Структура металла термическая обработка

Главная / Виды металла /  

Термическая обработка (термообработка) стали, цветных металлов — процесс изменения структуры стали, цветных металлов, сплавов при нагревании и последующем охлаждении с определенной скоростью.

Термическая обработка (термообработка) приводит к существенным изменениям свойств стали, цветных металлов, сплавов. Химический состав металла не изменяется.

Назначение термической обработки

Термическая обработка стали проводится при температурах, приближенных к критическим точкам . Здесь происходит:

  • вторичная кристаллизация сплава;
  • переход гамма железа в состояние альфа железа;
  • переход крупных частиц в пластинки.

Внутренняя структура двухфазной смеси напрямую влияет на эксплуатационные качества и легкость обработки.

Структура металла термическая обработка

Образование структур в зависимости от интенсивности охлаждения

Основное назначение термической обработки — это придание сталям:

  • В готовых изделиях:
    1. прочности;
    2. износостойкости;
    3. коррозионностойкость;
    4. термостойкости.
  • В заготовках:
    1. снятие внутренних напряжений после
      • литья;
      • штамповки (горячей, холодной);
      • глубокой вытяжки;
    2. увеличение пластичности;
    3. облегчение обработки резанием.

Термическая обработка применяется к следующим типам сталей:

  1. Углеродистым и легированным.
  2. С различным содержанием углерода, от низкоуглеродистых 0,25% до высокоуглеродистых 0,7%.
  3. Конструкционным, специальным, инструментальным.
  4. Любого качества.

Немного истории

Еще в древние времена мастера кузнецких дел использовали самые примитивные методы закалки. Для этого раскаленный кусок железа погружали в воду, масло или вино. Но время шло, и вместе с опытом развивались и способы закаливания металла.

В начале XIX века хрупкий чугун помещали в емкость со льдом и засыпали сахаром. После процесса нагревания продолжавшегося в течение 20 часов, чугун становился мягким и легко поддавался ковке.

Середина XIX века знаменательна тем, что русский изобретатель металлург Д. К. Чернов совершил выдающееся открытие. Он установил, что при смене температуры металл изменяет свои свойства.

Структура металла термическая обработка

Дмитрий Константинович Чернов стал основоположником науки изучающей свойства металлов –  материаловедения.

Нагрев заготовки

Нагрев заготовки — ответственная операция. От правильности ее проведения зависят качество изделия, производительность труда.

Необходимо знать, что в процессе нагрева металл меняет свою структуру, свойства и характеристику поверхностного слоя и в результате от взаимодействия металла с воздухом атмосферы, и на поверхности образуется окалина, толщина слоя окалины зависит от температуры и продолжительности нагрева, химического состава металла. Стали окисляются наиболее интенсивно при нагреве больше 900°С, при нагреве в 1000°С окисляемость увеличивается в 2 раза, а при 1200°С — в 5 раз.

Хромоникелевые стали называют жаростойкими потому, что они практически не окисляются.

Легированные стали образуют плотный, но не толстый слой окалины, который защищает металл от дальнейшего окисления и не растрескивается при ковке.

Углеродистые стали при нагреве теряют углерод с поверхностного слоя в 2-4 мм. Это грозит металлу уменьшением прочности, твердости стали и ухудшается закаливание. Особенно пагубно обезуглероживание для поковок небольших размеров с последующей закалкой.

Заготовки из углеродистой стали с сечением до 100 мм можно быстро нагревать и потому их кладут холодными, без предварительного прогрева, в печь, где температура 1300°С. Во избежание появлений трещин высоколегированные и высокоуглеродистые стали необходимо нагревать медленно.

При перегреве металл приобретает крупнозернистую структуру и его пластичность снижается. Поэтому необходимо обращаться к диаграмме «железо-углерод», где определены температуры для начала и конца ковки.

Однако перегрев заготовки можно при необходимости исправить методом термической обработки, но на это требуется дополнительное время и энергия.

Нагрев металла до еще большей температуры приводит к пережогу, от чего происходит нарушение связей между зернами и такой металл полностью разрушается при ковке.

Преимущества термообработки металлов

Термическая обработка кардинально изменяет эксплуатационные свойства металлов, используя при этом только внутреннее перестроение их кристаллических решеток. С помощью чередования циклов нагрева и охлаждения можно в разы увеличить твердость, износостойкость, пластичность и ударную вязкость изделия.

Помимо этого, термическая обработка дает возможность производить структурные изменения только в поверхностном слое на заданную глубину или воздействовать только на часть заготовки.

Сочетание термообработки с горячей обработкой давлением приводит к значительному увеличению твердости металла, превышающему результаты, полученные отдельно при нагартовке или закалке. При химико-термической обработке поверхностный слой металла диффузионным способом насыщается химическими элементами, значительно повышающими его износостойкость и твердость.

При этом основная часть изделия сохраняет вязкость и пластичность. С производственной точки зрения оборудование для термической обработки гораздо проще и дешевле, чем станки и установки механообрабатывающих и литейных производств.

Структура металла термическая обработка

Пережог

Пережог — неисправимый брак. При ковке изделий из низкоуглеродистых сталей требуется меньше число нагревов, чем при ковке подобного изделия из высокоуглеродистой или легированной стали.

При нагреве металла требуется следить за температурой нагрева, временем нагрева и температурой конца нагрева.

