Написать уравнение протекающей реакции с металлами

Содержание
  1. Изменение окраски индикаторов
  2. Взаимодействие с металлами
  3. Реакции с основными оксидами
  4. Взаимодействие с основаниями
  5. Взаимодействие с солями
  6. Разложение кислот на кислотные оксиды и воду
  7. Химическая активность металлов в химии — формулы и определения с примерами решения задач
  8. Химическая активность металлов
  9. Реакции металлов с кислородом и водой
  10. Взаимодействие металлов с кислотами. ряд активности металлов
  11. Взаимодействие металлов с растворами солей
  12. Химические свойства металлов — задачи с решениями и примерами
  13. Задача 82
  14. Задача 84
  15. Задача 85
  16. Задача 86
  17. Задача 87
  18. Задача 88
  19. Как решать химические уравнения — схемы и примеры решения для разных реакций
  20. Основные термины и понятия
  21. Виды химических реакций
  22. Окислительно-восстановительный процесс
  23. Классический алгоритм
  24. Решение методом полуреакций
  25. Использование онлайн-расчёта
  26. Химические свойства кислот, их классификация и реакции
  27. Химические свойства кислот
  28. 1. Диссоциация
  29. 2. Разложение
  30. 3. Реакция с металлами
  31. 4. Реакции с основаниями
  32. 5. Реакции кислот с солями
  33. 6. Реакция кислот с основными и амфотерными оксидами
  34. 7. Восстановительные свойства бескислородных кислот
  35. Физические свойства кислот

Архив уроков › Химия 8 класс

В уроке 35 «Химические свойства кислот» из курса «Химия для чайников» узнаем о всех химических свойствах кислот, рассмотрим с чем они реагируют и что при этом образуется.

Написать уравнение протекающей реакции с металлами

В состав молекулы любой кислоты обязательно входят атомы водорода, связанные с различными кислотными остатками. Такое подобие состава молекул обусловливает подобие химических свойств кислот.

Оно выражается в том, что кислоты в водных растворах проявляют схожие химические свойства, называемые кислотными свойствами.

Знание этих свойств очень важно для дальнейшего изучения химии, поэтому познакомимся с ними более подробно и систематизируем изученный ранее материал.

Изменение окраски индикаторов

Вы уже знаете, что для доказательства наличия кислоты или щелочи в растворе можно использовать особые вещества — индикаторы.

Вспомните, в какие цвета окрашены растворы индикаторов лакмуса, метилоранжа и фенолфталеина. Как изменяется их окраска в растворах кислот?

Взаимодействие с металлами

Из материала предыдущих тем вам известно, что в водных растворах многие кислоты реагируют с металлами, расположенными в ряду активности левее Н2 (например, Mg, Al, Zn, Fe). В результате этих реакций образуются сложные вещества — соли и выделяется газообразное простое вещество — водород:

Написать уравнение протекающей реакции с металлами

В такие реакции вступают как бескислородные (HCl, HBr), так и кислородсодержащие (H2SO4, H3PO4) кислоты, например:

Написать уравнение протекающей реакции с металлами

Реакции этого типа, как вы уже знаете, относятся к реакциям замещения: атомы металлов замещают (вытесняют) атомы водорода из молекул кислот.

Следует помнить, что металлы, расположенные в ряду активности правее Н2 (Сu, Ag, Hg и др.), с указанными кислотами в водных растворах не реагируют.

Реакции с основными оксидами

Еще в младших классах, изучая математику, вы узнали, что от перемены мест слагаемых сумма не изменяется: 2 + 3 = 5; 3 + 2 = 5.

Похожее правило есть и в химии: если в уравнении реакции исходные вещества поменять местами, то ее продукты от этого не изменятся. Так, например, изучив ранее химические свойства основных оксидов, вы узнали, что они реагируют с кислотами с образованием солей и воды. Зная это, вы можете теперь смело утверждать, что кислоты реагируют с основными оксидами, образуя те же продукты — соли и воду:

Написать уравнение протекающей реакции с металлами

Пример уравнения реакции, протекающей в соответствии с этой схемой:

Написать уравнение протекающей реакции с металлами

Как вам уже известно, эти реакции относятся к реакциям обмена, поскольку в процессе взаимодействия исходные сложные вещества обмениваются своими составными частями.

Взаимодействие с основаниями

Изучая химические свойства оснований, вы узнали, что они реагируют с кислотами с образованием солей и воды.

А что же тогда образуется при взаимодействии кислот с основаниями? Правильно, те же самые продукты — соли и вода! Мы еще раз убедились в том, что состав конечных веществ не зависит от того, в каком порядке смешиваются одни и те же исходные вещества. Итак, составим схему, согласно которой кислоты реагируют с основаниями:

Написать уравнение протекающей реакции с металлами

Запомните, что в образующейся соли валентность атомов металла такая же, как в исходном основании, а валентность кислотного остатка такая же, как в исходной кислоте.

