Взаимодействие металлов с кислотами овр

  • Давайте рассмотрим свойства
  • и продукты их реакций
  • Автор статьи — Саид Лутфуллин
  • Свойства концентрированной серной кислоты — окислителя

Концентрированная серная кислота – бесцветная тяжелая маслянистая нелетучая жидкость. Не имеет запаха и тянет сказать: «без вкуса», но вкус у нее все же есть, пробовать не советую.

Разбавленная серная кислота ничем особым непримечательна. Свойства как и у других кислот. За исключением того, что она не реагирует со свинцом, так как образующийся сульфат свинца нерастворим. Нерастворимое вещество покрывает кусочек металла и «защищает его от реакции»

  1. Pb + H2SO4 ≠
  2. А вот концентрированная серная кислота – сильный окислитель (за счет атома серы в высшей степени окисления).
  3. Раз сера – окислитель, то она будет восстанавливаться:
  4. Глубина восстановления серы зависит от активности восстановителя:
  • сильные восстановители восстанавливают серную кислоту до H2S,
  • слабые — до SO2,
  • восстановители средней активности – до S.

 
На практике образуются несколько продуктов в разных пропорциях. Преобладание того или иного продукта зависит от множества факторов: от вышеупомянутой активности восстановителя, температуры, концентрации кислоты (95%, 90%. 85%, 80%, 75% – это все концентрированная кислота). Но в реалиях школьной программы все схематично и пишем один единственный продукт.

1. Взаимодействие металлов в концентрированной серной кислотой.

Концентрированная серная кислота реагирует с металлами, даже стоящими после водорода. Но кроме платины и золота – эти металлы слишком малоактивны.

Схема этих реакций:

 
Взаимодействие металлов с кислотами овр
 

  • Активные металлы восстанавливают серную кислоту до H2S:

8Li + 5H2SO4 конц → 4Li2SO4 + H2S ↑ + H2O

4Mg + 5H2SO4 конц → 4MgSO4 + H2S ↑ + H2O

  • Металлы средней активности восстанавливают серную кислоту до S:

3Mn + 4H2SO4 конц → 3MnSO4 + S ↓ + 4H2O

3Zn + 4H2SO4 конц → t→  3ZnSO4 + S ↓ + 4H2O

  • Малоактивные металлы восстанавливают серную кислоту до SO2:

Cu + 2H2SO4 конц  → CuSO4 + SO2 ↑ + 2H2O

2Ag + 2H2SO4 конц  → Ag2SO4 + SO2 ↑ + 2H2O

Некоторые металлы (конкретно нужно запомнить  — Fe, Al, Cr) при контакте с концентрированной серной кислотой покрываются защитной пленкой – и реакция не идет. Поэтому серную кислоту без всякой опасности перевозят в железных цистернах. Это явление называют пассивацией.

То, что железо, алюминий и хром пассивируются не означает, что реакция невозможна. Просто нужно нагреть – при нагревании от защитной пленки не остаётся и следа:

Взаимодействие металлов с кислотами овр

2. Взаимодействие неметаллов с концентрированной серной кислотой.

Не все неметаллы реагируют с концентрированной серной кислотой: лишь те, что проявляют восстановительные свойства. Поэтому кислород, азот и галогены не вступают в эти реакции.

Мы рассмотрим взаимодействие с фосфором, углеродом, бором, серой. Неметаллы – не такие активные восстановители как типичные металлы – поэтому серная кислота восстанавливается до SO2.

  • Неметалл окисляется до высшей степени окисления: образуется оксид. Поскольку оксид неметалла – кислотный, то он тут же в момент получения реагирует с водой и образуется кислота:
  • 2P + 5H2SO4 конц → 2H3PO4 + 5SO2 ↑+ 2H2O
  • 2B + 3H2SO4 конц → 2H3BO3 + 3SO2 ↑
  • Угольная кислота не образуется – получается углекислый газ:
  • C + 2H2SO4 конц → CO2 ↑ + 2SO2 ↑+ 2H2O
  • Концентрированная серная кислота окисляет серу:
  • Взаимодействие металлов с кислотами овр

3. Взаимодействие концентрированной серной кислоты с галогенидами.

Галогениды металлов – это соли галогеноводородов (HF, HCl, HBr, HI). Галогеноводороды – летучие кислоты, а HF еще к тому же и слабая.

