Алюминий это пластический металл

Главная › Металлы

23.05.2020

Металл алюминий — мечта многих производств. Коррозия ему не страшна, он прекрасно проводит электрический ток, цветной металл легче железа почти в три раза, отличается прочностью. Не магнитится, легко образует сплавы с металлами.

Второе имя алюминия — крылатый металл. Появление чистого алюминия открыло человеку дорогу в небо.

Алюминий это пластический металл

Как искали неизвестный алюминий

История открытия алюминия вяло тянулась с античности. Плиний пишет о квасцах (Alumen). Но под квасцами понимались разные вещества. Это антимоний, тартар, щелочь, гипс.

Лавуазье высказал здравую мысль: алюмина является окислом неизвестного металла. Тут химики оживились и стали пытаться «выцепить» незнакомца. Попыток было много, но только в 1825 году датчанин Эрстед извлек-таки неизвестный металл, напоминающий олово. Назвали его алюминием.

Свойства крылатого металла

Алюминий (Aluminium) имеет несчастливый 13 номер в периодической таблице Менделеева. Однако на счастливую судьбу металла это не повлияло.

Алюминий это пластический металл

Этот легкий серебристый металл послушно поддается механической обработке и литью, имеет большую тягучесть.

Редкая способность — быстро образовывать окисные пленки на поверхности чистого металла. Но эти пленки не слишком хорошо защищают от коррозии. Надежнее химическое и электрохимическое оксидирование. Формула оксидной пленки А12Оз.

Химические и физические характеристики алюминия:

  • плотность 2,7 г/см3;
  • температура плавления 660°С;
  • кипит цветной металл при температуре 2518°С;
  • строение кристаллической решетки гранецентрированное, кубическое;
  • степени окисления 0; +3.

С помощью металлического алюминия (его взаимодействия с оксидами металлов) получают трудновосстанавливаемые металлы. Этот метод называется алюминотермия.

Алюминий имеет один стабильный изотоп, 27Al.

Алюминий это пластический металлМикроструктура алюминия на протравленной поверхности слитка, чистотой 99,9998 %, размер видимого сектора около 55×37 мм

Неправда, но хорошо придумано

В печатных изданиях, а сейчас и в интернете гуляет история о крестьянине, который вел «крамольные беседы о полете на Луну».

Крестьянина (или мещанина), по одним сведениям Петрова, по другим Никифорова, сослали в киргизский поселок Байконур» Якобы известие о факте напечатано был в Московских губернских новостях», в 1848 году.

Сейчас, когда с космодрома Байконура ушли в космос не один десяток спутников и станций, этот факт выглядит пророческим и мистическим.

Алюминиевые сплавы, плюсы и минусы

Алюминий это пластический металлКодовый символ, указывающий, что алюминий может быть вторично переработан

Чистый алюминий в строительных конструкциях применять нецелесообразно. Прочностные характеристики у него «так себе». А вот алюминиевые сплавы — другое дело. Сейчас известны и используются около 60 сплавов. Можно выбрать для любых нужд, на любой вкус.

Классификация сплавов проводится по составу, свойствам, по способности к термической обработке.

Добавки меди, магния и марганца, цинка существенно улучшают характеристики сплава в сравнении с чистым металлом. Этими металлами чаще всего легируют алюминий. Титан, литий, ванадий, церий, скандий, некоторые редкоземельные элементы для легирования применяются реже, но свойства этих сплавов также востребованы в промышленности.

Дюраль

Дюралюмины — сплавы алюминия с медью (4%), магнием (0,5%) и небольшого количества железа, марганца, кремния. Недостаток дюралей — подверженность коррозии; с ней справляются, применяя анодирование, плакировку, авиационную грунтовку, окрашивание.

Востребованные свойства сплава: хорошая статическая и усталостная прочность, высокая вязкость разрушения.

Широко применяется в деталях и конструкциях, где большую роль играет масса изделия. Главные потребители сплава — авиация, судостроение, космонавтика.

Сплав 7075

Разрабатывался компанией Sumitomo Metal Corporation (Япония) в строжайшей тайне.

Представляет соединение алюминия с цинком (до 6%), магния (2-2,5%), меди (до 1,5%). В тот же сплав добавлены титан, кремний, марганец, хром, железо. Добавки эти составляют не более 0,5%, но свой вклад в свойства сплава вносят.

Модификации сплава:

  • 7075-0;
  • 7075-06;
  • 7075-Т651;
  • 7075-Т7;
  • 7075-АСР.