Кислоты реагируют как с нерастворимыми, так и с растворимыми основаниями, например:

Написать уравнение протекающей реакции с металлами

Реакции этого типа, как и предыдущего, относятся к реакциям обмена. Вспомните, как называется реакция, которую отображает последнее уравнение. Почему она так называется?

Взаимодействие с солями

Еще один класс сложных веществ, с которыми кислоты могут вступать в химическое взаимодействие, — соли. Реакции этого типа идут по общей схеме:

Написать уравнение протекающей реакции с металлами

Однако сразу заметим, что кислота реагирует в растворе с солью лишь в том случае, если в результате реакции выделяется газ (↑) или образуется нерастворимое вещество, выпадающее в осадок (↓). Примеры таких реакций:

Написать уравнение протекающей реакции с металлами

Очевидно, что реакции этого типа, как и двух предыдущих, относятся к реакциям обмена.

Разложение кислот на кислотные оксиды и воду

Известно несколько кислот, которые достаточно легко разлагаются на соответствующий кислотный оксид и воду. К таким кислотам, которые называют неустойчивыми, относят угольную (H2CO3), сернистую (H2SO3) и кремниевую (H2SiO3) кислоты. Особенно неустойчива угольная кислота — она разлагается на кислотный оксид CO2 и воду уже при комнатной температуре:

Краткие выводы урока:

  1. Кислоты в растворах изменяют окраску индикаторов.
  2. Кислоты реагируют с металлами, основными оксидами, основаниями и солями.

Надеюсь урок 35 «Химические свойства кислот» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Химическая активность металлов в химии — формулы и определения с примерами решения задач

  • Содержание:
  • Электрохимический ряд активности металлов (ряд напряженийряд стандартных электродных потенциалов) — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me
  • Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.
  • На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.

Химическая активность металлов

Электрохимический ряд активности металлов показывает, какие из металлов более активные, какие менее. Расположение элементов в горизонтальном ряду слева направо показывает направление снижения восстановительной способности и возрастание окислительной.

Реакции металлов с кислородом и водой

Что вы знаете о ржавлении железа? Расскажите о разрушении металлов?  Как вы думаете, как можно защитить металлы от разрушения? Где применяются металлы? Приведите примеры из жизни.

Металлы мы часто применяем в повседневной жизни. Это алюминий, медь, железо, золото, серебро и т. д. Алюминий и медь применяются для изготовления проводов. Алюминиевой фольгой упаковывают лекарства.

В домашнем обиходе вы часто встречаете алюминиевую посуду и упаковки для напитков. Но больше всего применяется железо для изготовления различных металлоконструкций,  трубопроводов,  деталей  машин  и  т.  д.

 Этот  металл  от  воды и кислорода воздуха приходит в негодность, изменяет цвет и тускнеет. 

Железо покрывается ржавчиной красно-бурого цвета. Железо + вода + воздух → ржавчина. Такой химический процесс называется коррозией (от лат. corrodere – разъедать).

  1. Самопроизвольное разрушение металлов в результате их взаимодействия с веществами окружающей среды называется коррозией.
  2. Поверхность алюминия покрывается оксидной пленкой, которая препятствует коррозии:

Написать уравнение протекающей реакции с металлами

Химические активные металлы легко окисляются кислородом воздуха (Na, Mg, Ca). Железо и медь окисляются только при нагревании:

А золото и некоторые благородные металлы вообще не окисляются кислородом.

Рассмотрите рисунок 15 и сами сделайте выводы.

Ежегодно четвертая часть всего производимого металла из-за коррозии приходит в негодность (рис. 16).

Знаменитую Эйфелеву башню в Париже красили уже 18 раз, в результате чего ее масса увеличилась на 70 т.

Коррозия вызывает серьезные экологические катастрофы. Из разрушенных трубопроводов может быть утечка газа, нефти, опасных химических продуктов.  Это приводит к загрязнению окружающей среды, что отрицательно влияет на здоровье и жизнь людей.

Металлы защищают от коррозии нанесением покрытий на поверхность изделия: окраска металла лаками, красками, эмалями. Но это покрытие недолговечно.  Предохраняют  металл  покрытием  другого  металла,  менее подверженного коррозии.

Это – золото, серебро, хром, никель, олово, цинк и др. В повседневной жизни часто применяют оцинкованные ведра, никелированные кровати. Для консервных банок применяют железо, покрытое оловом. Такое железо называют белой жестью. Белую жесть получают в г.