  1. Поэтому серная кислота их вытесняет из солей:
  2. 2KF тв + H2SO4 конц → K2SO4 + 2HF↑
  3. 2NaCl тв + H2SO4 конц → Na2SO4 + 2HCl↑

Соли нужно брать твердые, не раствор. Тогда галогеноводороды будут вытесняться в виде газов.

А к фториду можно и в раствор прилить кислоты, так как фтороводородная кислота – слабая, она вытеснится. Только останется в растворе, вот и вся разница.

  • С хлоридами и фторидами происходит простая реакция обмена, без изменения степеней окисления.
  • Галоген окисляется до простого вещества. Сера восстанавливается:
  •  
    Взаимодействие металлов с кислотами овр
     

А вот бромиды и иодиды – восстановители. После вытеснения галогеноводорода он тут же окисляется. Поэтому реакции концентрированной серной кислоты с бромидами и иодидами протекают с изменением степеней окисления.

  1. Бромоводород и иодоводород окисляются так же, как и их соли:
  2. 2HBr + H2SO4 конц → Br2 + SO2 ↑ + 2H2O
  3. 8HI + H2SO4 конц → 4I2 ↓+ H2S ↑ + 4H2O
  4. Азотная кислота — окислитель.
  5. Производство.
     
  6. Сырье для производства азотной кислоты – аммиак. Три последовательные реакции окисления:
  7. 1. Каталитическое окисление аммиака:
     
  8. 4NH3+5O2 → кат., t°→ 4NO+6H2
  9. Реакция экзотермическая, необратимая.
     
  10. 2. Окисление NO до NO2:
     
  11. 2NO+O2→2NO2
  12. Реакция экзотермическая, обратимая.
     
  13. 3. Поглощение NO2 водой и одновременно его окисление:
     

Реакция экзотермическая, обратимая – по этой же схеме азотная кислота разлагается при хранении. Поэтому с течением времени прозрачная изначально азотная кислота буреет. Бурый цвет кислоте придает, образующийся при разложении NO2.

Если растворять NO2 в воде без доступа кислорода, то азот диспропорционирует:

 
Взаимодействие металлов с кислотами овр
 

Поэтому оксид азота (IV) NO2 мы относим к кислотным. Хоть у него и нет соответствующей кислоты, при растворении его в воде образуются HNO3 и HNO2.

Азотная кислота – жидкость с резким запахом. Свежая азотная кислота бесцветная. При хранении она разлагается и за счет бурого NO2 приобретает желтоватый цвет.

Важно знать, что азотная кислота летучая, легкокипящая, поэтому и имеет запах. А раз она летучая, то ее можно вытеснить из соли нелетучей кислотой, например, концентрированной серной:

NaNO3 тв + H2SO4 → t →  NaHSO4 + HNO3 ↑

Важно, чтобы нитрат был твердым, а серная кислота концентрированная – меньше воды. Чтобы азотная кислота испарялась, испаряется – значит покидает реакционную смесь, значит реакция идет до конца.

Химические свойства.

Свойства азотной кислоты в целом повторяют свойства концентрированной серной. Но с одной поправкой, в отличие от серной, азотная кислота и концентрированная, и разбавленная проявляет сильные окислительные свойства.

 
1. Взаимодействие с металлами.
 

До чего может восстанавливаться азот? Вспомним диаграмму степеней окисления азота:

Взаимодействие металлов с кислотами овр

Получиться может любой из этих продуктов. А на практике – несколько сразу. Мы рассмотрим упрощенный вариант: берем только преобладающий продукт и только два фактора, влияющие на глубину восстановления:

  • Активность металла – чем активнее, тем глубже идет восстановление.
  • Концентрация кислоты – разбавленная кислота восстанавливается глубже.
  • Еще больше упрощая берем только четыре продукта: NH4NO3, N2O, NO, NO2.
  • Наиболее глубокое восстановление дает разбавленная кислота и активный металл – NH4NO3.
  • 4Ca + 10HNO3 разб  → 4Ca(NO3)2 + NH4NO3 + 3H2O

Соответственно при взаимодействии концентрированной кислоты и малоактивного металла образуется NO2. Самое неглубокое восстановление.

Cu + 4HNO3 конц → Cu(NO3)2 + 2NO2  ↑+ 2H2O

Теперь нужно определить в каком случае будет N2O, а в каком NO. Фактор активности металла – решающий. С активным металлом и концентрированной кислотой будет N2O. А с малоактивным металлом и разбавленной кислотой образуется NO.

