующих элементов в металле, являющемся основой сплава.

Сплавы имеют металлические свойства, например: металлический блеск, высокие электропроводность и теплопроводность. Иногда компонентами сплава могут быть не только химические элементы, но и химические соединения, обладающие металлическими свойствами.

Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана.

Макроскопические свойства сплавов всегда отличаются от свойств их компонентов, а макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения примесных фаз в металлической матрице.

Сплавы обычно получают с помощью смешивания компонентов в расплавленном состоянии с последующим охлаждением. При высоких температурах плавления компонентов, сплавы производятся смешиванием порошков металлов с последующим спеканием (так получаются, например, многие вольфрамовые сплавы).

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В состав многих сплавов могут вводиться и неметаллы, такие как углерод, кремний, бор и др. В технике применяется более 5 тыс. сплавов.

  1. Сплавы, используемые в промышленности различаются по своему предназначению.
  2. Конструкционные сплавы:
  3. — стали
  4. — чугуны
  5. — дюралюминий
  6. Конструкционные со специальными свойствами (например, искробезопасность, антифрикционные свойства):
  7. — бронзы
  8. — латуни
  9. Для заливки подшипников:
  10. — баббит
  11. Для измерительной и электронагревательной аппаратуры:
  12. — манганин
  13. — нихром
  14. Для изготовления режущих инструментов:
  15. — победит
  16. В промышленности также используются жаропрочные, легкоплавкие и коррозионностойкие сплавы, термоэлектрические и магнитные материалы, а также аморфные сплавы.

Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Ссылка на основную публикацию
Adblock
detector