Темиртау Карагандинской области на металлургическом заводе. Можно уменьшить коррозию железа, добавляя другие металлы: никель, хром, молибден. Таким образом, получают сплав, который называется нержавеющей сталью.

Из этой стали изготавливают столовые приборы, трубы и другие изделия.

Олово — достаточно редкий, но очень полезный металл. Известно, что его начали добывать раньше, чем железо. Олово — это мягкий белый металл, который можно сплавлять с медью, чтобы получить бронзу.

Олово — один из первых освоенных человеком металлов. Оно не подвержено коррозии, поэтому из него делают тару для упаковки. Слой олова, нанесенный на другие металлы, делает их поверхность гладкой и блестящей.

Банки для хранения консервов и напитков также делают из тонкого стального листа, покрытого оловом.

Читайте также:  Сетка заборная оцинкованная 1 5х15 м

Взаимодействие воды с некоторыми металлами (рис. 17). 1.  Взаимодействие  воды  с  активными  металлами  в обычных условиях идет очень интенсивно. 

При этом протекают реакции замещения

При проведении таких опытов необходимо соблюдать меры предосторожности.

2.  При  взаимодействии  металлов  средней  активности  с  водой  вместо щелочи выделяется оксид металла:

3. Малоактивные металлы (Cu) с водой не реагируют.

Коррозия, ржавчина, защита от коррозии, белая жесть, алюминиевая фольга, сплав

Свинец — тяжелый голубовато-серый металл, который не ржавеет. Он используется в автомобильных аккумуляторах. Свинцовые экраны защищают людей от опасной радиации. Но свинец токсичен и ядовит для человека.

  • Демонстрация №2
  • Взаимодействие активных металлов с холодной и горячей водой
  • Демонстрацию выполняет учитель, учащиеся наблюдают, делают выводы.
  • Цель: узнать, как реагируют активные металлы с холодной и горячей водой.

Написать уравнение протекающей реакции с металлами

Обрежьте кусочек натрия скальпелем, высушите фильтровальной бумагой. Высушенный кусочек натрия следует бросить в кристаллизатор с холодной, а затем горячей водой. Наблюдать за ходом реакции через стекло вытяжного шкафа. Такую же реакцию проделать и с металлическим кальцием. Испытать полученные растворы двумя индикаторами.

Взаимодействие металлов с кислотами. ряд активности металлов

  Что такое кислоты? Какие кислые вещества вы встречали в природе?

В  соответствии  с  определением  кислоты  должны  вступать  в  реакции с  металлами.  Все  ли  металлы  взаимодействуют  с  кислотами?  Это  можно проверить на опыте.

В  четыре  пронумерованные  пробирки  нальем  одинаковое  количество раствора соляной кислоты и добавим: в первую пробирку – Mg; во вторую – Zn; в третью – Sn; в четвертую – Cu.

Как  видим,  не  все  металлы  могут  взаимодействовать  с  кислотами  и скорости их взаимодействия различны (рис. 18).

На  основании  интенсивности  взаимодействия  металлов  с  кислотами русским  ученым  Н.Н. Бекетовым  был  составлен  ряд  активности металлов:

Li K Ca Na Mg Al Zn Fe Ni Sn Pb (H2) Cu Hg Ag Au

При  использовании  ряда  химической  активности  нужно  помнить  следующие правила:

1) металлы, стоящие в начале этого ряда, химически активны, они могут вытеснить водород из воды. 2) активность металлов в этом ряду снижается слева направо  3)  только  металлы,  стоящие  в  ряду  активности  до  водорода,  вытесняют водород из растворов кислот  (рис. 18):

активный металл + кислота —> соль + водород

Протекает реакция замещения. Металлы, стоящие в ряду активности после водорода, не реагируют с разбавленными растворами кислот (табл. 6).

  1. Лабораторный опыт №3
    Взаимодействие металлов с растворами кислот
  2. Цель: исследовать реакции различных металлов с растворами кислот и  сделать вывод о существовании химически инертных металлов.

Налейте в четыре пробирки раствор соляной кислоты. В одну из пробирок насыпьте порошка магния, в другую – поместите гранулы цинка, в третью – опилки железа, в четвертую  – стружки меди.

Может ли железо не подвергаться коррозии? Да, если оно очень чистое. Например, в Дели (Индия) находится Кутубская колонна высотой 7 м, массой 6,5 т. Она установлена в IX в. до н. э., в ее составе 99,72% Fe. До сих пор эта колонна не подверглась коррозии.  

Взаимодействие металлов с растворами солей

Какие соли вы встречали в повседневной жизни?