  1. 8Na + 10HNO3 конц → 8NaNO3 + N2O ↑ + 5H2O
  2. 3Cu + 8HNO3 разб → 3Cu(NO3)2 + 2NO ↑ + 4H2O
  3. Взаимодействие металлов с кислотами овр
  4.  
    Концентрированная азотная кислота пассивирует Fe, Cr, Al, как и концентрированная серная.
     
  5. Чтобы провести реакцию нужно нагреть:
  6. Взаимодействие металлов с кислотами овр
  7. С разбавленной кислотой эти металлы реагируют и без нагревания:

 
2. Взаимодействие с неметаллами (C, P, B, S).
 

Читайте также:  Золото это минерал или металл

Неметаллы окисляются до высших кислот. Реагирует и концентрированная, и разбавленная азотная кислота. Неметаллы – не очень хорошие восстановители, поэтому кислота восстанавливается как в реакции с малоактивными металлами (образуются N2O и NO2).

  •  
    В отличие от серной кислоты, очень концентрированная азотная кислота (безводная) окисляет при нагревании иод до иодноватой кислоты (HIO3):
  • I2 + 10HNO3 конц → t → 2HIO3 + 10NO2 ↑ + 4H2O

 
3. Взаимодействие с галогенидами.
 

Эти реакции могут запутать, хотя ничего сложного в них нет. Вам нужно просто понять логику каждой из них.

На что следует опираться:
 

  •  Реакции могут быть либо окислительно-восстановительными, либо обменными.
  •  Помним, что фториды (F–) и хлориды (Cl–) – восстановители плохие, если быть точнее, то никакие. А бромиды (Br–) и иодиды (I–) – хорошие восстановители.
  •  HF – слабая кислота, HCl, HBr, HI – сильные.
  1. Фториды металлов – это соли слабых кислот, поэтому сильная азотная кислота вытесняет фтороводород. И не важно концентрированная или разбавленная – это простая реакция обмена/p>
     
  2. KF + HNO3 → HF + KNO3

Фтороводород не реагирует с азотной кислотой. Реакция обмена невозможна и окислительно-восстановительная тоже: фторид – слабый восстановитель.

 

Хлориды металлов и хлороводород не реагируют с азотной кислотой. Хлорид ион – слабый восстановитель – не возможна ОВР. Хлориды металлов не реагируют, потому что соляная кислота – сильная (предыдущая плавиковая – слабая, если помните).

 

Бромиды и иодиды вступают с азотной кислотой в окислительно-восстановительное взаимодействие. Сами окисляются до простых веществ. Азотная кислота восстанавливается до NO2 если концентрированная, разбавленная – до NO, то есть так, как будто взаимодействует с малоактивным металлом.

 
 
 

Обсуждение: «Кислоты — окислители»

(Правила комментирования)

Взаимодействие металлов с кислотами

С разбавленными кислотами, которые проявляют
окислительные свойства за счет ионов водорода (разбавленные серная,
фосфорная, сернистая, все бескислородные и органические кислоты и др.)

Взаимодействие металлов с кислотами овр

реагируют металлы:
• расположенные в ряду напряжений до водорода (эти металлы способны
вытеснять водород из кислоты);
• образующие с этими кислотами растворимые соли (на поверхности этих металлов
не образуется защитная солевая пленка).
В результате реакции образуются растворимые соли и выделяется водород:

2А1 + 6НСI = 2А1С13 + ЗН2↑
Мg
+ Н2SO4 =
МgSu
+ Н2 SO4  →X(так
как Сu
стоит после Н2)            разб.

РЬ + Н2

SO4  →X(так
как РЬSO4
нерастворим
в воде)            разб.

Некоторые кислоты являются окислителями за счет элемента, образующего кислотный
остаток, К ним относятся концентрированная серная, а также азотная кислота
любой концентрации. Такие кислоты называют кислотами-окислителями.

Анионы
данных кислот содержат атомы серы и азота в высших степенях окисления

Взаимодействие металлов с кислотами овр

Окислительные свойства кислотных остатков и
значительно сильнее, чем нона водорода Н, поэтому азотная и концентрированная
серная кислоты взаимодействуют практически со всеми металлами, расположенными в
ряду напряжений как до водорода, так и после него, кроме золота и платины.

