Жидкий металл на лед

Всем привет! приехал ко мне очередной не включающийся пациент в лице мощного игрового dell G7

  • До знакомства с этим 17 дюймовым красавцем, я уже разбирал его младших собратьев в лице dell g5, и уже тогда отметил недостаточную производительность системы охлаждения.
  • Хозяина ноутбука это так же волновало и он принял решение заменить стандартный термоинтерфейс на жидкий металл, что из этого вышло вы сейчас увидите.
  • Отсоединив систему охлаждения можем лицезреть жм, причем важно заметить не просто его наличие, а его количество, забегая вперед скажу что оно выше необходимого, это и сыграло злую шутку(
  1. Если коротко, то жм во время тряски ноутбука выбрался из под системы охлаждения и пошел гулять по корпусу, попутно задевая и попадая на материнскую плату.
  2. Клиент самолично разобрал аппарат и увидел пораженный участок, который скинул мне до того как я получил аппарат.
  3. На нем вы можете увидеть небольшую группу конденсаторов, которые «сожрал» жидкий металл.

Во время осмотра больше каких то серьезных повреждений я не выявил, мат плата как новенькая, даже удивительно что поражен был всего лишь 1 участок, учитывая что я нашел кучу мелких шариков разбросанных по корпусу.

Но для начала проходимся по всем основным фазам питания, и к счастью не находим ничего подозрительного.

После перепайки этих конденсаторов аппарат включился, и спустя 4 минуты сброса биоса дал картинку, но радость моя была не долгой, ведь оказалось что у нас не работает один из 2 слотов под оперативную память, клиент перед отправкой так же упомянул что заметил так же жм между контактами озу и старался его оттуда удалить.

Я решил не мешкать и попросту заменить подозрительный разъем ( и как оказалось не зря, только после его снятия под микроскопом я разглядел застрявший шарик жм.

Достаем плату донор, залуживаем все контакты сплавом розе, не жалеем и не бойтесь что контакты слипнуться. Далее переворачиваем плату и феном примерно в 450 градусов прогреваем обратную сторону.

Затем, очищаем снятый разъем от остатков припоя и сплава розе, при помощи спирта и зубной щетки удаляем всю грязь и остатки флюса, получаем примерно следующее.

А вот с платой которую ремонтируем поступаем немного иначе, проходимся так же сплавом розе, но греем феном над разъемом, температура 300 градусов, этого вполне хватит что бы сплав розе расплавился и не достаточно что бы как то повредить плату и соседние элементы.

Все контакты в обязательном порядке очищаем о сплава розе при помощи оплетки

Процесс установки я думаю понятен, просто устанавливаем разъем на свое место и пропаиваем под микроскопом ( желательно) каждый контакт.

Устанавливаем обе планки озу и радуемся что у нас 16 гигабайт и все работает правильно)Итог.Ремонт получился достаточно простым, этот пост скорее показательный случай что может произойти если не прочитать инструкцию, ведь жм вещь достаточно не безопасная если не соблюсти все условия.

Признаюсь, когда клиент позвонил мне и сказал что жидкий метал попал на плату из под процессора, первое что я представил что он выкатился прям рядом с процом и что то коротнул около него, я морально приготовил клиента что возможно процессор труп, хотя как оказалось все обошлось)

Жидкий металл для охлаждения ноутбуков — польза или вред

07.10.2020

Рад приветствовать, хабравчане! Меня зовут Влад Захаров, я руковожу отделом маркетинга ASUS в России, странах СНГ и Балтии.

У нас есть что рассказать о продуктах, технологиях и внутренней кухне разработки, поэтому я тут. Будет круто, если у нас завяжется живой открытый диалог.

Под катом – рассказ о том, что нового появилось в системах охлаждения игровых ноутбуков ASUS Republic of Gamers.

Я всегда с болью в душе наблюдал за температурами центрального процессора в игровых ноутбуках, которые достигали 100 градусов по Цельсию, а повышенный нагрев в итоге приводил к снижению тактовой частоты (некоторые до сих пор называют это троттлингом, хотя на самом деле это понятие умерло вместе с выходом архитектуры Core у Intel и появлением интеллектуальных систем управления частотой процессора Turbo Boost).

Тренд на компактность в игровых ноутах ведет к уменьшению габаритов системы охлаждения.

Все игровые ноуты горячие? Да!

Почему же производители игровых ноутбуков позволяют нагреваться процессорам практически до 100 градусов по Цельсию?Во-первых, продукт разрабатывается в несколько этапов и даже несколькими командами.

