- Немного исторических моментов из истории получения щелочи
- Использование щелочи в окружающей нас среде
- Промышленное применение щелочи
- Моющие средства образованные щелочью
- Щелочь в производстве стекла и керамики
- Литература о щелочи
- Отличительные признаки щелочи
- Почему вещество щелочное?
- Где купить щелочь?
- Авторские права
- Щелочи: понятие, свойства и применение
- Свойства щелочей
- Применение щелочей
- Едкий натр
- Едкое кали
- Гидроксид алюминия
- Гидроокись кальция
- Гидроокись лития
- Гидроокись бария
- Основания. Что это такое? Свойства, примеры, определение
- Названия оснований
- Тривиальные названия некоторых оснований
- По числу гидроксогрупп
- Физические свойства оснований
- Взаимодействие с кислотными оксидами
- Взаимодействие с кислотами
- Взаимодействие с солями
- Термическое разложение
- Взаимодействие амфотерных гидроксидов со щелочами
- Получение оснований
- Взаимодействие металла с водой
- Взаимодействие оксидов щелочных и щелочноземельных металлов с водой
- Электролиз
- Получение нерастворимых оснований при взаимодействии соли со щелочью
- Вопросы для самопроверки
- ПОИСК
- Фармакология, под. ред. Ю. Ф. Крылова и В. М. Бобырева. — Москва, 1999. — 2.5.1.4. Соединения тяжелых металлов
Щелочь (синоним – алкали) — так называется любой из растворимых гидроксидов щелочных металлов, то есть лития, натрия, калия , рубидия и цезия. Щелочи являются сильными основаниями, они вступают в реакцию с кислотами с получением нейтральных солей.
Они едкие и в концентрированном виде являются коррозионными веществами для органических тканей. Термин щелочь также применяется к растворимым гидроксидам таких щелочноземельных металлов, как кальций, стронций и барий, а также к гидроксиду аммония .
Название вещества — щелочь , первоначально применялось к золе сожженных растений, содержащих натрий или калий, из которых можно было выщелачивать оксиды натрия или калия.
Среди всех производимых промышленностью щелочей наибольшая доля таких производств приходится на выработку кальцинированной соды (Na2CO3 -карбонат натрия ) и каустической соды (NaOH-гидроксид натрия ). Следующими по объему производства идут в списке щелочи гидроксид калия (KOH-едкий кали) и гидроксид магния (Mg(OH)2-магния гидрат).
Производство широкого спектра потребительских товаров зависит от использования щелочей на определенном этапе. Кальцинированная и каустическая соды имеют важное значение для производства стекла, мыла, вискозы, целлофана, бумаги, целлюлозы, моющих средств, текстиля, умягчителей воды, в производстве некоторых металлов ( в особенности алюминия), бикарбоната соды, бензина и многих других нефтепродуктов и химических веществ.
Немного исторических моментов из истории получения щелочи
Люди на протяжении столетий используют щелочь, получая ее сначала от выщелачивания (водных растворов) некоторых пустынных земель. До конца 18 века выщелачивание из древесной золы или морской водоросли было основным источником получения щелочей.
В 1775 году Французская Академия наук предложила денежные призы за новые методы производства щелочей.
Премия за кальцинированную соду была присуждена французу Николасу Леблану , который в 1791 году запатентовал процесс превращения хлорида натрия в карбонат натрия.
Лебланский способ производства доминировал в мировом производстве до конца 19-го века, но после первой мировой войны был полностью вытеснен другим методом конверсии соли, который был усовершенствован в 1860-х годах Эрнестом Солве из Бельгии. В конце XIX века появились электролитические методы производства каустической соды, объемы которых быстро росли.
По методу Солве, аммиачно-содовый процесс производства кальцинированной соды протекал следующим образом: поваренная соль в виде сильного рассола химически обрабатывалась для устранения примесей кальция и магния и затем насыщалась рециркулирующим газом аммиака в башнях.
После, аммиачный рассол насыщался газом с использованием газообразного диоксида углерода при умеренном давлении в башне другого типа. Эти два процесса дают бикарбонат аммония и хлорид натрия, двойное разложение которого дает желаемый бикарбонат натрия, а также хлорид аммония.