При увеличении времени нагрева — слой окалины растет, а при интенсивном, быстром нагреве могут появиться трещины.

Известно из опыта, что на древесном угле заготовка 10-20 мм в диаметре нагревается до ковочной температуры за 3-4 минуты, а заготовки диаметром 40-50 мм прогревают 15-25 минут, отслеживая цвет каления.

Это интересно: Зависимость веса стального листа от вида проката металла

Библиография

  1. И. И. Новиков. Термическая обработка
  2. А. П. Гуляев. Металловедение
  3. Суперсплавы II, Москва, «Металлургия», 1995
  4. А. Ю. Маламут. Термопечи, Москва, 2010.
  5. А. И. Климычев. Практикум по лабораторным работам

Классификация и виды термообработки

Основополагающими параметрами, влияющими на качество термообработки являются:

  • время нагревания (скорость);
  • температура нагревания;
  • длительность выдерживания при заданной температуре;
  • время охлаждения (интенсивность).

Изменяя данные режимы можно получить несколько видов термообработки.

Виды термической обработки стали:

  • Отжиг
    1. I – рода:
      • гомогенизация;
      • рекристаллизация;
      • изотермический;
      • снятие внутренних и остаточных напряжений;
    2. II – рода:
  • Закалка;
  • Отпуск:
    1. низкий;
    2. средний;
    3. высокий.

Структура металла термическая обработка

Температура нагрева стали при термообработке

Отпуск

Отпуск в машиностроении используется для уменьшения силы внутренних напряжений, которые появляются во время закалки. Высокая твердость делает изделия хрупкими, поэтому отпуском добиваются увеличения ударной вязкости и снижения жесткости и хрупкости стали.

1. Отпуск низкий

Для низкого отпуска характерна внутренняя структура мартенсита, которая, не снижая твердости повышает вязкость. Данной термообработке подвергаются измерительный и режущий инструмент. Режимы обработки:

  • Нагревание до температуры – от 150°С, но не выше 250°С;
  • выдерживание — полтора часа;
  • остывание – воздух, масло.

2. Средний отпуск

Для среднего отпуска преобразование мартенсита в тростит. Твердость снижается до 400 НВ. Вязкость возрастает. Данному отпуску подвергаются детали, работающие со значительными упругими нагрузками. Режимы обработки:

  • нагревание до температуры – от 340°С, но не выше 500°С;
  • охлаждение – воздух.

3. Высокий отпуск

При высоком отпуске кристаллизуется сорбит, который ликвидирует напряжения в кристаллической решетке. Изготавливаются ответственные детали, обладающие прочностью, пластичностью, вязкостью.

Структура металла термическая обработка

  • Отжиг стали
  • Режимы обработки:
  • Нагревание до температуры – от 450°С, но не выше 650°С.

Отжиг

Применение отжига позволяет получить однородную внутреннюю структуру без напряжений кристаллической решетки. Процесс проводят в следующей последовательности:

  • нагревание до температуры чуть выше критической точки в зависимости от марки стали;
  • выдержка с постоянным поддержанием температуры;
  • медленное охлаждение (обычно остывание происходит совместно с печью).

1. Гомогенизация

Гомогенизация,  по-иному отжиг диффузионный, восстанавливает неоднородную ликвацию отливок. Режимы обработки:

  • нагревание до температуры – от 1000°С, но не выше 1150°С;
  • выдержка – 8-15 часов;
  • охлаждение:
    • печь – до 8 часов, снижение температуры до 800°С;
    • воздух.

2. Рекристаллизация

Рекристаллизация, по-иному низкий отжиг, используется после обработки пластическим деформированием, которое вызывает упрочнение за счет изменения формы зерна (наклеп). Режимы обработки:

  • нагревание до температуры – выше точки кристаллизации на 100°С-200°С;
  • выдерживание — ½ — 2 часа;
  • остывание – медленное.

3. Изотермический отжиг

Изотермическому отжигу подвергаются легированные стали, для того чтобы произошел распад аустенита. Режимы термообработки:

  • нагревание до температуры – на 20°С — 30°С выше точки ;
  • выдерживание;
  • остывание:
    • быстрое – не ниже 630°С;
    • медленное – при положительных температурах.

4. Отжиг для устранения напряжений

Снятие внутренних и остаточных напряжений отжигом используется после сварочных работ, литья, механической обработки. С наложением рабочих нагрузок детали подвергаются разрушению. Режимы обработки:

  • нагревание до температуры – 727°С;
  • выдерживание – до 20 часов при температуре 600°С — 700°С;
  • остывание — медленное.

5. Отжиг полный

Отжиг полный позволяет получить внутреннюю структуру с мелким зерном, в составе которой феррит с перлитом. Полный отжиг используют для литых, кованных и штампованных заготовок, которые будут в дальнейшем обрабатываться резанием и подвергаться закалке.

Структура металла термическая обработка

Полный отжиг стали

Режимы обработки:

  • температура нагрева – на 30°С-50°С выше точки ;
  • выдержка;
  • охлаждение до 500°С:
    • сталь углеродистая – снижение температуры за час не более 150°С;
    • сталь легированная – снижение температуры за час не более 50°С.

6. Неполный отжиг

При неполном отжиге пластинчатый или грубый перлит преобразуется в ферритно-цементитную зернистую структуру, что необходимо для швов, полученных электродуговой сваркой, а также инструментальные стали и стальные детали, подвергшиеся таким методам обработки, температура которых не провоцирует рост зерна внутренней структуры.