Эти команды взаимодействуют друг с другом, но работая только лишь над определенной частью единого целого, всегда велик риск не увидеть фундаментальные проблемы.

Для команды, занимающейся созданием системы охлаждения, задача звучит так — как отвести N-ое количество Ватт тепла от процессора в N-габаритах корпуса, не допустив перегрева (в нашем случае значения в 100+ градусов по Цельсию).

Если на выходе система охлаждения сможет держать температуру процессора до 95 градусов по Цельсию, то будет ли задача считаться выполненной? Скорее всего, да. Но удовлетворит ли это пользователя? Скорее всего, нет.

Во-вторых, есть «негласное» соревнование между производителями за звание самого быстрого. При прочих равных ноутбук с процессором, работающим на более высокой частоте, сможет продемонстрировать лучшую производительность.

И чаще всего в таком сравнении никто не обратит внимание на то, что эти дополнительные 100-200 МГц частоты прибавили к нагреву процессора дополнительные 5-10 градусов по Цельсию.

Получается, что за скорость надо платить повышенным тепловыделением? И да, и нет.

Чем больше тепловых трубок, тем эффективнее отвод тепла

Именно этот вопрос нас беспокоил последние несколько лет в российском представительстве ASUS. Я практически уверен на 100 процентов, что в России и русскоговорящих стран находятся самые требовательные пользователи и в то же время самые технически грамотные.

Мы на постсоветском пространстве прекрасно понимаем, что у любого продукта есть ресурс, и чем дольше он работает на пределе, тем выше вероятность его выхода из строя.

А для остального мира, это всего лишь будет RMA процедура (где не надо никому доказывать, что ты не сам его сломал) с последующей заменой или возвратом денег и дальнейшим переходом на новое устройство, ведь эта-та «игрушка» уже морально устарела (для сравнения цикл жизни персонального компьютера в России — 7 лет, а в Европе — 4 года).

Как же можно снизить температуры процессора, улучшив эффективность системы охлаждения в ноутбуке?

  • зафиксировать тепловыделение процессора на пороговом значении, т.е. искусственно ограничить производительность CPU
  • увеличить габариты корпуса, уместив внутри радиатор большей площади, вернувшись обратно к тяжелым ноутбукам весом от 4-5 кг
  • использовать жидкостное охлаждение
  • использовать другой форм-фактор для увеличения эффективности воздушных потоков
  • использовать более эффективные, чем медь, материалы для радиатора
  • использовать более эффективный термоинтерфейс для отвода тепла от кристалла процессора к радиатору системы охлаждения

Вариантов для улучшения не так много, но они есть. Давайте поговорим подробнее о каждом. Первые два варианта, однозначно, не подходят. Ни о каком снижении производительности речи быть не может. Ни о каком увеличении габаритов — тоже. Это уже пройденный этап, к которому производители ноутбуков не будут возвращаться.

Эволюция систем охлаждения в ноутбуках ROG

Вариант с системой жидкостного охлаждения инженеры ROG обкатывали, начиная с 2015 года, на двух моделях: GX700 и его преемнике GX800.

Использование подключаемой жидкостной системы охлаждения сделало ноутбук самым быстрым на рынке, но абсолютно непригодным для переноски. Полный комплект умещался только лишь в чемодане.

Но надо отдать должное: с точки зрения эффективности системы охлаждения и температур не было никаких вопросов. Только такие инновации были слишком дорогими: цена на ноутбук была на уровне полумиллиона рублей.

ROG GX700 с водяным охлаждением

Эксперименты с альтернативными форм-факторами привели инженеров Republic of Gamers в 2019 году к созданию ROG Mothership — гибридное решение, сочетающее в себе элементы ноутбука, моноблока и планшета. По мне, это ближе всего к моноблоку, но до конца определиться с форм-фактором я так и не смог.

Преимуществом такой конструкции стало то, что материнская плата и вся элементная база была перенесена в вертикальную плоскость, сделав воздушные потоки более эффективными, а само устройство опять стало самым производительном в игровом сегменте портативных компьютеров.

Ценник, естественно, опять добирался до полумиллиона рублей.

ROG Mothership

Еще одним вариантом развития событий мог стать переход от медных радиаторов к серебряным, что могло бы дать какую-то позитивную динамику в снижении температур центрального процессора, но думаю, что стоимость ноутбука с серебряной системой охлаждения возросла бы непропорционально выгоде, которую могли бы получить пользователи.