Затем бикарбонат натрия нагревают до разложения его до необходимого карбоната натрия. Аммиак, вовлеченный в процесс, почти полностью восстанавливается путем обработки хлоридом аммония с известью, с получением аммиака и хлорида кальция.
Восстановленный аммиак затем повторно используют в описанных выше процессах.
Электролитическое производство каустической соды включает электролиз сильного солевого раствора в электролитической ячейке . (Электролиз — это разрушение соединения в растворе в его составляющие с помощью электрического тока для того, чтобы вызвать химическое изменение.
) Электролиз хлорида натрия дает хлор, гидроксид натрия, либо металлический натрий. Гидроксид натрия в некоторых случаях конкурирует с карбонатом натрия в одних и тех же процессах применений. И в любом случае оба являются взаимопревращаемыми с помощью довольно не сложных процессов.
Хлорид натрия может быть
превращен в щелочь одним из двух процессов, причем разница между ними заключается лишь в том, что процесс аммиачно-содовой реакции дает хлор в виде хлорида кальция, соединения с небольшим экономическим значением, тогда как электролитические процессы производят элементарный хлор , который имеет бесчисленное применение в химической промышленности.
В нескольких местах в мире существуют значительные запасы минеральной формы кальцинированной соды, известной как природная щелочь. На таких месторождениях производят большую часть природной щелочи в мире из обширных месторождений в подземных шахтах.
- Природный натрий металлический.
- Прочитайте статью Щелочи (источник «Энциклопедический словарь химика»)и получите больше представления о том что такое щелочь, или посмотрите видеоролик об этом химическом реактиве Щелочи.
Использование щелочи в окружающей нас среде
Щелочь снискала широкое применение в нашей жизни. Благодаря щелочи можно в той или иной форме добиться смягчения воды и удалить из нее примеси, такие как марганец, фториды и органические танины.
В тяжелых отраслях промышленности используют щелочь в виде извести для поглощения и нейтрализации оксидов серы в выбросах в атмосферу, тем самым уменьшая вероятность выпадения кислотных осадков.
Диоксид серы, производимый промышленными предприятиями и выпускаемый в атмосферу, возвращается на землю в виде кислотных дождей или серной кислоты. Такие территории, подвергшихся воздействию кислотных дождей, обрабатываются с помощью авиации препаратами, в состав которых входит щелочь.
Это позволяет контролировать и нейтрализовывать критический уровень рН воды и почвы на участках, где произошли такие техногенные выбросы. Внесение щелочи в отходы и сточные воды, поддерживая правильный уровень рН в окислительных процессах при их разложении.
Стабилизирует образования осадка в сточных водах и уменьшает запах или образования патогенных бактерий. Обработанный негашеной известью ил из сточных водоемов, соответствует экологическим нормам, что делает его пригодным в дальнейшем в использовании в качестве удобрения на сельскохозяйственных землях.
Промышленное применение щелочи
В промышленных и горных работах применение щелочей в сточных водах помогает нейтрализовать вредные соединения и произвести их очистку. Обработка избыточной щелочью, повышает рН воды до 10,5-11 и может дезинфицировать воду и удалять тяжелые металлы.
Щелочи, такие как известь, являются ключевыми в химическом производстве карбида кальция, лимонной кислоты, нефтехимии и магнезии. В бумажной промышленности карбонат кальция является каустифицирующим агентом для отбеливания.
Сталелитейная промышленность зависит от извести в качестве компонента для удаления примесей, таких как газообразный монооксид углерода, кремния, марганца и фосфора.
Моющие средства образованные щелочью
Щелочные моющие средства помогают при очистке поверхностей с сильными загрязнениями. Эти экономичные, водорастворимые щелочи с рН от 9 до 12,5 могут нейтрализовать кислоты в различных типах грязи и отложениях.
Щелочь в производстве стекла и керамики
Щелочь является основным сырьем в производстве стекла.
Известняк, а также песок, кальцинированная сода, известь и другие химикаты, обжигаются при чрезвычайно высоких температурах и превращаются в расплавленную массу.
Стеклодувы и гончары используют щелочи для глазурей и флюсов, которые реагируют с кислотами с образованием силикатов (стекла) при нагревании. Концентрированные щелочи создают более насыщенный цвет в глазури.