Химически активные металлы вытесняют менее активные металлы из растворов солей, при этом протекает реакция замещения. Например, из раствора сульфата меди (ІІ) железо вытесняет медь (рис. 19):

Выделение  красного  налета  меди  является  признаком  реакции. Обратная реакция не протекает  потому что медь в ряду активности металлов находится после железа, поэтому не вытесняет его.

  • Схема реакций замещения выглядит следующим образом:
  • соль 4- активный металл = новая соль + новый металл (менее активный)
  • Реакции такого типа протекают при следующих условиях: 1) взаимодействующие соли должны быть растворимыми в воде;
  • 2) более активный металл вытесняет из соли менее активный металл.
  • Демонстрация №3
    Вытеснение металлов из растворов солей
  • Цель: понимать, что более активный металл вытесняет менее активный  металл из растворов его солей.

В пробирку поместите гранулы цинка и налейте раствор сульфата меди.  В другую пробирку поместите небольшие кусочки железа и налейте раствор сульфата  меди.  Что  наблюдаете?  Напишите  уравнение  реакции.  Сделайте вывод.

Практическая работа   № 1  Сравнение активности металлов 

Цель: Разработать ряд активности металлов. Обобщить результаты и сделать выводы.

Ход работы

В пять пробирок налейте растворы солей по 5 мл, опустите в каждую пробирку стружки меди. Затем такие опыты повторите с другими металлами. Наблюдайте за интенсивностью хода реакций. Заполните таблицу: где идет реакция следует поставить знак “+”, если не идет реакция – знак “–”. По сравнительной интенсивности, т. е. по числу протекающих реакций, составьте ряд активности металлов. 

ДЕЛАЕМ ВЫВОДЫ:

  • 1.    Атомы металлов в реакциях только отдают электроны, образуя положительно заряженные ионы.
  • 2.    Самопроизвольное разрушение металлов в результате их взаимодействия с веществами окружающей среды называется коррозией.
  • 3.    Сравнительную активность металлов можно определить с помощью ряда активности, составленного Н. Н. Бекетовым.
  • 4.    Металлы IA, НА группы очень легко вступают во взаимодействие с кислородом и водой. Многие металлы образуют оксидную пленку, которая препятствует дальнейшему окислению. Благородные металлы вообще не реагируют с кислородом и водой.

Услуги по химии:

  1. Заказать химию
  2. Заказать контрольную работу по химии
  3. Помощь по химии
  1. Лекции по химии:
  2. Лекции по неорганической химии:
  3. Лекции по органической химии:

Химические свойства металлов — задачи с решениями и примерами

Решение:

Щелочные металлы стоят в начале ряда напряжений металлов. Являясь наиболее активными, они легко окисляются кислородом воздуха уже при обычных температурах. Однако для каждого из указанных металлов есть свои особенности. Литий уже при обычных температурах реагирует как с кислородом воздуха, так и со вторым компонентом воздуха — азотом, образуя, соответственно, оксид и нитрид лития:

При высоких температурах вместо оксида лития образуется пероксид лития:

Натрий: а) при обычной температуре —

б) при высоких температурах —

б) при высоких температурах —

Задача 82

Основываясь на знании общих химических свойств металлов, написать уравнения следующих химических реакций:

Написать уравнение протекающей реакции с металлами

Решение:

5) Электрохимическая коррозия меди с кислородной деполяризацией:

  • Задача 83
  • С какими из следующих веществ может реагировать ртуть:
  • Решение:

Задача 84

  1. Среди металлов: — найти наиболее и наименее сильный восстановитель:
  2. а) в водных средах;
  3. б) в неводных средах.
  4. Решение:
  5. В водных средах количественной характеристикой восстановительных свойств металла является величина его электродного потенциала.

    Для изучаемых металлов величины стандартных электродных потенциалов следующие:

  • Наиболее низкий электродный потенциал у кальция, значит, он наиболее сильный восстановитель в водных средах, а наиболее высокий электродный потенциал у цинка, значит, он наиболее слабый восстановитель среди перечисленных металлов.
  • В неводных средах количественной характеристикой восстановительных свойств металла является величина его энергии ионизации.
  • Величины энергий ионизации изучаемых металлов находим в справочнике:

Наиболее низкая энергия ионизации (ионизационный потенциал) у натрия — самого сильного восстановителя из перечисленных металлов, наиболее высокая энергия ионизации у цинка — самого слабого восстановителя.

Задача 85

  1. Составить и уравнять с помощью электронного баланса ОВ реакции.
  2. Решение:
  3. Ниже приводятся уравнения уже составленных и уравненных реакций:

Задача 86

  • Каким методом может быть получен металлический магний?
  • Решение:
  • Магний — это очень активный металл, его электродный потенциал

Значит, магний может быть получен не электролизом водных растворов солей магния, а электролизом расплавов его солей, например электролизом расплава :

Магний также может быть получен металлотермией при использовании какого-либо металла, химическое сродство которого к атому, с которым он связан, выше, чем у магния, например:

Докажем возможность использования Na:

Так как , то реакция термодинамически возможна. Металлический натрий может быть использован для получения металлического магния из .