Читайте также:  Пнд труба переходники на металл

Система охлаждения ROG Mothership

Сразу вспоминается собственный опыт: эксперименты по замене термоинтерфейса между крышкой теплораспределителя и кристаллом процессора пришли в бытность процессоров Intel Core i7-3770K, а с приходом Intel Core i7-7700K оверклокеры пошли еще далее и начали эксперименты над самими теплораспределительными крышками.

Российские оверклокеры также активно участвовали в погоне за рекордами, и мы даже заказывали теплораспределительную крышку из серебра. Она нам обошлась примерно в 15 000 рублей (чуть дешевле стоимости самого процессора), но ничего дельного с ней у нас так и не получилось.

Хотя рекорд разгона Core i7-7700K по частоте до сих пор принадлежит России:

Рекорд разгона Intel Core i7-7700K

Получается, что самым разумным и эффективным с точки зрения финансовой целесообразности является использование более эффективных термоинтерфейсов.

Для человека, который на собственном опыте проделал путь от КПТ-8, Arctic Silver Ceramique, Gelid GC-Extreme до Thermal Grizzly Kryonaut и k|ngp|n cooling KPX, было очевидно, что термопасты бывают разными и могут оказывать очень сильное влияние на температурные показатели.

Как мы «докатились» до жидкого металла?

Локальные эксперименты в российском офисе ASUS показывали, что замена термопасты с заводской на Thermal Grizzly Kryonaut дает снижение температуры центрального процессора в диапазоне 7-10 градусов по Цельсию.

Лично для меня жидкий металл в качестве термоинтерфейса всегда стоял в стороне, поскольку при отрицательных температурах использовать его достаточно сложно.

Из-за частых заморозок-разморозок образуется ледяной нарост, который начинает отжимать стакан для жидкого азота от крышки процессора, и в какой-то момент жидкий металл «отклеивается» от основания азотного стакана и перестает передавать ему тепло с теплораспределительной крышки.

Если вовремя не обратить внимание на характерный звук и выросшую дельту температур на основании стакана (там будут отрицательные температуры) и ядрах процессора (там будут положительные температуры), то все закончится очень печально.

В лучшем случае «умрет» только процессор, а в худшем случае утащит за собой что-то еще. В случае же использования термоинтерфейса жидкого металла в домашнем компьютере или ноутбуке на каждый день тоже есть определенные риски и сложности, с которыми инженерам ROG пришлось бороться под натиском локальных офисов.

Объединившись с другими странами, мы смогли убедить штаб-квартиру начать тестирование жидкого металла в качестве термоинтерфейса в системах охлаждения ноутбуков еще в 2018 году. Правда, нам пришлось столкнуться с рядом бюрократических трудностей.

Одним из самых курьезных моментов стал ответ инженеров, что они не могут купить жидкий металл в Тайване. Но я-то прекрасно знал, что у коллег из департамента материнских плат жидкий металл есть в наличии, поэтому мы продолжили воевать «с системой».

Решив проблему «нежелания», мы столкнулись с другой проблемой. Ведь наносить жидкий металл на поверхность кристалла не так уж и просто, а в рамках массового производства это практически невозможно. В итоге жидкий металл дебютировал в 2019 году в ROG Mothership, выпущенным ограниченным тиражом в 1000 экземпляров.

Если собрать все трудности с жидким металлом вместе, то я бы выделил следующие:

  • сложность нанесения
  • жидкий металл проводит ток
  • коррозия металлов, контактирующих с термоинтерфейсом
  • стоит дороже термопасты

На протяжении следующего года инженеры ROG решали вышеперечисленные проблемы.

Жидкий металл наносится специальным станком при помощи силиконовой кисти.

Для нанесения жидкого металла в масштабах массового производства был создан специальный станок, который позволял решить, пожалуй, самую главную и сложную задачу — равномерное нанесение термоинтерфейса по поверхности кристалла процессора.

В нашем случае используется жидкий металл от Thermal Grizzly, отличающийся от других производителей на рынке пониженной концентрацией олова в составе, что делает его более эффективным.

На начальных этапах процесс тестирования жидкого металла был настолько засекречен, что первые партии термоинтерфейса Thermal Grizzly покупались на рынке у нескольких продавцов, а не напрямую у производителя, чтобы не допустить утечек информации.

Важно помнить, что жидкий металл проводит ток, поэтому меры предосторожности очень важны. На первом этапе на заводе используется специальная пластина, которая закрывает собой все вокруг кристалла процессора и примет на себя излишки жидкого металла.

С помощью специальной силиконовой кисти жидкий металл будет распределяться по всей поверхности кристалла.