Сплавы устойчивы к коррозии, хорошо полируются.

Алюминий это пластический металл

Применяются в производстве винтовок для армии и граждан. Промышленности автомобильная, авиационная, морская активно используют сплав. Его минус — достаточно высокая цена.

Сплавов разных много

В России довольно много сплавов с разными свойствами:

  • D1, D16, 1161, 1163 — алюминий, магний, медь;
  • АМГ1 — АМГ6, сплав алюминия и магния;
  • AD31, AD33, AD35, AB — алюминий, кремний, магний. Список легко продолжить.

Старость в радость

Не всегда старость — это плохо. Металл — как человек или вино; с возрастом свойства алюминия меняются; он становится лучше, крепче, сильнее.

Естественное старение металла происходит при нормальных условиях; можно сказать, что металл «дозревает».

Искусственное старение проходит при термообработке и пластическом деформировании.

Термическая обработка бывает разных видов. Выбор зависит от назначения будущего сплава.

Вид термообработки Что дает термообработка
Закалка с полным искусственным старением Высокая прочность сплава, но некоторое снижение пластичности
Закалка со стабилизирующим старением Хорошая прочность, довольно высокая стабильность структуры
Закалка с последующим смягчающим отпуском Хорошая пластичность, но снижение прочности сплава
Искусственное старение Повышает прочность сплава, улучшает возможность обработки резанием
Отжиг Повышение пластичности, уменьшение остаточных напряжений металла
Закалка Улучшает прочностные характеристики
Закалка и неполное искусственное старение Повышает прочность при сохранении пластичности

Минералы, месторождения…а самородный алюминий?

Запасы алюминия в природе огромны. Среди металлов он держит первое место по распространенности. Но «общительность», активность элемента привела к тому, что в чистом виде металл практически отсутствует.

Алюминий это пластический металлПроизводство алюминия в миллионах тонн

Минералов, содержащих алюминий, много:

  • бокситы;
  • глиноземы;
  • полевые шпаты;
  • нефелины;
  • корунды.

Так что добыча алюминиевого сырья не составляет большого труда.

Если все запасы на Земле истощатся (что сомнительно), то алюминий можно добывать из морской воды. Там его содержание составляет 0,01 мг/л.

Кто захочет увидеть самородный алюминий, тому придется опускаться в жерла вулканов.

Происхождением такой металл из самых глубин нашей планеты.

Как производят крылатый металл

Производство металла можно разделить на две стадии.

  • Первая — добыча бокситов, их дробление и отделение кремния при помощи пара.
  • Вторая стадия: глинозем смешивают с расплавленным криолитом и воздействуют на смесь электротоком. В процессе реакции жидкий алюминий оседает на дне ванны.

Образовавшийся металл отливают в слитки; далее он отправляется потребителям или на производство сплавов и высокочистого алюминия.

Метод энергозатратный, «кушает» много электричества.

Бывает технический и сверхчистый

Полученный алюминий называется техническим или нелегированным. В нем содержание чистого металла не менее 99%. Его потребляет электронная промышленность, он необходим в производстве теплообменных и нагревательных устройств, осветительного оборудования.

Часть этого металла отправляется на дополнительную очистку, «рафинирование». В результате имеем металл высокой чистоты, с содержанием алюминия не менее 99,995%.

Его употребляют в электронике, в производстве полупроводников. Кабельное производство, химическое машиностроение сейчас не обойдется без сверхчистого алюминия.

Металл для крыльев

Без такого металла, как алюминий, невозможно покорение неба. Крыльев людям не дано, а летать хочется человеку с давних времен. Не напрасно миф об Икаре живет с античных времен. Попытки взлететь предпринимались неоднократно.

Но прорыв случился в 1903 году, когда романтики неба и замечательные механики братья Райт подняли в воздух самолетик. Этот самолет открыл путь в небо.

Где применяется

Применение легкого и прочного металла необходимо не только в авиации.

Алюминий это пластический металл

В пуленепробиваемых и бронированные стеклах, экранчиках смартфонов присутствует сапфир. У таких стекол высокая прочность на сжатие.

Читайте также:  Чем отличается двухтактный двигатель от четырёхтактного, принцип работы двухтактного двигателя

Из алюминия делают фольгу, которую используют в электрических конденсаторов. Домохозяйки с удовольствием запекают в фольге вкусняшки для домашних. Кастрюли, сковородки, другие изделия для домашнего хозяйства производят из «крылатого металла».