Литература о щелочи
В книге И. Нечаева «Рассказы об элементах», изданной в 1940 году, доступным и понятным языком для обывателя рассказывается о том, что такое щелочь и чем она отличается от другого едкого вещества — кислоты. Выдержка из текста:
«Среди многочисленных веществ, которыми химики с давних времен пользовались в своих лабораториях, почетное место всегда занимали едкие щелочи — едкое кали и едкий натр.
Сотни различных химических реакций осуществляются в лабораториях, на заводах и в быту при участии щелочей.
С помощью едких кали и натра можно, например, сделать растворимыми большинство нерастворимых веществ, а самые сильные кислоты и удушливые пары можно благодаря щелочам лишить всей их жгучести и ядовитости.
Едкие щелочи — очень своеобразные вещества. На вид это беловатые, довольно твердые камни, ничем как будто не примечательные. Но попробуйте взять едкое кали или натр и зажать его в руке. Вы почувствуете легкое жжение, почти как от прикосновения к крапиве.
Долго держать в руке едкие щелочи было бы нестерпимо больно: они могут разъесть кожу и мясо до кости. Вот почему их называют «едкими», в отличие от других, менее «злых» щелочей — всем известных соды и поташа.
Из соды и поташа, кстати сказать, почти всегда и по лучались едкие натр и кали.
У едких щелочей сильнейшее влечение к воде. Оставьте кусок совершенно сухого едкого кали или натра на воздухе. Через короткое время на его поверхности неизвестно откуда появится жидкость, потом он весь станет мокрым и рыхлым и под конец расползется бесформенной массой, как кисель.
Это из воздуха щелочь притягивает к себе пары воды и образует с влагой густой раствор. Кому впервые приходится погрузить пальцы в раствор едкой щелочи, тот с удивлением заявляет: — Как мыло! И это совершенно правильно. Щелочь — скользкая, как мыло. Больше того: мыло потому и «мыльно» на ощупь, что его изготовляют с помощью щелочей.
Раствор едкой щелочи и на вкус напоминает мыло.
Но химик узнаёт едкую щелочь не по вкусу, а по тому, как это вещество ведет себя с краской лакмус и с кислотами.
Бумажка, про питанная синей краской лакмус, мгновенно краснеет, когда ее опус кают в кислоту; а если этой покрасневшей бумажкой дотронуться до щелочи, то она тотчас же опять становится синей. Едкая щелочь и кислота не могут мирно существовать рядом ни одной секунды.
Они тотчас же вступают в бурную реакцию, шипя и разогреваясь, и уничтожают друг друга до тех пор, пока в растворе не останется ни крупинки щелочи или ни капли кислоты. Только тогда наступает успо коение. Щелочь и кислота «нейтрализовали» друг друга, говорят в таких случаях.
От соединения их между собой получается «нейтральная» соль — ни кислая, ни едкая. Так, например, от соединения жгучей соляной кислоты с едким натром получается обыкновеннейшая поваренная соль.»
Отличительные признаки щелочи
Из выше прочитанного мы уже знаем, что противоположностью щелочи является кислота. Вместо горького вкуса присущего щелочи, кислоты, как правило, имеют кислый вкус. Примером могут служить пищевые продукты, такие как: лимоны или фруктовый уксус (разбавленный), посути являющимися кислотными продуктами и обладающими в составе кислотой. Мы можем определить, является ли вещество щелочью или кислотой, зная ее рН. Уровень рН измеряется с помощью шкалы рН ; эта шкала колеблется от 0-14, и эти цифры показывают нам, является ли вещество щелочью или кислотой. Чистая дистиллированная вода имеет уровень pH 7 и называется нейтральным веществом (находится прямо посредине шкалы). Любое вещество, которое имеет рН выше 7, представляет собой щелочное вещество, которое также может называться щелочью. И, любое другое вещество, которое имеет рН ниже 7, представляет собой кислоту.
Почему вещество щелочное?
Таким образом, нам уже известно, что рН уровень представляет собой шкалу, значения которой колеблятся от 0-14 и указывают, является ли вещество щелочью или кислотой. Однако мы действительно не знаем, почему. Давайте рассмотрим этот вопрос более детально.