Режимы обработки:

  • нагревание до температуры – выше точки  или , выше 700°С на 40°С — 50°С;
  • выдерживание – порядка 20 часов;
  • охлаждение — медленное.

Закалка

Закалку сталей применяют для:

  • Повышения:
    1. твердости;
    2. прочности;
    3. износоустойчивости;
    4. предела упругости;
  • Снижения:
    1. пластичности;
    2. модуля сдвига;
    3. предела на сжатие.

Суть закалки – это максимально быстрое охлаждение прогретой насквозь детали в различных средах. Каление производится с полиморфными изменениями и без них. Полиморфные изменения возможны только в тех сталях, в которых присутствуют элементы способные к преобразованию.

Читайте также:  Навес на две машины металл

Структура металла термическая обработка

Закалка стали

Такой сплав подвергается нагреву до той температуры, при которой кристаллическая решетка полиморфного элемента терпит изменения, за счет чего увеличивается растворяемость легирующих материалов. При снижении температуры решетка изменяет структуру из-за избытка легирующего элемента и принимает игольчатую структуру.

Невозможность полиморфных изменений при калении обусловлено ограниченной растворимостью одного компонента в другом при быстрой скорости охлаждения. Для диффузии мало времени. В итоге получается раствор с избытком нерастворенного компонента (метастабильтный).

Для увеличения скорости охлаждения стали используются такие среды как:

  • вода;
  • соляные растворы на основе воды;
  • техническое масло;
  • инертные газы.

Сравнивая скоростной режим охлаждения стальных изделий на воздухе, то охлаждение в воде с 600°С происходит в шесть раз быстрее, а с 200°С в масле в 28 раз.

Растворенные соли повышают закаливающую способность. Недостатком использования воды считается появление трещин в местах образования мартенсита.

Техническое масло используется для закалки легирующих сплавов, но оно пригорает к поверхности.

Металлы, использующиеся при изготовлении изделий медицинской направленности не должны иметь пленки из оксидов, поэтому охлаждение происходит в среде разряженного воздуха.

Чтобы полностью избавиться от аустенита, из-за которого у стали наблюдается высокая хрупкость, изделия подвергаются дополнительному охлаждению при температурах от — 40°С и до -100°С в специальной камере. Также можно использовать углекислую кислоту в смеси с ацетоном. Такая обработка повышает точность деталей, их твердость, магнитные свойства.

Если деталям не требуется объемная термообработка, проводится каление только поверхностного слоя на установках ТВЧ (токами высокой частоты). При этом глубина термообработки составляет от 1 мм до 10 мм, а охлаждение происходит на воздухе. В итоге поверхностный слой становится износоустойчивым, а середина вязкая.

Процесс закалки предполагает прогревание и выдержку стальных изделий при температуре, достигающей порядка 900°С. При такой температуре стали с содержанием углерода до 0,7% имеют структуру мартенсита, который при последующей термообработке перейдет в требуемую структуру с появлением нужных качеств.

Нормализация

Нормализация формирует структуру с мелким зерном. Для низкоуглеродистых сталей  — это структура феррит-перлит, для легированных – сорбитоподобная. Получаемая твердость не превышает 300 НВ. Нормализации подвергаются горячекатаные стали. При этом у них увеличивается:

  • сопротивление излому;
  • производительность обработки;
  • прочность;
  • вязкость.

Структура металла термическая обработка

Процесс нормализации стали

Режимы обработки:

  • происходит нагрев до температуры – на 30°С-50°С выше точки ;
  • выдерживание в данном температурном коридоре;
  • охлаждение – на открытом воздухе.

Химико-термическая обработка

Химико-термическая обработка (ХТО) стали — совокупность операций термической обработки с насыщением поверхности изделия различными элементами (углерод, азот, алюминий, кремний, хром и др.) при высоких температурах.

Поверхностное насыщение стали металлами (хром, алюминий, кремний и др.), образующими с железом твердые растворы замещения, более энергоемко и длительнее, чем насыщение азотом и углеродом, образующими с железом твердые растворы внедрения. При этом диффузия элементов легче протекает в решетке альфа-железо, чем в более плотноупакованной решетке гамма-железо.

Химико-термическая обработка повышает твердость, износостойкость, кавитационную, коррозионную стойкость. Химико-термическая обработка, создавая на поверхности изделий благоприятные остаточные напряжения сжатия, увеличивает надежность, долговечность.

Цементация стали

Цементация стали — химико-термическая обработка поверхностным насыщением малоуглеродистой (С

Применение термической обработки стали: основные виды, плюсы и минусы

Структура металла термическая обработка

Для придания нужных свойств металлической детали она подвергается термической обработке. Во время этого процесса происходит структурное изменение материала.

Металлические изделия, используемые в хозяйстве, должны быть устойчивыми к внешнему воздействию. Чтобы этого достичь, металл необходимо усилить при помощи воздействия высокой температуры. Такая обработка меняет форму кристаллической решётки, минимизирует внутреннее напряжение и улучшает его свойства.

Виды термической обработки стали

Термообработка стали сводится к трём этапам: нагреву, выдержке и быстрому охлаждению. Существует несколько видов этого процесса, но основные этапы у них остаются одинаковыми.