Алюминий это пластический металл

Тонко молотый порошок металла используют для производства прочной краски.

Вы удивитесь, но алюминиевая кастрюлька в кухне, самолет и перстень с сапфиром — родня. В каждом есть наш герой.

Оксид алюминия — это корунд. А к ним относятся сапфиры, рубины, изумруды — все эти короли драгоценных камней содержат алюминий. Сам корунд используют как наждак.

Купить металл

Стоимость металла на бирже 148 USD за тонну (на 05.05.2020).

Рекомендуем:  ТИТАН — супермен среди металлов Алюминий — дороги, которые он выбирает Ссылка на основную публикацию Алюминий это пластический металл Алюминий это пластический металл

Упрочнение алюминия: 3 механизма

Чистый алюминий, с содержанием алюминия 99,8 %, в отожженном состоянии имеет предел текучести менее 20 МПа (2 кГ/мм2) и относительное удлинение более 40 %. Чтобы сделать такой алюминий пригодным для применения в качестве конструкционного материала к нему применяют различные методы упрочнения.

Пластическая деформация алюминия

Все металлы – и алюминий тоже – имеют кристаллическую атомную решетку. Пластическая деформация металлов происходит благодаря существованию в их атомной решетке линейных дефектов – дислокаций. Пластическая деформация происходит путем движения этих дислокаций, так, например, как показано на рисунке 1.

Алюминий это пластический металлРисунок 1 – Пластическая деформация путем движения дислокации
через атомную решетку пластичного металла

Три механизма упрочнение алюминия

Сущность упрочнения металла заключается в том, что в его решетку тем или другим образом вводятся препятствия для движения дислокаций.

Для алюминия эффективными являются три основных механизма упрочнения. Это:

  • деформационное упрочнение (наклеп, нагартовка);
  • упрочнение за счет образования твердого раствора легирующего элемента в алюминии (закалка)
  • упрочнение в результате выделения в алюминии вторичных фаз (старение).

В свою очередь, алюминиевые сплавы могут классифицироваться по преобладающему механизму их упрочнения.

Деформационное упрочнение алюминия

Дислокации двигаются по наиболее плотно упакованным плоскостям атомной решетки. Эти плоскости называются плоскостями скольжения.

Так как кристаллическая решетка алюминия является гранецентрированной кубической, то у него имеется четыре эквивалентных плоскости скольжения с тремя направлениями скольжения каждая. Это дает в сумме 12 систем скольжения.

В зависимости от преобладающего напряженного состояния обычно активными являются несколько систем скольжения. Поэтому при деформации алюминия постоянно происходит взаимодействие дислокаций различных плоскостей скольжения.

В результате этого формируются плотные клубки дислокаций, которые представляют собой препятствия для дальнейшего движения дислокаций. Около этих препятствий возникают поля интенсивных локальных напряжений. Этот механизм работает для всех металлических сплавов, которые подвергаются пластической деформации.

Деформационное упрочнение путем холодной прокатки, волочения или растяжения является эффективным способом повышения прочности алюминиевых сплавов, которые не поддаются термическому упрочнению.

Кривые деформационного упрочнения – холодной прокатки – отожженных листов из таких алюминиевых сплавов, 1100, 3003, 5050 и 5052 показаны на рисунке 2.

Хорошо видно, что увеличение прочности сплавов сопровождается снижением пластичности, которая измеряется в процентах относительного удлинения при испытаниях образцов на растяжение.

Алюминий это пластический металлРисунок 2 – Кривые деформационного упрочнения алюминия (1100),
алюминиево-марганцевого сплава 3003 и

алюминиево-магниевых сплавов 5050 и 5052.

Упрочнение путем образования твердого раствора

Легирующие элементы в твердом растворе взаимодействуют с дислокациями в основном путем полей локальных напряжений, которые обеспечивают дополнительные силы трения при движении дислокаций.

Этот упрочняющий механизм повышает эффективность деформационного упрочнения (наклепа, нагартовки).

Алюминиевые сплавы серий 3ххх и 5ххх являются типичными примерами сплавов, которые получают упрочнение в результате образования твердого раствора соответственно марганца и магния в атомной решетке алюминия.

На рисунке 3 показано влияние содержания магния в твердом растворе алюминия на предел текучести и относительное удлинение для наиболее популярных алюминиево-магниевых промышленных сплавов.