Надо отметить, что даже подбор материала для этой кисти был не таким простым, было испробовано около 30 различных материалов и выбор остановился на силиконе, который не деформирует нанесенный слой.

Добавляем еще немного ЖМ для создания безупречного контакта между кристаллом и радиатором СО

На следующем этапе пластина убирается и с помощью своего рода «шприца» на поверхность кристалла добавляется несколько капель жидкого металла, которые должны будут занять все свободное пространство между кристаллом и радиатором системы охлаждения для эффективного теплообмена. После этого устанавливается система охлаждения. В коротком видео можно посмотреть подробности процесса:

Жидкий металл нужно менять через год? Неправда!

Энтузиасты, кто хоть раз сталкивался с жидким металлом, знают о главном недостатке — «его на долго не хватает». Спустя год — максимум полтора, у всех людей, кто заменил термоинтерфейс на жидкий металл в своих десктопах или ноутбуках, начинается одна и та же проблема.

Температуры процессора возвращаются к прежним значениям «до перемазки», а на форумах бытует понятие, что жидкий металл «высыхает». На самом деле все не совсем так. В современных системах охлаждения крышка теплораспределителя сделана из меди, которая подвергается коррозии при контакте с жидким металлом.

Процесс этот не моментальный, поэтому пользователи замечают это примерно спустя год с момента нанесения. Из-за нарушения герметичности контакта происходит постепенный рост температуры процессора.

Успех «долголетия» жидкого металла заключается в использовании никелированного основания радиатора

В рамках массового производства и сервисного обслуживания замена термоинтерфейса каждый год просто непозволительная роскошь для производителя, поэтому радиаторы систем охлаждения под ноутбуки с жидким металлом пришлось доработать.

Медное основание радиатора заменили на никелированное, и оно коррозии не поддается. При констультации с инженерами Thermal Grizzly инженеры ROG пришли к выводу, что подобное инженерное решение будет иметь «срок годности» более 5 лет.

По итогам внутреннего тестирования инженеры ROG департамента R&D установили:

  • снижение температур процессора на 13-15 градусов по Цельсию в сбалансированном режиме работы системы охлаждения и незначительный рост частот процессора в Turbo Boost
  • снижение температур процессора в диапазоне от 7 до 22 грудусов по Цельсию и рост частот процессора на 300-400 МГц в зависимости приложения
  • увеличение производительности ноутбука до 10% в режиме Turbo работы системы охлаждения

А что дальше?

Если вы уже являетесь владельцем игрового ноутбука, в котором высокие температуры процессора и шумная система охлаждения не дают вам покоя, и вы грезите заменой термоинтерфейса, то мой вам совет: не используйте для этого жидкий металл.

Скорее всего при отсутствии определенного опыта и практики нанесение этого термоинтерфейса доставит вам много проблем, а вред от коррозии основания радиатора можно будет исправить лишь последующим шлифованием основания радиатора системы охлаждения. Что в конечном итоге, также не сулит ничего хорошего.

Если уж очень хочется, то используйте топовые термопасты от Thermal Grizzly и наслаждайтесь снижением температур на 5-10 градусов по Цельсию и, как следствие, снизившимся уровнем шума.

На данный момент все игровые ноутбуки Republic of Gamers с процессорами Intel Core 10-го поколения получили «с завода» жидкий металл. Будет ли жидкий металл в ноутбуках с процессорами AMD или на графических чипах NVIDIA? Пока сложно сказать.

Штаб-квартира ASUS объясняет свой выбор в пользу Intel тем, что кристалл процессора маленький, а тепло от него распределяется по поверхности равномерно, делая процессоры Intel идеальными кандидатами на операцию «жидкий металл», в которой можно по максимуму раскрыть все прелести от использования подобного термоинтерфейса. Забегая вперед, скажу, что в Intel настолько вдохновились идеей использования жидкого металла в качестве термоинтерфейса, что они стали советовать перейти на жидкий металл и другим производителям игровых ноутбуков. Попытки использовать жидкий металл на платформе AMD также предпринимались инженерами ROG в модели Zephyrus G14, но в итоге в массовое производство это решение не пошло из-за большого количества элементов, расположенных вокруг кристалла, и, как следствие, рисков, связанных с коротким замыканием. Поэтому пока от внедрения жидкого металла в продуктах на базе AMD решили воздержаться, но поиск оптимального решения уже ведется.

Читайте также:  15х29 дрива металл сверло

Станет ли такое решение нормой для игровых ноутбуков или останется лишь в премиальных моделях ROG, покажет лишь время.