Уровень рH вещества зависит от того, как атомы расположены и объединены в веществе. Чистая вода находится прямо в середине шкалы и имеет pH 7. Это означает, что она содержит равное количество атомов водорода (H +) и гидроксидных атомов (OH-). Когда вещество имеет больше атомов водорода (Н +), это кислота. Когда вещество имеет больше гидроксидных атомов (OH-), оно является щелочным.
Где купить щелочь?
Купить щелочь в Новосибирске со степенью очистки ЧДА (чистая для анализов) в магазине «Для дела» можно на странице заказов: едкий натр NaOH или едкий кали KOH. Для иногородних покупателей товар может быть отправлен Почтой РФ или транспортными компаниями.
Авторские права
Права на данную статью принадлежат администратору сайта dlyadela.ru : Фарафонову Константину Владимировичу. Для подтверждения авторских прав была произведена процедура депонирования материалов опубликованного контента.
Любое копирования материалов этой статьи не допускается, без письменного согласия правообладателя. Оценочная стоимость контета страницы https://dlyadela.ru/page/scheloch установлена в размере 100 долларов США. Лицо, несанкционированно осуществившее частичное или полное копирование представленных на странице материалов и разместившее их в последствие на сторонних интернет-ресурсах, выражает свое согласие выплатить правообладателю пятикратную оценочную стоимость украденного контента. Если вы желаете использовать материалы нашего сайта, пожалуйста, свяжитесь с нами.
Щелочи: понятие, свойства и применение
- Щелочи — это водорастворимые сильные основания. В настоящее время в химии принята теория Брёнстеда — Лоури и Льюиса, которая определяет кислоты и основания. В соответствии с этой теорией, кислоты — это вещества, способные отщеплять протон, а основания — отдавать электронную пару OH−. Можно сказать, что под основаниями понимают соединения, которые при диссоциации в воде образуют только анионы вида OH−. Если совсем просто, то щелочами называют соединения, состоящие из металла и гидроксид-иона OH−.К щелочам принято относить гидроксиды щелочных и щелочно-земельных металлов.Все щелочи — это основания, но не наоборот, нельзя считать определения «основание» и «щелочь» синонимами. Правильное химическое название щелочей — гидроксид (гидроокись), например, гидроокись натрия, гидроксид калия. Часто употребляются также названия, которые сложились исторически. Ввиду того, что щелочи разрушают материалы органического происхождения — кожу, ткани, бумагу, древесину, их называют едкими: например, едкий натр, едкий барий. Однако понятием «едкие щелочи» химики определяют гидроксиды щелочных металлов — лития, натрия, калия, рубидия, цезия.
Свойства щелочей
Щелочи — твердые вещества белого цвета; гигроскопичные, водорастворимые. Растворение в воде сопровождается активным выделением тепла. Вступают в реакции с кислотами, образуя соль и воду. Эта реакция нейтрализации является важнейшей из всех свойств щелочей. Кроме этого, гидроксиды реагируют с кислотными оксидами (образующими кислородосодержащие кислоты), с переходными металлами и их оксидами, с растворами солей.Гидроксиды щелочных металлов растворяются в метиловом и этиловом спиртах, способны выдерживать температуры до +1000 °С (за исключением гидроксида лития).Щелочи — активные химические реагенты, поглощающие из воздуха не только водяные пары, но и молекулы углекислого и сернистого газа, сероводорода, диоксида азота. Поэтому хранить гидроксиды следует в герметичной таре или, например, доступ воздуха в сосуд со щелочью организовать через хлоркальциевую трубку. В противном случае хим.реактив после хранения на воздухе будет загрязнен карбонатами, сульфатами, сульфидами, нитратами и нитритами.Если сравнивать щелочи по химической активности, то она увеличивается при движении по столбцу таблицы Менделеева сверху вниз.Концентрированные щелочи разрушают стекло, а расплавы щелочей — даже фарфор и платину, поэтому растворы щелочей не рекомендуется хранить в сосудах с пришлифованными стеклянными пробками и кранами, так как пробки и краны может заклинить. Хранят щелочи, обычно, в полиэтиленовых емкостях.Именно щелочи, а не кислоты, вызывают более сильные ожоги, так как их сложнее смыть с кожи и они проникают глубоко в ткань. Смывать щелочь надо неконцентрированным раствором уксусной кислоты. Работать с ними необходимо в средствах защиты. Щелочной ожог требует немедленного обращения к врачу!