Выделяют такие виды термической обработки:

  • Техническая (отпуск, закалка, криогенная обработка, старение).
  • Термомеханическая, при которой используют не только высокую температуру, но и физическое воздействие на металл.
  • Химико-термическая включает в себя термическую обработку металла с последующим воздействием на поверхность азотом, хромом или углеродом.

Отжиг

Это производственный процесс нагрева металла до заданной температуры, а затем медленного охлаждения, которое происходит естественным путём. В результате этой процедуры устраняется неоднородность металла, снижается внутреннее напряжение, и уменьшается твёрдость сплава, что значительно облегчает его переработку. Существует два вида отжига: первого и второго рода.

При отжиге первого рода фазовое состояние сплава изменяется незначительно. У него есть разновидности:

  • Гомогенизированный — температура составляет 1100−1200 °C, металл выдерживается от 7−14 часов в таких условиях.
  • Рекристаллизационный — температура отжига 100−200 °C, эта процедура используется для клёпаной стали.

При отжиге второго рода происходит фазовое изменения металла. Процесс имеет несколько видов:

  • Структура металла термическая обработкаПолный отжиг — металл нагревается на 25−40 °C выше критического значения для этого материала и охлаждается со специальной скоростью.
  • Неполный — сплав нагревается до критической точки и долго остывает.
  • Диффузионный — отжиг производится при температуре 1100−1200 °C.
  • Изотермический — нагрев металла происходит как при полном отжиге, но охлаждение ниже критической температуры, остывание на открытом воздухе.
  • Нормализованный — производится полный отжиг металла с остыванием на воздухе.

Закалка

Это процесс манипуляции металлом для достижения мартенситного превращения, чем обеспечивается повышенная прочность и уменьшенная пластичность изделия. При закалке сплав нагревают до критического значения, как и при отжиге, но процесс охлаждения производится значительно быстрее, и для этого используют ванную с жидкостью. Существует несколько видов закалки:

  • Закалка в одной жидкости, для мелких деталей используют масло, а для крупных — воду.
  • Прерывистая закалка — понижение температуры происходит в два этапа: резкое охлаждение до температуры в 300 °C, с помощью воды, а затем изделие помещают в масло или на открытый воздух.
  • Ступенчатая — при достижении металла необходимой температуры, его охлаждают в расплавленных солях, а затем на открытом воздухе.
  • Изотермическая — сходный со ступенчатой, отличается во времени выдержки.
  • Закалка с самоотпуском, сплав охлаждается не полностью, оставляется тёплый участок в середине. В результате металл получает повышенную прочность и высокую вязкость. Такое сочетание отлично подходит для ударных инструментов.

Неправильно сделанная закалка может привести к появлению таких дефектов:

  • обезуглероживание;
  • трещины;
  • коробление или поводки.

Структура металла термическая обработка

Поводка и коробление возникает при неравномерном охлаждении искривлённых деталей. Эти дефекты довольно невелики и могут быть исправлены шлифованием. Предварительный отжиг деталей и их постепенный и равномерный нагрев помогут избежать коробления.

Обезуглероживание металла происходит в результате выгорания углерода при длительном нагреве. Интенсивность процесса зависит от температуры нагрева, чем она выше, тем быстрее процесс. Для исправления деталь нагревают в нейтральной среде (муфельной печи).

Окалины на поверхности металла приводят к угару и деформации изделия. Это снижает скорость нагрева и делает механическую обработку более трудной. Окалины удаляются химическим или механическим способом.

Для того чтобы избежать их появления, нужно использовать специальную пасту (100 г жидкого стекла, 25 г графита, 75 г огнеупорной глины, 14 г буры, 100 г воды, 30 г карборунда).

Состав наносится на изделия и оставляется до полного высыхания, а затем нагревается как обычно.

Отпуск

Он смягчает воздействие закалки, снимает напряжение, уменьшает хрупкость, повышает вязкость. Отпуск производится с помощью нагрева детали, закалённой до критической температуры.

В зависимости от значения температуры можно получить состояния тростита, мартенсита, сорбита. Они отличаются от похожих состояний в закалке по свойствам и структуре, которая более точечная. Это увеличивает пластичность и прочность сплава.

Металл с точечной структурой имеет более высокую ударную вязкость.

В зависимости от температуры различают такие виды отпуска: низкий, средний, высокий.

Для точного определения температуры используют таблицу цветов. Плёнка окислов железа придаёт металлу разные цвета. Она появляется, если изделие очистить от окалин и нагреть до 210 °C, при повышении температуры толщина плёнки увеличивается.

Структура металла термическая обработка

Высокий отпуск значительно улучшает механические свойства стали, увеличивает вязкость, пластичность, прочность. Её широко используют для изготовления рессор, шатунов двигателей, кузнечных штампов, осей автомобилей. Для мелкозернистой легированной стали отпуск проводят сразу после нормализации.

Чтобы увеличить обрабатываемость металла, его нормализацию производят при высокой температуре (970 °C), что повышает его твёрдость. Для уменьшения этого параметра делают высокий отпуск.

Криогенная обработка

Изменения структуры металла можно добиться не только высокой температурой, но и низкой. Обработка сплава при температуре ниже 0 °C широко применяется в разных отраслях производства. Процесс происходит при температуре 195 °C.