Алюминий это пластический металлРисунок 3 – Корреляция между пределом текучести, относительным удлинением и содержанием магния в алюминиевых сплавах серии 5ххх

Упрочнение за счет выделения вторичной фазы

Выделившиеся частицы вторичных фаз в алюминии является очень эффективными препятствиями для движения дислокаций. Эффективность частиц как препятствий для движения дислокаций зависит как от размера частиц, так и от расстояния между ними.

Малые когерентные выделения не являются существенным препятствием для дислокаций – они их просто перерезают. С увеличением размеров частиц вторичной фазы, а также потерей их когерентности с атомной решеткой алюминиевой матрицы, степень сопротивления частиц движению дислокаций возрастает.

Возрастание твердости до определенного максимума при искусственном старении алюминиевых сплавов объясняется именно прогрессирующим выделением вторичной фазы.

С другой стороны, снижение твердости при перестаривании алюминиевого сплава происходит из-за увеличения расстояния между частицами вторичной фазы.

Упрочнение алюминиевых сплавов за счет старения – естественного или искусственного – происходит именно по механизму упрочнения за счет выделения вторичных фаз из перенасыщенного твердого раствора (рисунок 4).

Этот перенасыщенный твердый раствор легирующих элементов в алюминии создается путем нагрева алюминиевого сплава до полного растворения легирующих элементов и быстрого его охлаждения, например, до комнатной температуры.

Алюминий это пластический металлРисунок 4 – Кривые естественного и искусственного старения
прессованных профилей из сплава 6082

В интервале температуры от комнатной до 60 °С происходит образование «кластеров», которые остаются когерентными с атомной решеткой алюминия. Этот процесс называется «естественным старением». Он приводит к состояниям алюминиевых сплавов Т1 и Т4.

В интервале температуры от 60 до 220 °С происходит образование промежуточных когерентных и полукогерентных вторичных фаз. Это процесс называется «искусственным старением». Он дает состояния алюминиевых сплавов Т5 и Т6.

Кривые старения на рисунке 4 показывают влияние температуры старения на прочностные свойства и удлинение прессованного сплава 6082. Отметим более высокую пластичность и более низкую прочность после старения при комнатной температуре.

Источники:

Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes / Ed. by George E. Totten, D. Scott MacKenzie

Aluminum and Aluminum Alloys (ASM Specialty Handbook)

  • Алюминий это пластический металл Теплые алюминиевые окна
  • Алюминиевые лодки Алюминий это пластический металл

EnglishРусскийDeutsch

Алюминий это пластический металл

Алюминий это пластический металл

Алюминий это пластический металл

Алюминий это пластический металл

Алюминий

Алюминий это пластический металл

Кусок чистого алюминия

Алюминий — очень редкий минерал семейства меди-купалита подкласса металлов и интерметаллидов класса самородных элементов. Преимущественно в виде микроскопических выделений сплошного мелкозернистого строения.

Может образовывать пластинчатые или чешуйчатые кристаллы до 1 мм., отмечены нитевидные кристаллы длиной до 0,5 мм. при толщине нитей несколько мкм.

Лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке.

СТРУКТУРА

Алюминий это пластический металл

Кубическая гранецентрированная структура. 4 оранжевых атома

Кристаллическая решетка алюминия — гранецентрированный куб, которая устойчива при температуре от 4°К до точки плавления. В алюминии нет аллотропических превращений, т.е. его строение постоянно.

Элементарная ячейка состоит из четырех атомов размером 4,049596×10-10 м; при 25 °С атомный диаметр (кратчайшее расстояние между атомами в решетке) составляет 2,86×10-10 м, а атомный объем 9,999×10-6 м3/г-атом.
Примеси в алюминии незначительно влияют на величину параметра решетки.

Алюминий обладает большой химической активностью, энергия образования его соединений с кислородом, серой и углеродом весьма велика. В ряду напряжений он находится среди наиболее электроотрицательных элементов, и его нормальный электродный потенциал равен -1,67 В.

В обычных условиях, взаимодействуя с кислородом воздуха, алюминий покрыт тонкой (2-10-5 см), но прочной пленкой оксида алюминия А1203, которая защищает от дальнейшего окисления, что обусловливает его высокую коррозионную стойкость. Однако при наличии в алюминии или окружающей среде Hg, Na, Mg, Ca, Si, Си и некоторых других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.