Применение щелочей
— В качестве электролитов.— Для производства удобрений.— В медицине, химических, косметических производствах.— В рыбоводстве для стерилизации прудов.
В магазине «ПраймКемикалсГрупп» вы найдете самые востребованные щелочи по выгодным ценам.
Едкий натр
Самая популярная и востребованная в мире щелочь.
Применяется для омыления жиров в производстве косметических и моющих средств, для изготовления масел в процессе нефтепереработки, в качестве катализатора и реактива в химических реакциях; в пищепроме.
Едкое кали
Применяется для производства мыла, калийных удобрений, электролитов для батареек и аккумуляторов, синтетического каучука. Также — в качестве пищевой добавки; для профессиональной очистки изделий из нержавеющей стали.
Гидроксид алюминия
Востребован в медицине как отличный адсорбент, антацид, обволакивающее средство; ингредиент вакцин в фармацевтике. Кроме этого, вещество применяется в очистных сооружениях и в процессах получения чистого алюминия.
Гидроокись кальция
Популярная щелочь с очень широким спектром применения, которую в быту знают под названием «гашеная известь». Используется для дезинфекции, смягчения воды, в производстве удобрений, едкого натра, «хлорки», строительных материалов. Применяется для защиты деревьев и деревянных сооружений от вредителей и огня; в пищепроме как пищевая добавка и реактив при производстве сахара.
Гидроокись лития
Гидроокись бария
Применяется в химпроме как катализатор, а также в пищепроме для очистки жиров, сахара.
В аналитической химии применяются фиксаналы щелочей, которые можно купить у нас:— стандарт-титр Натрий гидроокись (Натрий гидроксид) 0,1 H— стандарт-титр Калий гидроокись (Калий гидроксид) 0,1 Н
Основания. Что это такое? Свойства, примеры, определение
- Основания (гидроксиды) — это сложные вещества, которые состоят из катиона металла и гидроксильной группы (OH).
- Общая формула оснований: Me(OH)n, где Me — химический символ металла, n — индекс, который зависит от степени окисления металла.
- Примеры оснований: NaOH, Ba(OH)2, Fe(OH)2.
Названия оснований
Названия гидроксидов строятся по систематической номенклатуре следующим образом:
-
Пишем слово «гидроксид».
-
Указываем название второго химического элемента в родительном падеже.
-
Если второй элемент имеет переменную валентность, то указываем валентность элемента в этом соединении в скобках римской цифрой.
- Примеры названий оснований:
- Ni(OH)2 — гидроксид никеля (II);
- Al(OH)3 — гидроксид алюминия.
У некоторых оснований существуют и тривиальные названия. Собрали их в таблице.
Тривиальные названия некоторых оснований
KOH | Едкое кали |
NaOH | Едкий натр, каустическая сода |
Ca(OH)2 | Гашеная известь |
Ca(OH)2 (прозрачный раствор) | Известковая вода |
Ca(OH)2 (мутный раствор) | Известковое молоко |
Ba(OH)2 | Едкий барит |
В зависимости от растворимости в воде выделяют:
- щелочи. Эти основания растворимы в воде: NaOH, KOH, Ba(OH)2 и другие. Ca(OH)2, хотя малорастворим, тоже относится к щелочам из-за своей едкости;
- нерастворимые основания. К таким основаниям относятся Fe(OH)2, Cu(OH)2 и другие;
- амфотерные гидроксиды. К амфотерным относятся те основания, которые образованы металлами со степенью окисления +3 или +4. Эти основания отличаются тем, что проявляют как основные свойства, так и кислотные.
Также есть основания, которые относятся к амфотерным, но образованы металлом с иной степенью окисления: Zn(OH)2, Pb(OH)2, Sn(OH)2, Be(OH)2.
Напомним, что растворимость мы проверяем по таблице растворимости кислот и оснований в воде.
По числу гидроксогрупп
В зависимости от количества гидроксильных групп, способных замещаться на кислотный остаток, выделяют следующие виды оснований:
- однокислотные: KOH, NaOH;
- двухкислотные: Fe(OH)2, Ba(OH)2;
- трехкислотные: Al(OH)3, Fe(OH)3.