Плюсы криогенной обработки:

  • Снижает количество аустенита, что придаёт устойчивость размерам деталей.
  • Не требует последующего отпуска, что сокращает производственный цикл.
  • После такой обработки детали лучше поддаются шлифовке и полировке.

Химико-термическая обработка

Химико-термическая обработка включает в себя не только воздействие с помощью высокой температуры, но и химическое. Результатом этой процедуры является повышенная прочность и износостойкость металла, а также придание огнестойкости и кислотоустойчивости.

Различают такие виды обработки:

  • Цементация.
  • Азотирование.
  • Нитроцементация.
  • Борирование.

Структура металла термическая обработка

Перед началом цементации производится тщательное очищение поверхности, после чего её покрывают специальными составами. Процедуру производят после полного высыхания поверхности.

Читайте также:  15х29 дрива металл сверло

Различают несколько видов цементации: жидкая, твёрдая, газовая. При первом виде используют специальную печь-ванную, в которую засыпают 75% соды, 10% карбида кремния, 15% хлористого натрия. После чего изделие погружают в ёмкость. Процесс протекает в течение 2 часов при температуре 850 °C.

Твёрдую цементацию удобно выполнять в домашней мастерской. Для неё используют специальную пасту на основе кальцинированной соды, сажи, щавелево-кислого натрия и воды. Полученный состав наносят на поверхность и ждут высыхания. После этого изделие помещают в печь на 2 часа при температуре в 900 °C.

При газовой цементации используют смеси газов, содержащие метан. Процедура происходит в специальной камере при температуре в 900 °C.

Азотирование стали — процесс насыщения поверхности металла азотом при помощи нагрева до 650 °C в аммиачной атмосфере. После обработки сплав увеличивает свою твёрдость, а также приобретает сопротивление к коррозии.

Азотирование, в отличие от цементации, позволяет сохранить высокую прочность при больших температурах. А также изделия не коробятся при охлаждении.

Азотирование металла широко применяется в промышленности для придания изделию износостойкости, увеличения твёрдости и защиты от коррозии.

Нитроцементация стали заключается в обработке поверхности углеродом и азотом при высокой температуре с дальнейшей закалкой и отпуском. Процедура может осуществляться при температуре 850 °C в газовой среде. Нитроцементацию используют для инструментальных сталей.

При борировании стали на поверхность металла наносят слой бора. Процедура происходит при температуре 910 °C. Такая обработка используется для повышения стойкости штампового и бурового инструментов.

Термомеханическая обработка

При использовании этого метода применяют высокую температуру и пластическую деформацию. Различают такие виды термомеханической обработки:

  • Высокотемпературная.
  • Низкотемпературная.
  • Предварительная.

При высокотемпературной обработке деформация металла происходит после разогрева. Сплав подогревают выше температуры рекристаллизации. После чего производится закалка с отпуском.

Высокотемпературная обработка металла:

  • Повышает вязкость.
  • Устраняет отпускную хрупкость.

Структура металла термическая обработка

При низкотемпературной обработке заготовку после охлаждения выдерживают при температуре ниже значения рекристаллизации и выше мартенситного превращения. На этом этапе делают пластическую деформацию. Такая обработка не даёт устойчивости металлу при отпуске, а для её осуществления необходимо мощное оборудование.

Для осуществления термомеханической обработки необходимо применять специальные приспособления для давления, нагрева и охлаждения заготовки.

Структура металла термическая обработка

В чёрной и цветной металлургии широко применяются разные виды термической обработки металлов. Их используют для получения нужных свойств у сплавов, а также экономии средств. Для каждой процедуры и металла подбираются свои значения температуры.

Термическая обработка металла: виды и особенности

Изменить физико-химические свойства стали можно одним путем – нагреть стальную заготовку, а затем ее охладить. Структура материала изменится сразу. Этот процесс называется термообработка. Существует несколько используемых сегодня технологий, которые формируют виды термической обработки стали.

Металлообработка — профильное направление нашей компании. Обращайтесь к нашим специалистам!

Особенности термической обработки

Структура металла термическая обработка

В процессе термообработки меняется структура металла. Но изменения происходят по-разному, и это зависит от скорости охлаждения. Но надо отметить, что химический состав стали не изменяется. И это важный момент.

Для чего она нужна

Сама же сущность этой операции – изменение зерен металла, между которыми могут находиться разные примеси, снижающие качественные характеристики. Сталь после термической обработки становится материалом с требуемыми техническими показателями. К примеру, легко поддается другим видам обработки.

Очень важно соблюдать температурный режим процесса, выдерживать точное время и скорость нагрева и охлаждения. Эти три позиции – важные составляющие термообработки.

При нагреве происходят структурные изменения. При охлаждении весь процесс начинает идти в обратную сторону.

Термическая обработка углеродистых сталей проводится при температурах, близких к критическим точкам. То есть происходят три процесса:

  • кристаллизация металла;
  • переход железа из гаммы в альфа состояние;
  • переход зерен в пластины.

Виды термообработки стали

Режимы термической обработки стали определяются четырьмя параметрами процесса:

  • скорость нагрева;
  • температура нагрева;
  • выдерживание заготовки при требуемой температуре;
  • интенсивность охлаждения.

У разных видов термообработки разные режимы.