Так как окислителями в этих случаях являются ноны кислотных остатков (за
счет атомов серы и азота в высших степенях окисления), а не ноны водорода Н, то
при взаимодействии азотной, а концентрированной серной кислот с металлами
не выделяется водород.

Металл под действием данных кислот окисляется до характерной
(устойчивой) степени окисления
и образует соль, а продукт восстановления
кислоты зависит от активности металла и степени разбавления кислоты

Взаимодействие металлов с кислотами овр

Взаимодействие серной кислоты с металлами

Разбавленная и концентрированная серные кислоты ведут
себя по-разному. Разбавленная серная кислота ведет себя, как обычная
кислота.  Активные металлы, стоящие в
ряду напряжений левее водорода

Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H2, Cu,
Hg, Ag, Au

вытесняют водород из разбавленной серной кислоты. Мы
видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с
цинком.

  • H2SO4
    + Zn = Zn SO4 + H2 ↑
  • Медь стоит в ряду напряжений после водорода – поэтому
    разбавленная серная кислота не действует на медь. А в концентрированной серной
    кислоты, цинк и медь, ведут себя таким образом…
  • Цинк, как активный металл, может образовывать с
    концентрированной серной кислотой сернистый газ, элементарную серу, и даже
    сероводород.
  • 2H2SO4 + Zn = SO2↑
    +ZnSO4 + 2H2O

Медь — менее активный металл. При взаимодействии с
концентрированно серной кислотой восстанавливает ее до сернистого газа.

  1. 2H2SO4
    конц. + Cu = SO2↑ + CuSO4 + 2H2O
  2. В пробирках с концентрированной серной кислотой
    выделяется сернистый газа.
  3. Следует иметь в виду, что на схемах указаны продукты,
    содержание которых максимально среди возможных продуктов восстановления кислот.

На основании
приведенных схем составим уравнения конкретных реакций — взаимодействия меди и
магния с концентрированной серной кислотой: 0            +6         
+2          +4

С

u
+ 2Н2SO4
= СuSO4
+ SO2
+ 2Н2Og
+ 5Н2SO4
= 4МgSO4
+ Н2S
+ 4Н2O

Некоторые металлы (Fe.
АI, С
r)
не взаимодействуют с концентрированной серной и азотной кислотами при обычной
температуре,

так как происходит пассивации металла.
Это явление связано с образованием на поверхности металла тонкой, но очень
плотной оксидной пленки, которая и защищает металл. По этой причине азотную и концентрированную
серную кислоты транспортируют в железных емкостях.

Если металл проявляет переменные степени окисления, то с кислотами, являющимися
окислителями за счет ионов Н+, он образует соли, в которых его
степень окисления ниже устойчивой, а с кислотами-окислителями — соли, в которых
его степень окисления более устойчива: 0                   +2 Fе+Н2SO4=
FеSO4+Н2

  0     разб.   +3
Fе+Н2SO4=
Fе2(SO4)3 + 3SO2 + 6Н2O
        
И.И.Новошинский
Н.С.Новошинская Химия

не забудь….) поделиться с друзьями

Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее

Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее добавить в закладки

Среди тысяч химических превращений, которыми овладел человек, особое и самое большое место занимают окислительные и восстановительные процессы.

Они – суть самой жизни. В круговороте веществ на нашей планете, в осуществлении фотосинтеза, дыхания и метаболизма живыми организмами – всюду протекают взаимосвязанные реакции окисления и восстановления (ОВР).

Понятие о степени окисления (С.О.)

С.О. – основная характеристика состояния химических элементов.

Она условно обозначает заряд атома в химическом веществе, приобретенный этим атомом в процессе отдачи или принятия электронов от других элементов.

У элемента, отдавшего электрон, появляется положительная С.О., у принявшего электрон – отрицательная.

Важно помнить. В веществах молекулы электронейтральны, и сумма С.О. всех входящих в эти молекулы атомов будет всегда нулевой.

Это позволяет находить С.О. по формулам соединений.

Сущность окислительно-восстановительных реакций

Взаимодействия веществ с изменением С.О. атомов составляющих их элементов называют окислительно-восстановительными реакциями

  • В этой трансформации заключается их главный и характерный признак
  • Ещё одно определение ОВ-реакций – это химическое преобразование, протекающее с переносом электронов от одних частиц (восстановителей) к другим (окислителям).
  • 2Na0 + Cl20 = 2Na+Cl-
  • Приведенный пример ОВР умозрительно можно представить состоящим из двух полуреакций:

2Na0 – 2e- = 2Na+  – здесь идёт отдача электроотрицательных частиц (электронов) от атома натрия, являющимся в данном случае восстановителем. Происходит окисление. 