Физические свойства оснований
Основания при обычных условиях — это твердые кристаллические вещества без запаха, нелетучие, чаще всего белого цвета. В таблице приведены основания, которые имеют иную окраску.
Белый |
|
Желтый | Гидроксид меди (I) CuOH |
Светло-розовый (при соприкосновении с кислородом воздуха — коричневый) | Гидроксид марганца (II) Mn(OH)2 |
Красно-коричневый | Гидроксид железа (III) Fe(OH)3 |
Белый с зеленоватым оттенком (темнеет при соприкосновении с кислородом воздуха) | Гидроксид железа (II) Fe(OH)2 |
Светло-зеленый | Гидроксид никеля (II) Ni(OH)2 |
Синий | Гидроксид меди (II) Cu(OH)2 |
Гидроксид-ионы, которые содержатся в растворе щелочи, взаимодействуют с индикатором, образуя новые соединения. Признак реакции — окраска раствора.
Взаимодействие с кислотными оксидами
Щелочи вступают в реакцию с любыми кислотными оксидами. Нерастворимые основания взаимодействуют только с кислотными оксидами, которые соответствуют сильным кислотам.
Кислотный оксид + основание = соль + вода
Например: N2O5 + 2NaOH = 2NaNO3 + H2O
Взаимодействие с кислотами
Щелочи вступают в реакцию со всеми кислотами. Нерастворимые основания могут взаимодействовать только с сильными кислотами.
- Основание + кислота = соль + вода
- Например: Ba(OH)2 + 2HNO3 = Ba(NO3)2 + 2H2O
- Взаимодействие основания с кислотой называют реакцией нейтрализации — это частный случай реакции обмена.
Взаимодействие с солями
Основания взаимодействуют с растворимыми солями по обменному механизму. В результате такой реакции должен выделиться осадок или газ (CO2, SO2, NH3).
Основание + соль = другое основание + другая соль
Например: KOH + MgSO4 = Mg(OH)2↓ + K2SO4
Термическое разложение
При нагревании нерастворимые основания разлагаются на соответствующий оксид (степень окисления металла остается неизменной) и воду.
Нерастворимое основание
оксид металла + вода
Взаимодействие амфотерных гидроксидов со щелочами
Продукты реакции зависят от условий ее проведения.
-
- При сплавлении двух оснований:
- Амфотерный гидроксид (тв) + щелочь (тв) = средняя соль + вода
- Например: Al(OH)3 + KOH = KAlO2 + 2H2O
-
- Если реакция проводится в растворе:
- Амфотерный гидроксид (р-р) + щелочь (р-р) = комплексная соль
- Например: Al(OH)3 + KOH = K[Al(OH)4]
Получение оснований
Взаимодействие металла с водой
- Активные металлы (металлы групп IA и IIA, кроме Be и Mg) активно взаимодействуют с водой при обычных условиях с образованием щелочей.
- Нерастворимые основания данным способом получить невозможно, за исключением Mg(OH)2.
- Металл + вода = гидроксид металла + водород
- Например: Na + H2O = NaOH + H2↑
- Гидроксид магния можно получить данным способом, но только при нагревании:
Взаимодействие оксидов щелочных и щелочноземельных металлов с водой
- Этим способом получают только растворимые в воде основания.
- Оксид металла + вода = щелочь
- Например: CaO + H2O = Ca(OH)2
Электролиз
- Гидроксид натрия и калия в промышленности получают с помощью электролиза — через раствор хлорида калия проводят постоянный электрический ток:
- KCl + H2O = KOH + H2↑ + Cl2↑
- Электролиз хлорида натрия протекает по аналогичной схеме.
Получение нерастворимых оснований при взаимодействии соли со щелочью
Растворимая соль + щелочь = нерастворимое основание + другая соль
Например: Cu(NO3)2 + 2KOH = Cu(OH)2↓ + 2KNO3
Вопросы для самопроверки
-
Вспомните определение оснований и приведите 2 примера этих веществ.
-
Какие виды оснований существуют? Чем они отличаются?
-
К какому виду оснований относится Zn(OH)2?