 

Источник

Overclockers.ru: Жидкий металл в качестве термоинтерфейса, все за и против

Этот материал написан посетителем сайта, и за него начислено вознаграждение.

        В последнее время все большую популярность приобретает применение в компьютерной технике в качестве термоинтерфейса жидкого металла.

анонсы и реклама

Новая топовая 48Gb Nvidia

3090 Ti — цена РУХНУЛА, смотри

3070Ti MSI подешевела на порядок

3070 Ti за 80 тр в Регарде

3060 Ti Gigabyte Gaming дешевле 70

3080 Gigabyte за 100тр в Ситилинке

-120000р на RTX 3090 в Ситилинке

3070 Ti дешевле 90тр Gigabyte Gaming

3080 Ti Gigabyte Gaming за 100тр

3060 Ti Gigabyte Gaming за 54тр

3090 !! Ti за 160тр в XPERT.RU

3070 Ti MSI Gaming дешевле 80 тр

RTX Ti 3070 за 68тр Gigabyte Gaming

      Но давайте разберемся, все ли так хорошо, как нас убеждает производитель этого  «волшебного   зелья» и его фанаты. 

      Да! Несомненно у жидкого металла есть большой плюс, это его теплопроводность, она выше, чем у хорошей термопасты в 7-10 раз. И на практике  применение жидкого металла позволяет в некоторых случаях снизить температуру чипа до 20%.

     Для наглядности показатели теплопроводности для термопаст и жидкого металла привел в таблице.

       Но на этом все. Дальше одно разочарование. Все по порядку.

       Жидкий металл состоит (является сплавом) из трех основных элементов: галлий-индий-олово (62, 25 и 13% соответственно),  с некоторыми небольшими дополнительными присадками в зависимости от «волшебных рецептов» разных производителей с температурой плавления в районе 5 °С.

      Взаимодействие с алюминием даже не будем рассматривать, так как сам производитель категорически запрещает применять жидкий металл на алюминиевых поверхностях, к слову алюминий при взаимодействии с жидким металлом разрушается прямо на глазах. А рассмотрим взаимодействие с медью, с которым производитель как раз и рекомендует использовать жидкий металл, и   поверхностью кристаллов чипов.

    Для начала взглянем на поверхность медного радиатора после его интенсивного использования с жидким металлом в течении полугода.

       Жидкий металл перешел в твердое состояние, снятие его было произведено с усилием, так как он «прикипел» к поверхности кристалла.

     Так что же произошло с жидким металлом?

      Химики на этот вопрос отвечают, что жидкий металл в процессе диффузии будет  впитываться в медь, образуя на границе между металлами корку интерметаллидов. Последние не являются металлами с физической точки зрения, они тугоплавки, хрупки и обладают плохой тепло — и электропроводностью, но главное — жидкий металл будет расходоваться на их образование и просто уйдет из зазора.

      Все таки разрушающая химическая реакция с медью происходит, пусть и достаточно медленно, по причине  которой значительно  снижается теплопроводность этого термоинтерфейса и увеличиваются температуры чипов.

     Химики так же говорят, что устранить подобное явление поможет никелирование меди, но не все медные радиаторы имеют никелированную поверхность.

     Теперь разберемся как влияет жидкий металл на поверхность кристаллов чипов. На фото представлено фото поверхности кристалла процессора, который несколько лет эксплуатировался с жидким металлом.

      Как видно и здесь происходят химические реакции, которые постепенно разрушают поверхность кристалла чипа.  

     Кстати разрушающее воздействие жидкого металла касается еще и паяных соединений, вступив в контакт с припоем, он сделает его хрупким, а пайку ненадежной, и в какой-то момент это сработает. 

     Представьте такую ситуацию: вы в ноутбуке  заменили термоинтерфейс на жидкий металл, выдавили его немного больше, чем нужно было.

При установке системы охлаждения излишек выдавился из-под процессора, или графического чипа, и волшебная капелька зависла в ожидании какого ни будь  резкого толчка или небольшого падения (с высоты 2 см.) вашего ноутбука. А такие случаи имели место быть. И здесь начинается путешествие это волшебной капли по вашему ноутбуку.

И что случится раньше?  Замкнет SMD компоненты на подложке процессора, замкнет, какие-либо другие компоненты, или  же просто прилипнет к какому-нибудь  месту пайки и через некоторое время разрушит ее.

    Поэтому лично я бы держал  жидкий металл как можно дальше от любой электроники.

Этот материал написан посетителем сайта, и за него начислено вознаграждение.