Во втором полупроцессе Cl2 + 2e- = 2Cl- – окислитель хлор, принимая электрон, участвует в восстановлении.

Читайте также:  Щелочные металлы вода при комнатной температуре

Усвоению этих процессов и обозначающих их терминов может помочь схема:

Взаимодействие металлов с кислотами овр

Советы для избежания путаницы в этих понятиях:

  1. Составить аббревиатуру по первым буквам терминов:

    Окислитель – взял е- — восстановился → ОВВ  Восстановитель – отдал е- — окислился → ВОО 

  2. Выучить стихотворение:

    Восстановитель — это тот, кто электроны отдает.  Сам отдает грабителю, злодею-окислителю.  Отдает — окисляется, сам восстановителем является.

Типичные окислители 

  • Сильными окислителями являются неметаллы в свободном состоянии: фтор F2, хлор Cl2, бром Br2, йод I2, кислород O2, озон O3, сера S и другие.
  • группа кислородсодержащих кислот, в их числе: азотная HNO3, концентрированная серная Н2SO4, хромовая H2CrO4, а также соответствующие им оксиды N2O5, Mn2O7, CrO3.
  • к менее сильным окислителям относятся соли вышеназванных кислородосодержащих кислот, например,  KMnO4 (Mn+7), K2Cr2O7 (Cr+7).
  • Положительно заряженные частицы металлов в самой высокой степени окисления меди Cu2+, олова Sn4+, железа Fe3+, ртути Hg2+, свинца Pb4+.

Типичные восстановители

  • Простые вещества группы металлов, например, железо Fe0, цинк Zn0, алюминий Al0 и др.
  • Положительно заряженные частицы металлов в самой низкой С.О., например, олова Sn2+, железа Fe2+, свинца Pb2+ и др.
  • кислородсодержащие кислоты со своими окислами, в которых кислотообразующий элемент находится в низшей степени окисления, к примеру, сернистая кислота H2SO3, азотистая кислота HNO2 и т.д.
  • группа бескислородных кислот и их солей: иодистовородная кислота НI, иодид калия KI, сероводород Н2S, сульфид натрия Na2S и т.д.

У веществ, содержащих атомы элементов с промежуточной С.О., может возникать окислительно-восстановительная двойственность.

Так, азотистокислый натрий будет восстановителем относительно сильных окислителей (K2Cr2O7) и окислителем относительно типичного восстановителя KI.

Разновидности ОВР

  1. Межмолекулярные. К ним относят ОВ-реакции, в которых С.О. меняются у атомов разных соединений.

    C0 + O20 = C+4CO2-2; N20 + 3H20 = 2N-3H3+1.

  2. Внутримолекулярные. В этом случае и окислитель, и восстановитель являются атомами одного элемента:

    2H2O2-1 = 2H2O-2 + O20; 2H2+1O2-2 = 2H20 +O20; 

  3. Диспропорционирование. Другое название ОВ-реакция самоокисления-самовосстановления. В процессе её один и тот же элемент в одном и том же веществе выступает и как окислитель, и как восстановитель:

    Cl20 + H2+O-2 = H+Cl- + H+Cl+O-2 

Хлор Cl2 здесь и окисляющий и восстанавливающий элемент.

Составление ОВР методом электронного баланса

При написании ОВ-реакций важно соблюдать не только закон сохранения масс веществ до и после взаимодействия, но и равенство (баланс) электрических зарядов исходных реагентов и полученных продуктов.

При способе электронного баланса производится сравнение С.О.в левой и правой части уравнения. При этом необходимо знать формулы получаемых веществ.

Правило. В уравнении ОВР слева сначала записывается восстановитель, отдающий электроны, потом окислитель, их принимающий. Справа, в первую очередь пишут продукт окисления, потом восстановления, после все остальные вещества.

Пример составления уравнения ОВР углерода (С) с алюминием (Al).

Al + C → Al4C3

  • Сначала следует определить элементы, изменившие свои С.О.