Задача 87

При смешивании расплавленных масс магния и свинца образуется интерметаллическое соединение, содержащее 81% РЬ. Какова его формула?

Решение:

— формула интерметаллического соединения в общем виде. Индексы х и у находим из следующих отношений:

Таким образом, формула интерметаллического соединения — .

Задача 88

Для определения процентного содержания серебра в старой монете растворили 0,3 г этой монеты в концентрированной . Затем из полученного раствора серебра осадили раствором соляной кислоты в виде осадка . Масса осадка равна 0,199 г. Каково содержание серебра в монете?

Решение:

Уравнения химических реакций, происходящих в ходе анализа, следующие:

Согласно уравнениям этих двух реакций, 1 моль образует 1 моль .

Рассчитаем массу серебра, соответствующую 0,199 г :

Вычислим процентное содержание серебра в монете:

  1. Эти задачи взяты со страницы решения задач по неорганической химии:
  2. Задачи с решением по неорганической химии
  3. Возможно эти страницы вам будут полезны:

Как решать химические уравнения — схемы и примеры решения для разных реакций

Написать уравнение протекающей реакции с металлами

Основные термины и понятия

Написать уравнение протекающей реакции с металлами

Составление уравнений химических реакций невозможно без знания определённых обозначений, показывающих, как проходит реакция. Объединение атомов, имеющих одинаковый ядерный заряд, называют химическим элементом. Ядро атома состоит из протонов и нейтронов. Первые совпадают с числом атомного номера элемента, а значение вторых может варьироваться. Простейшими веществами называют элементы, состоящие из однотипных атомов.

Любой химический элемент описывается с помощью символов, условно обозначающих структуру веществ. Формулы являются неотъемлемой частью языка науки. Именно на их основе составляют уравнения и схемы.

По своей сути они отражают количественный и качественный состав элементов. Например, запись HNO3 сообщает, что в соединении содержится одна молекула азотной кислоты, а оно само состоит из водорода, азота и кислорода.

При этом в состав одного моля азотной кислоты входит по одному атому водорода и азота и 3 кислорода.

Символика элементов, условное обозначение, представляет собой химический язык. В значке содержится информация о названии, массовом числе и порядковом номере. Международное обозначение принято, согласно периодической таблице Менделеева, разработанной в начале 1870 года.

Взаимодействующие между собой вещества называются реагентами, а образующиеся в процессе реакции — продуктами.

Составление и решение химических уравнений фактически сводится к определению результатов реакций, поэтому просто знать формулы веществ мало, нужно ещё уметь подбирать коэффициенты.

Располагаются они перед формулой и указывают на количество молекул или атомов, принимающих участие в процессе. С правой стороны от химического вещества ставится индекс, указывающий место элемента в системе.

Записывают уравнения в виде цепочки, в которой указываются все стадии превращения вещества начиная с левой части. Вначале пишут формулы элементов в исходном состоянии, а затем последовательно их преобразование.

Виды химических реакций

Химические явления характеризуются тем, что из двух и более элементов образуются новые вещества. Уравнения описывают эти процессы. Впервые с объяснениями протекания реакций знакомят в восьмом классе средней образовательной школы на уроках неорганической химии. Ученикам демонстрируют опыты, в которых явно наблюдаются различия в протекании реакций.

Всего существует 4 типа химического взаимодействия веществ:

Написать уравнение протекающей реакции с металлами

  1. Соединение. В реакцию могут вступать 2 простых вещества: металл и неметалл или неметалл и неметалл. Например, алюминий с серой образуют сульфид алюминия. Кислород, взаимодействуя с водородом, превращается в воду. Объединятся могут 2 оксида с растворимым основанием, как оксид кальция с водой: CaO + H2O = Ca (OH)2 или основной оксид с кислотным: CaO + SO3 = CaSO4.
  2. Разложение. Это процесс обратный реакции соединения: было одно вещество, а стало несколько. Например, при пропускании электрического тока через воду получается водород и кислород, а при нагревании известняка 2 оксида: CaCO3 = CaO + CO2.
  3. Замещение. В реакцию вступают 2 элемента. Один из них простой, а второй сложный. В итоге образуются 2 новых соединения, при котором атом простого вещества заменяет сложный, как бы вытесняя его. Условие протекания процесса: простое вещество должно быть более активным, чем сложное. Например, Zn + 2HCl = ZnCl2 + H2. Величину активности можно узнать из таблицы ряда электрохимических напряжений.
  4. Обмен. В этом случае между собой реагируют 2 сложных элемента, обменивающиеся своими составными частями. Условием осуществления такого типа реакции является обязательное образование воды, газа или осадка. Например, CuO + 2HCl = CuCl2 + H2O. Чтобы узнать, смогут ли вещества прореагировать, используют таблицу растворимости.