Посадка с применением низкой температуры | Главный механик

Нагрев деталей больших габаритов представляет известную трудность и требует специального оборудования. Поэтому, когда охватывающая деталь неудобна для разогрева, а охватываемая деталь имеет сравнительно небольшие размеры, лучше пользоваться обратным методом, т.е. получать нужную разность температур сопрягаемых деталей за счет охлаждения охватываемой детали.

Сущность процесса заключается в том, что при охлаждении до весьма низкой температуры наступает временное уменьшение диаметра охватываемой детали и благодаря этому она свободно входит в отверстие другой детали, в которую должна быть установлена.

По сравнению с другими способами прессовые посадки, осуществляемые с применением низких температур, имеют ряд существенных преимуществ:

  1. Обеспечивается большая прочность соединения в силу того, что при этом способе не происходит снятие отдельных гребешков и образования задиров на прессуемых поверхностях, а следовательно, менее вероятно возможное ослабление соединения в эксплуатации.

  2. Не наблюдается неравномерной усадки металла, как это бывает при запрессовке деталей на прессе, а следовательно, нет опасности появления вредных остаточных напряжений.

  3. На сопрягаемых поверхностях отсутствует слой окалины, что также способствует прочности соединения.

  4. Применение охлаждения наиболее благоприятно сказывается при осуществлении посадок малых охватываемых деталей и крупных охватывающих, как, например, посадка седел клапанов в паровые пробки, посадка пальцев в регулирующее кольцо, запрессовка букс. В этих случаях требуется гораздо меньше затрат энергии на охлаждение малых охватываемых деталей, чем на нагрев больших охватывающих.

  5. Глубокое охлаждение не вызывает изменений в структуре закаленном детали, поэтому метод охлаждения наиболее удачен для сопряжения термически обработанных деталей.

Обработку деталей холодом можно осуществить в специальных рефрижераторных установках, либо в примитивных холодильных устройствах в виде деревянных ящиков, с хорошей их изоляцией изнутри.

В качестве охлаждающей среды для указанных целей используются: жидкий воздух, сухой лед (твердая углекислота) и жидкий азот. Жидкий азот и воздух дают наиболее низкую температуру:- 180-195°С, чего вполне достаточно для посадки деталей с натягом от 0,05 до 0,08 мм.

Для осуществления прессовых посадок часто применяется комбинированный метод, т. е. охлаждение охватываемой детали с одновременным подогревом охватывающей. В данном случае гарантируется заведомо больший зазор и запрессовка деталей с большим натягом происходит гораздо надежнее.

  • Величину усадки при охлаждении или величину расширения при нагревании подсчитывают по формуле:
  • d=a(t2-t1)D,

где d – величина усадки, мм; а – коэффициент линейного расширения; t1 и t2 исходная и конечные температуры, град., D – посадочный диаметр.

Качество сборки прессовых соединений контролируется внешним осмотром для выявления возможных трещин и других пороков, которые не допускаются по техническим условиям, а также проверяется сохранение внешних размеров и габаритов собранного соединения.

Для проверки плотности взаимного прилегания поверхностей применяется простукивание мест соединений стальным молотком. Для тяжело нагруженных деталей и узлов, подвергающихся в эксплуатации воздействию высоких температур, допускается выборочный контроль путем распрессовки соединения с замером прилагаемых усилий.

Сборка прессовых соединений с помощью температурных воздействий требует особого внимания и безоговорочного выполнения всех правил техники безопасности. Грязь, захламленность рабочего места являются причиной производственного брака и травматизма.

При нагревании или охлаждении необходимо тщательно соблюдать меры предосторожности:

  • не прикасаться к нагретым или охлажденным деталям голыми руками, особенно после погружения их в жидкий газ. Для этого надо применять клещи, специальные захваты и рукавицы
  • не допускать попадания жидкости на одежду и части тела, так как это может вызвать сильные ожоги.

Неосторожное обращение с нагревательными приборами или холодильными установками, особенно с теми, в которых содержится жидкий азот или воздух, часто приводит к возникновению загораний и другим недопустимым явлениям.

Помещения, где производится нагрев деталей и охлаждение, должны быть изолированы от общих сборочных цехов и иметь приточно-вытяжную вентиляцию.

Все лица, принимающие участие в нагревании и охлаждении деталей, должны быть специально проинструктированы.

Читайте также:  Привязка лицензии windows к железу

Охлаждение материалов газами, жидким азотом и сухим льдом

Регулирование температуры — это необходимый фактор обеспечения качества продукции в пищевой промышленности, металлообработке и некоторых других отраслях промышленности. В последнем случае, тепло воздействует на металл на многих стадиях производственного процесса — при этом, тепло может влиять на размеры металлических деталей, а также и на структуру металла.