Al0 + C0 → Al4+3C3-4

  • Алюминий, отдав три электрона, сменил С.О. с 0 до +3

Al0 → Al+3 1Al0 — 3e- → 1Al+3

  • Углерод, приняв четыре электрона, сменил свою С.О. с 0 на – 4

C0 → C+4 1C0 + 4e- → 1C-4

  • Далее уравнение нужно сбалансировать, подбирая множители. Число отданных Al электронов подставить в полуреакцию углерода C, а число принятых углеродом электронов записать в схему полуреакции алюминия:

4| 1Al0-3e- → 1Al+3

3| 1C0+4e- → 1C-4

В результате алюминий лишился 4×3 = 12 электронов, а углерод принял 3×4 = 12 электронов.

  • Последний этап – уравнивание количества атомов слева и справа с помощью стехиометрических коэффициентов: реакцию вступило 4·1Al0=4Al0 атома алюминия и 3·1C0=3C0 атома углерода.

Окончательно уравнение выглядит так:

4Al0+3C0 = Al4+3C3-4

ОКИСЛИТЕЛИ
  • MnO4-   в кислой среде до      Mn+2
  • MnO4-   в щелочной среде до   MnO4-2
  • MnO4-  в нейтральной среде до    MnO2
  • MnO2  в  кислой среде до   Mn+2    
  • Сr2O7-2   в кислой среде  до Cr+3
  • Н+  до Н2
  • NO2- в кислой среде до NO
  • NO3-  в кислой среде до NO2
  • SO4-2 в кислой среде до SO2

Коррозия металлов 

Разрушение металла от воздействий окружающей среды называется коррозией. По сути коррозия – химический окислительно-восстановительный процесс, зависящий от места, где он происходит.

Следует различать химическую (Х.К.) и электрохимическую (Э.Х.К.) коррозию.

  1. При химической коррозии металлы подвергаются деструкции от вредных влияний газов, жидкостей, не способных проводить электричество. Например, появление окалины на железе от контакта с кислородом при повышенных температурах. Или разрушение металлического оборудования, трубопроводов от воздействия сернистых соединений, содержащихся в нефтяных фракциях.
  2. Электрохимическая коррозия непосредственно связана с деструкцией металла в электролитном растворе под действием возникающего в нем электрического тока. Для возникновения разрушительных электрических токов необходим контакт металлов разной активности или наличие неоднородных участков на поверхности корродирующего металла. Таким электрохимическим разрушениям часто подвергаются морские корабли, котельное оборудование, заглублённые в почву металлические сооружения.

Справка. В мире ежегодно из-за коррозии теряется 25% произведённого человечеством железа!

Защита от коррозии 

  1. Создание щадящих условий эксплуатации металлоконструкций и аппаратов. Размещение их в помещениях с пониженной влажностью, под навесами, защищающими от атмосферных воздействий.
  2. Нанесение защищающих неметаллических покрытий: красок, лаков, эмалей, полимерных плёнок (ПЭ, ПВХ).
  3. Обработка металлических изделий химическим способом для создания на них изолирующих оксидных, нитридных, фосфатных покрытий.
  4. Нанесение гальваническими технологиями защитных металлопокрытий: никелевых, хромовых, цинковых, кадмиевых.
  5. Оцинковывание железных листов термическим способом.
  6. Антикоррозионная защита электрохимическим методом:
    • катодной защитой при подключении металлосооружения проводниками к катодному полюсу источника электротока или к куску более активного металла (протектору). 
  7. Легирование металлов при их выплавке специальными добавками хрома, никеля, цинка (пример нержавеющей стали).
  8. Воздействие на агрессивную среду, в которой эксплуатируется металлический объект, например, добавлением в неё ингибиторов (замедлителей) коррозии или дегазацией – удаление газов, вызывающих разрушение.

Значение ОВР

В начале статьи говорилось о значении ОВ — процессов для жизни на Земле.

Люди научились применять их для своих нужд. Используют для получения металлов, необозримого количества веществ и материалов, для очистки окружающей среды от загрязняющих её продуктов своей жизнедеятельности.

Но познание глубин и тайн этих сложнейших явлений природы продолжается…

Смотри также:

1.4.8. Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее

Окислительно-восстановительные реакции (ОВР) — такие реакции, которые протекают с изменением степеней окисления элементов.