Основными признаками химических реакций является изменение цвета, выделение газа или образование осадка. Различают их по числу веществ, вступивших в реакцию и образовавшихся продуктов. Правильное определение типа реакции особо важно при составлении химических уравнений, а также определения свойств и возможностей веществ.

Окислительно-восстановительный процесс

Написать уравнение протекающей реакции с металлами

Составление большинства реакций сводится к подбору коэффициентов. Но при этом могут возникнуть трудности с установлением равновесия, согласно закону сохранения массы веществ. Чаще всего такая ситуация возникает при решении заданий, связанных с расстановкой количества атомов в уравнениях окислительно-восстановительных процессов.

Под ними принято понимать превращения, протекающие с изменением степени окисления элементов. При окислении происходит процесс передачи атомом электронов, сопровождающийся приобретением им положительного заряда или ионом, после чего он становится нейтральным. При этом также происходит процесс восстановления, связанный с присоединением элементарных частиц атомом.

Для составления уравнений необходимо определить восстановитель, окислитель и число участвующих в реакции электронов. Коэффициенты же подбирают с помощью метода электронно-ионного баланса (полуреакций). Его суть состоит в установлении равенства путём уравнивания количества электронов, отдаваемых одним элементом и принимаемым другим.

Классический алгоритм

В основе решения задач этим методом — закон сохранения массы. Согласно ему, совокупная масса элементов до реакции и после остаётся неизменной. Другими словами, происходит перегруппировка частиц. Если рассматривать решение химического уравнения поэтапно, оно будет состоять из трёх шагов:

  1. Написания формул элементов, вступающих в реакцию с левой стороны.
  2. Указания справа формулы образующихся веществ.
  3. Уравнивания числа атомов с добавлением коэффициентов.

Перед тем как переходить к сложным соединениям, лучше всего потренироваться на простых. Например, нужно составить уравнение, описывающее взаимодействие двух сложных веществ: гидроксида натрия и серной кислоты. При таком соединении образуется сульфат натрия и вода.

Написать уравнение протекающей реакции с металлами

Согласно алгоритму, в левой части уравнения необходимо записать реагенты, а в правой продукты реакции: NaOH + H2SO 4 → Na 2SO4 + H2O. Теперь следует уравнять коэффициенты. Начинают с первого элемента.

В примере это натрий. В правой части содержится 2 его атома, а в левой один, поэтому необходимо возле реагента поставить цифру 2. Затем нужно уровнять водород.

В результате получится выражение: 2 NaOH + H2SO 4 → Na2 SO4 +2H2O.

Ещё одним наглядным примером является процесс реакции тринитротолуола с кислородом. При их взаимодействии образуется: C7H5N3O6 + O2 → CO2 + H2O + N2. Исходя из того, что слева находится нечётное число атомов H и N, а справа чётное, нужно их уравнять: 2C7H5N3O6 + O2 → CO2 + H2O + N2.

Теперь становится понятным, что 14 и 10 атомов углерода и водорода должны образовать 14 долей диоксида и 5 молекул воды. При этом 6 атомов азота превратятся в 3. Итоговое уравнение будет выглядеть как 2C7H5N3O6 + 10,5O2 → 14CO2 + 5H2O + 3N2.

Перед тем как начинать тренировку по составлению уравнений, следует научиться расставлять валентность. Это параметр, равный числу соединившихся атомов каждого элемента. Фактически это способность к соединению. Например, в формуле NH3 валентность атома азота равна 3, а водорода 1.

Решение методом полуреакций

Алгоритм для решения примеров химических уравнений проще рассмотреть на конкретном задании. Пускай необходимо описать процесс окисления пирита азотной кислоты с малой концентрацией: FeS2 + HNO3. Решать этот пример необходимо в следующей последовательности:

Написать уравнение протекающей реакции с металлами

  1. Определить продукты реакции. Так как кислота является сильным окислителем, сера получит максимальную степень оксидации S6+, а железо Fe3+. HNO3 может восстановиться до одного из двух состояний NO2 или NO.
  2. Исходя из состава ионов и правила, что вещества, переходящие в газовую форму или плохо растворимые, записываются в молекулярном виде, верным будет записать: FeS2 — Fe3+ + 2SO2−4. Гидролизом можно пренебречь.
  3. В записи уравнивают кислород. Для этого в левую часть добавляют 8 молекул воды, а в правую 16 ионов водорода: FeS2 + 8H20 — Fe3+ + 2SO2−4 + 16H+. Так как заряда в левой части нет, а в правой он равный +15, то серное железо должно будет отдать 15 электронов. Значит, уравнение примет вид: FeS2 + 8H20 — 15e → Fe3+ + 2SO2−4 + 16H+.
  4. Теперь переходят к реакции восстановления нитрата иона: NO-3 →NO. Для её составления нужно отнять у оксида азота 2 атома кислорода. Делают это путём прибавления к левой части 4 ионов водорода, а правой — 2 молекул воды. В итоге получится: NO-3 + 4H+ → NO + 2H2O.
  5. Полученную формулу уравнивают добавлением к левой части 3 электронов: NO-3 + 4H+ 3e → NO + 2H2O.
  6. Объединяют найденные выражения и записывают результат: FeS2 + 8H20 + 5NO-3 + 20H+ → Fe3+ + 2SO2−4 + 16H+ + 5NO + 10H2O.
  7. Уравнение можно сократить на 16H+ и 8H2O. В итоге получится сокращённое выражение окислительно-восстановительной реакции: FeS2 + 5NO-3 + 4 H+ = Fe3+ + 2SO2-4 + 5NO + 2H2O.

    Написать уравнение протекающей реакции с металлами

  8. Добавив в обе части нужное количество ионов, записывают молекулярное уравнение: FeS2 + 8HNO3 = Fe (NO 3) 3 + 2H2SO4 + 5NO + 2H2O.

Такой алгоритм считается классическим, но для упрощения понимания лучше использовать способ электронного баланса. Процесс восстановления переписывают как N5+ + 3e → N2+. Степень же окисления составить сложнее. Сере нужно приписать степень 2+ и учесть, что на 1 атом железа приходится 2 атома серы: FeS2 → Fe3++ 2S6+. Запись общего баланса будет выглядеть: FeS2 + 5N5+ = Fe3+ + 2S6+ + 5N2+.

Пять молекул потратятся на окисление серного железа, а ещё 3 на образование Fe (NO3)3. После уравнения двух сторон запись реакции примет вид, аналогичный полученному с использованием предыдущего метода.

Использование онлайн-расчёта

Написать уравнение протекающей реакции с металлами

Простые уравнения решать самостоятельно довольно просто. Но состоящие из сложных веществ могут вызвать трудности даже у опытных химиков. Чтобы получить точную формулу и не подбирать вручную коэффициенты, можно воспользоваться онлайн-калькуляторами. При этом их использовать сможет даже пользователь, не особо разбирающийся в науке.

Чтобы расстановка коэффициентов в химических уравнениях онлайн происходила автоматически, нужно лишь подключение к интернету и исходные данные. Система самостоятельно вычислит продукты реакции и уравняет обе стороны формулы. Интересной особенностью таких сайтов является не только быстрый и правильный расчёт, но и описание правил с алгоритмами, по которому выполняются действия.

После загрузки калькулятора в веб-обозревателе единственное, что требуется от пользователя — правильно ввести реагенты в специальные формы латинскими буквами и нажать кнопку «Уравнять».

Иногда возникает ситуация, когда запись сделана верно, но коэффициенты не расставляются. Это происходит, если суммы в уравнении могут быть подсчитаны разными способами. Характерно это для реакций окисления.

В таком случае нужно заменить фрагменты молекул на любой произвольный символ. Таким способом можно не только рассчитать непонятное уравнение, но и выполнить проверку своих вычислений.

Химические свойства кислот, их классификация и реакции

Кислоты — класс сложных химических веществ, состоящих из атомов водорода и кислотных остатков.

В первую очередь кислоты делятся на:

  • органические или карбоновые и
  • неорганические или минеральные.

Свойства карбоновых кислот подробно разбираются в статье Карбоновые кислоты (ссылка на статью)

В зависимости от количества атомов водорода, которые могут замещаться в химических реакциях различают:

  • одноосновные кислоты
  • двухосновные кислоты
  • трехосновные кислоты.

Не смотря на то, что в уксусной кислоте четыре атома водорода, три из них принадлежат кислотному остатку и в реакциях замещения не участвуют. Соответственно, уксусная кислота — одновалентная.

Свойства неорганических кислот также зависят от наличия в их составе кислорода и делятся на

  • бескислородные
  • кислородсодержащие.

Растворы кислот способны диссоциировать и проводить электрический ток т.е. являются электролитами. В зависимости от степени диссоциации делятся на:

  • сильные
  • слабые электролиты.