Для охлаждения металла, всегда требуется определенное время; в некоторых случаях, время некритично, и могут использоваться пассивные способы охлаждения или охлаждение циклическим хладагентом.

Однако, в определенных случаях требуется максимальное уменьшение времени, затрачиваемого на охлаждение — и тогда помочь быстро охладить металл могут жидкий азот или сухой лед (отвержденный диоксид углерода CO2).

Жидкий азот

Для того, чтобы понизить температуру 1 кг металла с +20°C до -196°C, требуется от 0,5 до 1 литров жидкого азота. При использовании жидкого азота следует обращаться с ним так же осторожно, как, например, с кипятком, принимая во внимание опасность холодного ожога.

Сухой лед

Для того, чтобы понизить температуру 1 кг металла на 98°C, потребуется около 0,2 кг сухого льда, который можно, в том числе, распылять в виде «снега» или засыпать вокруг охлаждаемой детали в виде зерен.

Охлаждение бетона жидким азотом

Как частный случай использования жидкого азота для охлаждения материалов можно упомянуть охлаждение бетона, особенно на основе портландцемента и геополимерных сортов бетона. Затвердевание бетона — это экзотермический процесс, то есть, при затвердевании бетона выделяется тепло, причем немалые его количества.

В случае, если высока температура окружающей среды, или используется цемент с температурой выше примерно +70°C, в процессе затвердевания бетона температура в нем может подняться до уровня, угрожающего нарушением геометрии массива бетона и образованием трещин.

Особое внимание равномерному затвердеванию бетона следует уделять, когда он используется для строительства важных и особо требовательных к прочности конструкции сооружений, таких как мосты, тоннели, резервуары хранения, когда требуется создание особо объемных массивов бетона, как при строительстве дамб и больших фундаментов, а также вообще в жарком климате или в жаркую погоду.

Одним из способов предотвратить образование трещин в бетоне в процессе его затвердевания является охлаждение жидким азотом, которое обходится относительно недорого и уже успело на практике доказать свою эффективность.

Охлаждать жидким азотом можно цемент, песок и гравий, воду, используемую для приготовления смеси, а также бетономешалку.

Кроме высокой эффективности и дешевизны, к преимуществам использования жидкого азота можно отнести гибкость и простоту регулирования охлаждения.

Охлаждение шлангов жидким азотом

Гидравлические шланги, или рукава низкого, среднего и высокого давления, состоят из внутренней трубки из того или иного сорта натуральной или синтетической резины (каучука), слоя армирования из прочных текстильных или металлических нитей и внешней трубки. Армирование шлангов требуется для усиления прочности шлангов и предотвращения их разрыва — и в некоторых, даже во многих, шлангах имеется несколько слоев армирования, разделенных относительно тонкими промежуточными прослойками.

В процессе производства гидравлических шлангов возникает необходимость намотать на внутреннюю трубку армирующие нити (разумеется, делается это автоматически, а не вручную).

Усилие, требующееся для качественной, точной и плотной намотки нитей армирования, без принятия дополнительных контрмер приводит к деформации внутренней трубки.

Разумеется, производители шлангов знакомы с этой потенциальной проблемой, и традиционно решают ее помещением внтуренней трубки на специальный поддерживающий механизм, что сильно усложняет технологический процесс.

Альтернативным способом предотвращения деформации шлангов при намотке слоя армирования является охлаждение внутренней трубки жидком азотом. Для этого, перед попаданием в установку намотки нити, шланг пропускается через камеру-азотный охладитель, обычно примерно двухметровой длины.

В камере, на внутреннюю трубку дозированно разбпызгивается жидкий азот, имеющий температуру -196°C. На выходе из камеры, внутренняя трубка шланга имеет твердость, достаточную для намотки на нее слоя армирования без применения дополнительных поддерживающих механизмов.

Камера позволяет регулировать количество подаваемого в сопла-разбрызгиватели азота, проста как в эксплуатации, так и в обслуживании.

На данное время подобные камеры-охладители предлагаются как уже стандартное, проверенное решение такими компаниями-поставщиками промышленных газов, как Linde Gas, которая предлагает производителям шлангов стандартные жидкостноазотные охладители для рукавов диаметром до 2 дюймов (50 мм).