Читайте также:  Как правильно использовать фундаментные анкерные болты и их виды

СВОЙСТВА

Алюминий это пластический металл

Самородный алюминий. Поле зрения 5 x 4 мм. Азербайджан, Гобустанский район, Каспийское море, Хере-Зиря или остров Булла

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью, парамагнетик. Температура плавления 660°C. К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см3), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость.

Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой – оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления.

Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется.

При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты – соли, содержащие алюминий в составе аниона.

Запасы и добыча

Алюминий это пластический металл

Кусочки алюминия

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14%.

Современный метод получения, процесс Холла—Эру был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов.

Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

ПРОИСХОЖДЕНИЕ

Алюминий это пластический металл

Аллюминий, агрегированный с коркой байерита на поверхности. Узбекистан, Навойская область, Учкудук

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико.

Самые распространенные вещества, содержащие рассматриваемый металл: полевые шпаты; бокситы; граниты; кремнезем; алюмосиликаты; базальты и прочие. В небольшом количестве алюминий обязательно входит в состав клеток живых организмов.

Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

ПРИМЕНЕНИЕ

Алюминий это пластический металл

Украшение из алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость.

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу.

Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем.
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г.

были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий (англ. Aluminium) – Al

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.21

Физические свойства

Оптические свойства

Плеохроизмне плеохроирует

Кристаллографические свойства

Алюминий

Алюминий это пластический металлАлюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф.

Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде. Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные.

В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия.

В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки.

Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С. Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла.

Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты.  Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции.

Металл высокой чистоты применяют в специальных целях. По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью.

Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру.

Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов.

Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия.

Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства.

Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель.

В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит.

С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Читайте также:  Площадь приведенного сечения металла

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл.

Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов.

  Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур.

При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов.

Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера.

В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма.

Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия.

Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С).

Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля).

Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ.

Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания.

Больше всего металла в овсянке, горохе, пшенице, рисе.

Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

  • Алюминиевый лист
  • Алюминиевая плита
  • Алюминиевые чушки
  • Алюминиевые уголки
  • Алюминиевая проволока

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

У алюминия нашли уникальные пластические свойства

Исследователи из Санкт-Петербургского политехнического университета Петра Великого (СПбПУ) с помощью высокопроизводительного электродугового выращивания получили алюминий с пластичностью, в три раза превышающей нормы ГОСТ. Работа ученых опубликована в журнале Materials & Design.

Алюминий сегодня применяется в качестве конструкционного материала при производстве деталей самолетов и ракет. Также металл находит применение и в других областях — пищевой промышленности, черной металлургии и так далее. Авторы нового исследования нашли способ увеличить производительность аддитивного электродугового выращивания алюминия.

Модернизация этого способа помогла исследователям обнаружить уникальные свойства алюминия.

Пластические свойства материала, синтезированного таким образом, выросли более чем в три раза — с 12% до 41% — по сравнению показателями при традиционном методе получения.

Химический состав при этом не менялся. Это означает, что во время эксплуатации при прочих равных условиях новый материал прослужит дольше.

«Наше открытие может в принципе поменять взгляд на создание конструкций. Механические свойства металла всегда закладываются с запасом, в нашем случае этот запас в несколько раз превышает установленные нормы.

Сейчас технология представляет интерес для многих отраслей, наиболее интересная область для нас – частный космос, где мы имеем партнера в лице S7 R&D Center.

Выращенный материал будет позволять выдерживать деформации, вызванные нагрузкой в космосе, более длительное время», — рассказал ведущий автор работы, заведующий лабораторией легких материалов и конструкций СПбПУ Олег Панченко.

Улучшить пластические свойства алюминия помогло увеличение скорости кристаллизации металла, которое исследователи достигли за счет повышения скорости электродугового выращивания до 2,2 кг/час. В самом начале авторы хотели просто повысить производительность метода, однако в результате получили материал с совершенно неожиданными физическими параметрами.

Далее исследователи планируют еще больше повысить скорость кристаллизации, используя хладагенты. Согласно авторам, это поможет выяснить, как свойства материала зависят от скорости выращивания. Исследователи уже примерно поняли, как можно достичь уникальных свойств, и теперь хотят изучить эти методы подробнее.

Также материаловеды планируют изучить свойства полученного материала при циклическом (усталостном) нагружении, так как опубликованная работа была основана на анализе при статическом нагружении. Как правило, материалы с повышенной пластичностью показывают лучшие усталостные свойства — эту гипотезу и проверят ученые.

Ссылка на основную публикацию
Adblock
detector