Отжиг

Структура металла термическая обработка

С помощью этой операции металл становится структурированным. Внутренние напряжения отсутствуют полностью. Сам процесс производят по следующей технологии:

  • заготовка нагревается до температуры чуть выше критической точки;
  • выдержка проводится при поддержке постоянной температуры;
  • охлаждение с печкой.

Термическая обработка стали отжиг – это несколько режимов, которые называются по-разному:

  • полный;
  • неполный;
  • изотермический;
  • гомогенизация, он же диффузионный;
  • рекристаллизация, он же низкий отжиг.

Закалка

Структура металла термическая обработка

Термическая закалка стали – это придание металлу таких повышенных характеристик как твердость, прочность, износостойкость. При этом увеличивается и предел упругости. Но сильно снижается пластичность. А также предел на сжатие и модуль сдвига.

Основное отличие этого процесса от остальных видов химико-термической обработки стали – быстрое охлаждение. Для этого используется вода или ее солевые растворы, инертные газы или техническое масло.

Отпуск

Эта операция используется для того, чтобы снизить внутри детали внутреннее напряжение. Оно обычно возникает в процессе закалки. То есть после закалки материал становится твердым, но хрупким.

Существует три разновидности отпуска:

  1. Низкий, при котором твердость не снижается. Зато увеличивает вязкость. Нагрев 150-250С. Выдерживание – 1,5 часа. Охлаждение – масло или воздух.
  2. Средний. Твердость снижается, вязкость растет. Нагрев 350-500С. Охлаждение – воздух.
  3. Высокий. Нагрев до 650С. Охлаждение на воздухе.

Нормализация

Этот процесс термической обработки стали формирует мелкие зерна в структуре металла. При этом снижается твердость. Такая характеристика необходима для стальных заготовок, которые предназначены для дальнейшего проката горячим способом.

После нормализации повышаются такие характеристики как:

  • вязкость;
  • прочность;
  • производительность дальнейших видоизменений;
  • сопротивляемость излому.

Сам процесс проводится по следующим режимам:

  • нагрев выше критической точки на 30-50С;
  • выдерживание при этой температуре;
  • охлаждение на воздухе.

Термомеханическая обработка

Структура металла термическая обработка

Это совокупность термообработки и пластической деформации заготовки. К примеру, ковка горячая штамповка или прокат. Существует два режима: высоко- и низкотемпературный.

Первый – это когда пластически измененный металл подвергают закалке. Скорость снижения температуры настолько высокая, что структура материала не успевает рекристаллизоваться. А значит, упрочненная в процессе пластической деформации структура заготовки не изменяется.

Второй – процесс, который проводится точно также. Только при низкой температуре – не более 600С. Именно при таком температурном режиме удается создать упрочненную структуру за счет отсутствия рекристаллизации. После чего также проводится закалка.

Криогенная

Структура металла термическая обработка

Новейшая технология, с помощью которой повышается износостойкость деталей, работающих на износ. Для этого используется температура до минус 272С.

Термическая обработка стали этого типа состоит из трех фаз:

  • охлаждение до требуемой температуры;
  • выдерживание деталей в течение определенного времени;
  • нагрев до комнатной температуры с определенной скоростью.

Назначение термической обработки стали – улучшить технические и эксплуатационные характеристики деталей. На основе последних подбирается режим. А именно скорости нагрева и охлаждения, время выдерживания при максимальных температурах. Комбинация режимов дает возможность улучшить свойства металла в большей степени.

Термическая обработка металла

Термическая обработка металлов — это процесс температурного воздействия на сплав, с целью изменения его структуры и (или) свойств. Термообработка применяется для изменения структуры и свойств как железоуглеродистых сплавов, так и цветных сплавов.

Основные виды термической обработки металлов

Структура металла термическая обработка

Термическая обработка металла представляет собой не только упрочнение. Во многих случаях применяется разупрочняющая термическая обработка или термообработка на определенную структуру. Для смягчения стали перед холодной пластической деформацией (ХПД) в большинстве случаев делается отжиг с полной перекристаллизацией сплава.

Для улучшения обрабатываемости резанием металла применяется нормализация, отжиг на зернистый перлит или улучшение. Отжиг на зернистый перлит применяется и для получения требуемого комплекса механических свойств перед высадкой или холодной штамповкой.

Перед волочением проволоки из некоторых марок сталей делается патентирование на трооститную структуру.

Термическая обработка металлов подразделяется на следующие виды:

1. Объёмная термообработка металла — применяется для получения определенной структуры или свойств по всему сечению детали или заготовки.

  • Основные виды объёмной термической обработки сталей и сплавов:
  • а) Закалка стали (сплава)
  • б) Отжиг и нормализация стали (сплава)
  • в) Отпуск стали или старение сплава
  • 2. Локальная термическая обработка — применяется для получения структуры или свойств в определённом объеме детали или заготовки, при этом термическому воздействию подвергается только определенный объем металла (закалка токами высокой частоты, лазерная закалка, закалка с электроконтактным нагревом)
  • 3. Химико-термическая обработка — применяется для получения структуры или свойств в определённом объеме детали или заготовки, при этом термическому воздействию подвергается весь объем металла (цементация, нитроцементация, азотирование)

Для достижения требований, которые предъявляются к металлу используется множество разновидностей этих видов термообработки. Так например, один только отжиг насчитывает более 10 разновидностей.