Охлаждение алюминиевого шлака аргоном

Алюминиевый шлак

При любом процессе производства расплавленного алюминия в печи образуется алюминиевый шлак, который может содержать до 80% (по массе) алюминия. Для начала процесса извлечения алюминия из шлака требуется, прежде всего, охладить шлак — иначе, содержащийся в нем алюминий окислится (алюминий легко и очень быстро окисляется при температуре выше 400°C), сделав дальнейшую работу со шлаком сложной и экономически неоправданной. Охлаждать алюминиевый шлак воздухом нельзя, водой — опасно (из-за возможной диссоциации воды на водород и кислород при высоких температурах) и сильно усложняет конструкцию охладителя. Существующие механические агрегаты (вибростолы, роторные барабаны, перевернутый колокол с гидрозапором) используют в конструкции множество движущихся частей, сложны, ненадежны, дороги в обслуживании и, наконец, не могут охлаждать все типы алюминиевого шлака.

Решением, лежащим, в-общем-то, на поверхности, является медленное охлаждение алюминиевого шлака в герметичном контейнере, заполненном инертным газом.

Подобные охладители, например, разрабатывает и производит базирующаяся в канадской провинции Квебек компания STAS: охладители алюминиевого шлака, предлагаемые STAS, это, по сути, просто герметичные контейнеры с полкой для шлака. Охладитель продувается аргоном; азот, как правило, использовать нельзя из-за образования нитридов.

Шлак забирается из печи специальным ковшом, и как можно быстрее перемещается на полку (каждая минута промедления может обойтись примерно в 1% окисленного алюминия).

Контейнер герметично закрывается, и в него начинает подаваться аргон — сначала с довольно большой скоростью, а затем, когда внутри контейнера образовалась защитная аргоновая атмосфера, лишь в малых, поддерживающих количествах. Обычно, с большинством типов алюминиевого шлака, время цикла охлаждения от 700-800 до 400°C составляет порядка 6 часов.

Из преимуществ аргонового охлаждения алюминиевого шлака можно выделить:
— низкие начальные капиталовложения и низкие затраты на обслуживание
— самый высокий процент выделения алюминия из охлажденного шлака
— для охлаждения не используется вода → безопасность
— нет пыли, как при использовании механических охладителей → не нужен пылеуловитель
— может охлаждать любой шлак, в том числе и высоко химически активный
— компактность и гибкость в установке

— не нужна инфраструктура (подразумевается, что аргон закупается на стороне)

Купить декоративый жидкий металл от производителя с доставкой по все России с обучением

Жидкий металл — METALLUM (METALLHAUT)

Многие слышали и видели фотографии металлизированных элементов, но всегда это было что-то такое далекое. 

Еще в конец 2000-х набрав популярность на западе жидкая металлизация начала развиваться среди дизайнеров по мебели и среди скульпторов, где любую поверхность не металла скульпторы могли металлизировать при помощи холодной металлизации. Жидкая металлизация делал черный металл цветным и наоборот.

Любая поверхность приобретает не просто внешность металла, но и полностью имитирует все физические свойства. Обработанный жидкий металл как и обычные металлы взаимодействуют воздухом и окисляясь меняют цвет.

Основная отличая от красок с металлизированными частичками, или перламутровые  —  имитирующие далекий намек на металл, жидкий металл — это и есть настоящий металл но в жидком виде.

 Жидкий металл, или холодный металл содержит более 90% металла. Остальное функциональные добавки  после высыхании улетучиваются. Чистота самого металла это 99,98%.

Мы строго следим за качеством и в отличаи от тех немногих производителей, не работаем вторичным переработанным сырьем металлов. 

Жидкий металл — METALLUM можно нанести при помощи распыления и при помощи — кисти, шпателя, губки и т.д. Все зависит от поставленных задач и эффектов.

Полимеризованный жидкий металл это твердое покрытие, а различные цвета в данном материале, и есть разновидности металлов. 

Вы можете делать как матовый металл, так и полируя создавать зеркальный эффект. Главное соблюдать правила и последовательность по обработке жидкого металла.

Жидкий металл можно наносить от стекла и керамики до МДФ или стали. Всегда при реализации сложных задач, проконсультируйтесь нашим технологом.  

Мы заинтересованы когда вы получаете хороший результат.

Жидкий металл применяется: 

  • в интерьерах, экстерьерах, в производстве мебели, для интерьеров яхт, скульптурах, барельефах и т.д.

     При полной кристаллизации и набора твердости, «жидкий металл», материалу свойственно все характеристики обычной детали как, блеск, текстура, свойства по естественному окислению, теплопроводность, магнитные и прочие свойства.

Видеоролик с реализацией возможности жидкого металла эффектом травленной латуни.

Понравилась статья? Поделиться с друзьями:
Станок