Изменение степеней окисления происходит из-за полной или частичной передачи электронов от одних атомов к другим:

Поскольку электроны имеют заряд «-1» , следовательно, понижение степени окисления атома химического элемента происходит в результате приобретения им дополнительных электронов.

Процесс приобретения атомом дополнительных электронов называется восстановлением:

  • Вещество, которое содержит восстанавливающиеся атомы, называют окислителем.
  • В примере выше окислителем является азотная кислота HNO3.
  • Аналогично повышение степени окисления происходит в том случае, когда атом элемента теряет некоторое количество своих электронов. Процесс потери атомом электронов называют окислением:

Химическое вещество, которое содержит окисляющиеся атомы, называют восстановителем.  В указанном примере восстановителем является фосфин PH3.

Виды окислительно-восстановительных реакций

Межмолекулярные ОВР

Межмолекулярные окислительно-восстановительные реакции — такие реакции, в которых атомы окислителя и атомы восстановителя находятся в разных веществах. Например:

Внутримолекулярные ОВР

Внутримолекулярные окислительно-восстановительные реакции — такие реакции,  в которых атомы восстановителя и атомы окислителя содержатся в одном веществе. Например:

Читайте также:  Какие факторы влияют на величину рекристаллизованного зерна металла

Реакции диспропорционирования

Реакциями диспропорционирования называют такие реакции, в которых атомы одного химического элемента, являются окислителями и восстановителями и при этом находятся в одном веществе. Такие реакции также называют реакциями самоокисления-самовосстановления. Например, к таким реакциям относятся все реакции взаимодействия галогенов с растворами щелочей:

Расстановка коэффициентов в окислительно-восстановительных реакциях

Метод электронного баланса

Метод электронного баланса — метод расстановки коэффициентов в окислительно-восстановительной реакции, основанный на том, что количество электронов, отданных восстановителем, равно числу электронов, полученных окислителем.

Алгоритм расстановки коэффициентов данным методом выглядит следующим образом:

1) Следует записать схему реакции, указав формулы всех реагентов и продуктов. Например, при взаимодействии концентрированной серной кислоты с фосфором образуется фосфорная кислота, диоксид серы и вода:

2) Далее следует расставить все степени окисления и найти те элементы, у которых изменилось значение степени окисления.

3) После расстановки степеней окисления химических элементов находят те элементы, которые изменили свои степени окисления. Далее записывают уравнения полуреакций окисления и восстановления. В нашем случае они имеют вид:

4) Поскольку количество отдаваемых электронов восстановителем должно быть равно количеству принимаемых электронов окислителем, далее следует подобрать дополнительные множители к записанным полуреакциям:

  1. 5) Подобранные к полуреакциям множители переносятся в схему реакции:
  2. 6) Отталкиваясь от тех коэффициентов, которые уже известны из электронного баланса, оставшиеся коэффициенты расставляют методом подбора:
  • Примечание:
  • Следует отметить, что если в одной структурной единице какого-либо участника реакции содержится не один атом химического элемента, изменившего степень окисления, а 2 или больше, то это обязательно следует учитывать при записи уравнений полуреакций. Обратите внимание на составление электронного баланса для реакции горения этана в кислороде:

Как можно видеть в первом уравнении полуреакции, мы учли то, что в левой части уравнения уже сразу содержится не менее двух атомов углерода, поскольку одна формульная единица C2H6 содержит два атома C. По этой причине мы поставили коэффициент 2 перед атомами углерода в левой и правой частях полуреакции, а также удвоили количество «уходящих» электронов (14 вместо 7-ми).

Во второй полуреакции мы также учли, что в левой части уравнения реакции не может быть менее двух атомов кислорода, поскольку 2 атома  O содержатся в одной молекуле O2. Однако как вы могли заметить, в случае простого вещества кислорода мы не стали писать 2O, а записали O2.  Также следует поступать и в случае других простых молекулярных веществ, например, O2, F2, Cl2, N2, H2 и т.д.

Очевидно, что электронный баланс — не самая сложная часть в процессе составления уравнения окислительно-восстановительной реакции. Часто трудности возникают в том, какие продукты записывать в правой части схемы реакции.

Для того чтобы записывать уравнения ОВР, не нужно пытаться выучить все возможные реакции, тем более, что это невозможно в принципе. Надо учиться их составлять.

В первую очередь, что действительно следует выучить, так это формы существования окислителей и восстановителей до и после реакции в зависимости от среды раствора. Среда раствора определяется по наличию или отсутствию среди реагентов кислоты или щелочи.