Написать уравнение протекающей реакции с металлами

Химические свойства кислот

1. Диссоциация

  • При диссоциации кислот образуются катионы водорода и анионы кислотного остатка.
  • HNO3 → H+ + NO-3
  • HCl → H+ + Cl-
  • Многоосновные кислоты диссоциируют ступенчато.
  • Н3РО4 ↔ Н+ + Н2РО-4 (первая ступень)
  • Н2РО-4 ↔ Н+ + НРO2-4 (вторая ступень)
  • НРО2-4 ↔ Н+ + PОЗ-4 (третья ступень)

2. Разложение

  1. Кислородсодержащие кислоты разлагаются на оксиды и воду.
  2. H2CO3 → H2O + CO2↑
  3. Бескислородные на простые вещества

3. Реакция с металлами

Кислоты реагируют лишь с теми металлами, что стоят в ряду активности до кислорода. В результате взаимодействия образуется соль и выделяется водород.

Mg + 2HCl → MgCl2 + H2↑

Найти ряд активности можно на последней странице электронного учебника «Химия 9 класс» под редакцией В. В. Еремина.

Бдительные ученики могут сказать: «Золото стоит в ряду активности металлов после водорода, а с „царской водкой“ реагирует. Как же так?»

Из всех правил есть исключения.

Поскольку в состав азотной кислоты входит азот со степенью окисления +5, а в состав серной — сера со степенью окисления +6, то с металлами реагируют не ионы водорода, а более сильные окислители. Образуется соль, но не происходит выделения водорода.

Au + HNO3 + 4HCl → HAuCl4 + NO + 2H2O.

4. Реакции с основаниями

В результате образуются соль и вода, происходит выделение тепла.

Na2CO3 + 2CH3 — COOH → 2CH3 — COONa + H2O + CO2↑.

Реакции такого типа называются реакциями нейтрализации. Простейшая реакция, которую можно провести на собственной кухне — гашение соды столовым уксусом или 9%раствором уксусной кислоты.

5. Реакции кислот с солями

Вспомним, когда мы разбирали ионные уравнения ( ссылка на статью), одним из условий протекания реакций было образование в ходе взаимодействия нерастворимой соли, выделение летучего газа или слабо диссоциирующего вещества — например, воды. Те же условия сохраняются и для реакций кислот с солями.

BaCl2 + H2SO4 → BaSO4↓ + 2HCl↑

6. Реакция кислот с основными и амфотерными оксидами

В ходе реакции образуется соль и происходит выделение воды.

K2O + 2HNO3 → 2KNO3 + H2O

7. Восстановительные свойства бескислородных кислот

Если в окислительных реакциях первую скрипку играет водород, то в восстановительных реакциях основная роль принадлежит анионному остатку. В результате реакций образуются свободные галогены.

4HCl + MnO2 → MnCl2 + Cl2↑ + 2H2O

Физические свойства кислот

При нормальных условиях (Атмосферное давление = 760 мм рт. ст. Температура воздуха 273,15 K = 0°C) кислоты чаще жидкости, хотя встречаются и твердые вещества: например ортофосфорная H3PO4 или кремниевая H2SiO3.

  • Некоторые кислоты представляют собой растворы газов в воде: фтороводородная-HF, соляная-HCl, бромоводородная-HBr.
  • Кислотные свойства кислот в ряду HF → HCl → HBr → HI усиливаются.
  • Для некоторых кислот (соляная, серная, уксусная) характерен специфический запах.
  • Благодаря наличию ионов водорода в составе, кислоты обладают характерным кислым вкусом.
  • Химическая лаборатория не ресторан, и в целях безопасности существует жесткий запрет на опробование на вкус химических веществ.
  • Как же можно определить кислота в пробирке или нет?

В 1300 году был открыт лакмус, и с тех пор алхимикам и химикам не пришлось рисковать своим здоровьем, пробуя на вкус содержимое пробирок. Запомните, что лакмус в кислой среде краснеет.

Вторым широко используемым индикатором является фенолфталеин.

Простой мнемонический стишок поможет запомнить, как ведут себя индикаторы в разных средах.

Индикатор лакмус — красный  Кислоту укажет ясно. Индикатор лакмус — синий, Щёлочь здесь — не будь разиней, Когда ж нейтральная среда, Он фиолетовый всегда. Фенолфталеиновый — в щелочах малиновый

Но несмотря на это в кислотах он без цвета.

Что ещё почитать? Неметаллы Биография Д.И. Менделеева. Интересные факты из жизни великого химика Карбоновые кислоты Массовая доля вещества

18HBr + 2KMnO4 →2KBr + 2MnBr2 + 8H2O + 5Br2

14НI + K2Cr2O7 →3I2↓ + 2Crl3 + 2KI + 7H2O

#ADVERTISING_INSERT#

Понравилась статья? Поделиться с друзьями:
Станок