Термическая обработка, как способ получения заданного комплекса механических свойств, подразумевает под собой не только высокотемпературное воздействие на металл. Есть определенные группы сталей, для обработки которых применяется так называемая обработка холодом.

Это стали, у которых точка конца мартенситного превращения лежит ниже комнатных температур. Соответственно у этих сталей будет идти превращение А-М и при низких температурах.

К таким сталям относятся: инструментальные стали, обработка холодом которых позволяет получить максимальную твердость и износостойкость; мерительный инструмент, для которого важна размерная стабильность; изделия из стали, которые работают в условиях низких температур.

Читайте также:  Прием цветных металлов меди алюминия

Термообработка стали: основные виды и способы термической обработки, какими параметрами характеризуется режим, методы и технологии процесса

14Ноя

Содержание статьи

Разновидности металлических веществ имеют различную степень прочности, склонность к коррозии и прочим химическим реакциям.

С помощью нагрева можно добиться от заготовки необходимых свойств, улучшить износостойкость, подготовить к дальнейшим процедурам в ходе металлообработки.

В статье расскажем про предварительную термическую обработку деталей из стали – что это такое, ее назначение, какими параметрами характеризуется режим, с какой целью проводят и перечислим основные виды термообработки металлов бывают.

Назначение технологического процесса

Работать можно как с заготовками, так и с готовыми изделиями. У первых снимается внутреннее напряжение после различных типов литья и штамповки, материал становится более пластичным, с ним намного проще работать, особенно резать его. Если обрабатывается целая деталь, то преследуются цели:

  • повышение прочности;
  • защита от преждевременного ржавления;
  • увеличение стойкости к температурным перепадам, становится больше верхний и нижний порог температур, при которых можно использовать предмет;
  • продление потенциальной длительности эксплуатации.

Особенности технологии термической обработки стали: в чем заключается сущность процедуры

Процесс затрагивает не только внешние физические характеристики, но и изнутри изменяет химическое строение.

Меняется форма кристаллической решетки в ходе вторичной кристаллизации сплава, то есть под воздействием высокого жара происходит расплавление, а затем охлаждение и снова застывание, но уже с другими свойствами.

Железо накаляется и происходит смена разряда из категории «альфа» в «гамма», при этом ранее разрозненные частицы объединяются в пластины.

Преимущества технологии

Этот процесс применяется повсеместно на многих предприятиях – каждое второе производство металлической продукции требует теплового воздействия. Это обусловлено достоинствами:

  • Работать можно со сталью, цветными металлами и сплавами – широкий спектр.
  • Увеличение срока годности изделия.
  • Снижение уровня абразивного износа.
  • Намного меньше становится процент брака на производственных цехах.
  • Экономия средств, так как с термообработанной сталью проще проводить ряд манипуляций.

Принципы обработки

Главное правило – время, затраченное на одну деталь равняется длительности нагрева материала в зависимости от его предельной температуры, периоду выдержки и охлаждению. Суммарный подсчет позволяет вычислить итоговое временное значение. Каждый из этих пунктов зависит от:

  • габаритов заготовки;
  • вида металла, подвергаемого термообработке;
  • мощности печи.

От всего этого зависит, как скоро произойдут преобразования.

Классификация и этапы термической обработки

Все разновидности используются с различными целями, с разными материалами. Для этого остается прежней технология – нагрев, выдержка, остужение, но при этом меняется время каждого из этапов. Особенности представлены в видео:

Отпуск

При первичной обработке, например, при литье, все металлы получают внутреннее напряжение – это особый, тесный вид соприкосновения молекул. Напряженность приводит к повышенной хрупкости. Процедура позволяет добиться ударопрочности и снижения жесткости. Есть три подвида.

Низкий

Основная задача – повышение вязкости при той же твердости. Это достигается путем придания внутренней микроструктуры игольчатого или пластиночного типа. Часто применяют для термической обработки режущих деталей, медицинских инструментов. Заготовку нагревают в пределах 150-250 градусов. Выдерживают не менее полутора часов, а затем остужают с помощью воздуха или масла.

Средний

Здесь мартенсит (вид структуры, описанный выше) преобразуется в трустит, что характерно для чугуна. Особенность – высокая дисперсия. При такой же высокой вязкости твердость тоже растет. Это очень важно для элементов, на которые будут возлагаться большие упругие нагрузки. Температурные пределы – от 340 до 500, воздушное охлаждение.

Высокий

Кристаллизация происходит с появлением сорбита. Благодаря ему совершенно ликвидируется напряжение внутри сплава. Такой метод применяется для конструкций, имеющих очень важное значение – в самолетостроении, при строении космических объектов. Температура нагрева – от 450 до 650 градусов.

Отжиг

Операцию проводят для получения требуемой равновесной структуры с минимальной твердостью, с целью дальнейшей металлообработки получаемых изделий резанием. С особенностями вас познакомит видео:

Общее определение и виды

При отливе или прочих первичных процессах обработки помимо напряжения появляются дефекты. Убрать эти изменения и добиться однородной структуры кристаллической решетки можно с помощью следующего алгоритма действий:

  • нагрев – необходимо немного превысить критическую отметку для этой разновидности термообрабатываемой стали;
  • определенный период требуется держать стабильный температурный режим;
  • следует медленно остудить заготовку вместе с печью.

У отжига есть следующие разновидности.