Также всегда нужно помнить, что в качестве возможных продуктов не следует писать формулы веществ, реагирующих с остальными продуктами и/или со средой. Так, например, в продуктах не может быть кислоты, если изначально среда раствора щелочная и наоборот.

В общем, говоря более простыми словами, все продукты должны быть химически «безразличны» друг к другу, а также к среде раствора (исключение — электролиз).

Ниже представлены основные окислительно-восстановительные переходы окислителей и восстановителей в зависимости от среды. Во многих случаях указаны не целые формулы веществ, а формулы ионов, входящих в их состав.

В таком случае для записи уравнения реакции в молекулярном виде формулу иона требуется дополнить противоионами.

Катионы металлов, чаще всего, объединяют с кислотными остатками, если среда кислая, а анионы с катионами металлов (если среда щелочная) или водорода, если среда кислая или нейтральная.

Окислители

Восстановители

Коррозия металлов и способы защиты от нее

Коррозией металла называют процесс его самопроизвольного разрушения в результате контакта с окружающей средой.

Коррозия бывает химическая и электрохимическая.

Химическая коррозия — вид коррозии, при котором металл разрушается из-за его взаимодействия с газами или жидкостями, не проводящими электрический ток.

Так, например, к химической коррозии относится образование окалины при взаимодействии железа с кислородом при высоких температурах, а также разрушение металлического оборудования под действием нефтяных фракций, содержащих сернистые соединения.

Электрохимической коррозией называют разрушение металла в растворе электролита вследствие возникновения в данной системе электрических токов.

Электрические токи, способствующие коррозии, возникают в тех случаях, когда в растворе электролита изделие из металла контактирует с другим менее активным металлом.

Также такие токи могут появляться из-за химической неоднородности металлического материала, из которого выполнено изделие.

Так, например, из-за электрохимической коррозии страдают подводные части судов, паровые котлы, трубопроводы, металлические конструкции в почве и т.д.

Способы защиты металлов от коррозии

1) Контроль условий, в которых эксплуатируется металлическое оборудование. Например, хранение и использование изделий из стали на открытом воздухе нежелательно и этого, по возможности, следует избегать. Эксплуатация металлического оборудования в помещениях с низкой влажностью существенно продлит его срок службы.

2) Создание защитных покрытий, изолирующих металлоконструкцию от контакта с окружающей средой. Среди таких покрытий различают:

— неметаллические покрытия — всевозможные краски, лаки, эмали, а также пленки из таких полимеров, как полиэтилен, поливинилхлорид и т.д.;

— химические покрытия (оксидные, нитридные, фосфатные и т.д.) (Такие покрытия получают специальной химической обработкой поверхности металла.);

— металлические покрытия.

Металлические покрытия получают нанесением на защищаемую металлическую конструкцию тонкого слоя другого металла (чаще всего с помощью процесса электролиза).

При этом, если в качестве покрытия используется менее активный металл, то такое покрытие будет защищать металлоконструкцию только при условии его целостности. В случае, если целостность такого покрытия будет нарушена, защищаемый металл будет ускоренно корродировать.

Также широко используется покрытие металлоконструкций более активным металлом. Например, распространено использование так называемого оцинкованного железа.

Такое покрытие защищает металлические объекты даже при нарушении его целостности, поскольку пока практически полностью не исчезнет слой покрытия из более активного металла, коррозия металла, из которого сделан защищаемый объект, не начнется.

  1. 3) Электрохимические методы защиты:
  2. — катодная защита — вид защиты, при котором металлический объект подключается с помощью проводников к катоду внешнего источника тока либо же приводится в контакт с более активным металлом.
  3. Частный случай катодной защиты, при котором металлическая конструкция приводится в контакт с более активным металлом, называют протекторной защитой.
  4. 4) Изменение химических свойств среды, в которой эксплуатируется металлическое изделие, в частности:
  5. — добавление в среду веществ, замедляющих коррозию (ингибиторов коррозии).
  6. — дегазация среды (удаление растворенных в ней газов, в частности, кислорода). Например, такой метод работает для защиты от ржавления железа, поскольку в процессе ржавления железа активное участие принимает не только вода, но и кислород:
  7. 4Fe + 6H2O + 3O2 = 4Fe(OH)3
Понравилась статья? Поделиться с друзьями:
Станок