Гомогенизация

Относится к первому роду, когда изменения считаются незначительными. Задача подобной манипуляции – убрать неоднородность структуры, привести ее к однообразию. При этом следует нагревать изделие в температурном режиме от 1000 до 1150 градусов, затем выдерживать около 8-15 часов и постепенно снижать нагрев, охлаждая заготовку кислородом.

Рекристаллизация

Тоже разновидность 1 фазы отжига. Задача процедуры – привести все кристаллы в единый вид, а также снять внутреннее напряжение металла. Существует два подвида:

  • смягчающий – обычно используется в качестве финальной обработки, подразумевает улучшение пластических характеристик;
  • упрочняющий – увеличивает упругость, особенно актуально для закалки пружин.

Температура выбирается в зависимости от сплава, обычно на 100-200 градусов выше, чем точка рекристаллизации. Час или два необходимо поддерживать температурный режим, чтобы потом дать остывать не спеша.

Изотермический отжиг

Цель – достижение высокотемпературной гранецентрированной модификации железа (распад аустенита) для его смягчения. При этом получается более однородная структура изделия. Чаще такой тип металлообработки применяют к небольшим штамповкам, потому что их можно без проблем подвергнуть быстрому охлаждению. Процесс:

  • нагрев на 20-30 градусов больше предела материала;
  • непродолжительное выдерживание;
  • быстрое остывание – это преимущество перед прочими подвидами.

Для устранения напряжений

Это операция удаления, снятия негативного внутреннего состояния излишней твердости, из-за которой металл становится хрупким и недолговечным. Он быстро деформируется от внешних физических воздействий. Процесс подразумевает температуры от 700 до 750, затем небольшое охлаждение до 600 и выдержку до 20 часов, затем под воздействием воздуха медленное остужение.

Отжиг полный

Применяется для создания пластичной, однородной мелкозернистой структуры. Наиболее характерный метод промежуточного воздействия на металлопрокат – после литья, ковки, штамповки и до резания любым способом. Этапы:

  • нагрев на 30-50 больше предела стали;
  • выдерживание;
  • очень медленное остывание вместе с печью – в 60 минут не более 50-150 градусов.

Неполный

Значительные преобразования на уровне кристаллической решетки отсутствуют, но придается твердость ранее пластичным материалам. Это особенно нужно конструкциям, образованным методом сварных соединений, а также инструментам, которым нужна особенная прочность. Способ предполагает температуру около 700, и спустя 20 часов постепенное охлаждение.

Закалка, как основной вид термобработки стали

Очень распространенный метод термической обработки, так как он позволяет сделать изделие менее восприимчивым к сжатию, сдвигу, а также придать ему прочность и долговечность, невосприимчивость к внешним физическим воздействиям. Это происходит за счет придания игольчатой структуры металлу. «Иглами» вещество застывает из-за недостатка легирующих материалов.

Заготовку сильно прогревают, а потом охлаждают максимально быстро, используя внешние источники – воду, масло, раствор с добавлением соли. Из-за скорости в полурасплавленном сплаве не успевают произойти диффузионные процессы. Дешевле всего создавать водяные ванны, но на поверхности могут появиться трещины, масляная среда – самая предпочтительная.

Нормализация

Цели – устранение крупнозернистости, напряженности стали, улучшение качеств для дальнейшей обработки. Задачи и процесс напоминают полный отжиг, есть одно отличие – остывание происходит не в печи с возможностью контролировать температуру, а в условиях обычного воздуха.

Криогенная термообработка

Еще один термальный вид воздействия на металл, но без нагрева. Изделие помещают в холодильную установку, иногда ей является целый цех при крупногабаритных конструкциях. Низкие температуры и последующее согревание снижает риск коррозии, продлевает срок эксплуатации, увеличивая прочность.

Химико-термическая обработка

Второе название – цементация или ХТО. Обрабатывается только внешний слой посредством нанесения на него химикатов в определенном температурном режиме. Среда может быть различной – газ, порошки, жидкости. Чаще всего используют углерод или азот.

Термомеханическое воздействие

ТМО пользовались еще кузнецы в древности. Это любые пластичные деформации (удары, сжатия), производимые посредством нагревания всего изделия или элемента. Его обычно сочетают с закаливанием, то есть после деформирования быстро охлаждают.

Закаливаемость и прокаливаемость стали

Этими показателями определяются результаты всех вышеперечисленных процедур. Первый термин – это твердость, которая напрямую связана с количеством углерода, а второй – это глубина закалки, то есть какой верхний слой был подвергнут изменениям.

Способы охлаждения

Есть несколько сред, в которых можно снимать температуру:

  • воздух;
  • жидкость;
  • расплавленная соль;
  • масло;
  • соляной раствор;
  • комбинирование вышеперечисленных веществ.

Выбирается в зависимости от разновидности термообработки.

Вывод

Это один из самых часто встречаемых на производстве методов металлообработки, без него часто не приступают к горячей штамповке, к резке. Мы указали основные виды и способы термической обработки стали – теперь вы знаете, что к ней не относится и для чего нужна термообработка. А в качестве завершения статьи посмотрим несколько видео:

 Если требуется дополнительная консультация от профессионалов – обращайтесь в компанию «Рокта», мы реализуем ленточнопильные станки и готовы оказать помощь в подборе оборудования, свяжитесь с нами по контактному телефону.

Ссылка на основную публикацию
Adblock
detector