-
Взаимодействуют ли основания с основными оксидами? Приведите примеры веществ, с которыми основания вступают в реакцию.
-
Можно ли получить гидроксид алюминия с помощью взаимодействия алюминия с водой?
Основания и другие темы по химии изучать интереснее, когда понимаешь, как применять знания в реальной жизни. На онлайн-курсах по химии в Skysmart преподаватели приводят яркие примеры: от процессов в природе до использования химических реакций в промышленности. Приходите учиться — вводный урок бесплатный!
Летняя перезагрузка
Бесплатный телеграм-марафон для мам и пап. Узнайте, как провести семейное лето с пользой, и подготовьтесь к нему уже сейчас!
ПОИСК
Активный ил богат азотом, фосфором, микроэлементами (медь, молибден, цинк). После термической обработки его можно использовать как удобрение. Но необходимо учитывать и возможные отрицательные последствия его применения в связи с наличием солей тяжелых металлов и т. п.
Извлечение ионов тяжелых металлов и других вредных веществ из сточных вод гарантирует получение безвредной биомассы, которую можно использовать в качестве кормовой добавки или удобрения. В случае образования больших объемов осадков сточных вод, содержащих соли тяжелых металлов, целесообразно сжигание осадков.
В ФРГ предложен способ получения заменителей нефти и каменного угля на основе активного ила. Подсчитано, что количество тепла, получаемое при сжигании 350 тыс. т активного ила, эквивалентно его количеству, получаемому при сжигании 350 тыс. баррелей нефти и 175 тыс. т угля.
Ведутся поиски и других путей утилизации осадков и активного ила, образующихся при очистке сточных вод. [c.110] Перекись водорода смешивается в любых отношениях с водой, этиловым и метиловым спиртами.
Одним из недостатков концентрированной перекиси водорода является высокая (—0,89° С), температура замерзания, что затрудняет ее эксплуатацию в зимних условиях. Маловодная перекись водорода термически нестабильна и очень чувствительна к различного рода загрязнениям.
Попадание в перекись различных примесей (пыли, ржавчины, солей тяжелых металлов и др.) приводит к резкому увеличению скорости разложения перекиси водорода и ее сильному разогреву. Лучшей гарантией стабильности перекиси водорода является обеспечение ее чистоты как при производстве, так и в процессе хранения, транспортировки и перекачек.
[c.126]
В щелочной среде кислород воздуха вызывает постепенное превращение меркаптанов в соответствующие дисульфиды [6,7,13,15]. С солями тяжелых металлов меркаптаны количественно реагируют с образованием меркаптидов. На этом основана методика анализа меркаптанов в жидких углеводородах методом потенциометрического титрования аммиакатом серебра [7. [c.9]
Наиболее простым окислителем является кислород воздуха. Отверждение легко протекает в присутствии щелочных активаторов, например дифенилгуанидина или солей тяжелых металлов.
Широкое применение в качестве вулканизующих агентов нашли двуокиси свинца, марганца и теллура. Для обеспечения полноты вулканизации обычно применяют избыток отвердителя [10, с. 477].
Все неорганические окислители требуют присутствия следов влаги для инициирования этого процесса. [c.562]
Слишком сильные изменения окружающей среды, однако, могут привести к потере белком его свойств из-за чрезмерного изменения формы молекулы. Тепло, спирт или другие растворители, соли тяжелых металлов или изменение кислотности могут изменить форму белка из-за разрушения связей между цепями (рис. VII.11). В некоторых случаях изменения, называемые дена- [c.455]
Вещества, снижающие активность катализатора вследствие его отравления , называют каталитическими (контактными) ядами. Незначительное количество контактного яда может сильно замедлить или полностью подавить действие катализатора.
Для никелевых и платиновых каталпзаторов ядами служат сероводород, соединения мышьяка, окись углерода, галогены для алюмосиликатных — вода и водяной пар, сернистые и азотистые соединения, мышьяк и соли тяжелых металлов, содержащиеся в крекируемом сырье и в применяемых реагентах.
Действие каталитических ядов заключается в химической адсорбции их на поверхности катализатора, особенно на его активных центрах они как бы. обволакивают катализатор, затрудняя доступ молекул реагирующих веществ к его поверхности. [c.18]
Окисление парафина воздухом при повышенных температурах значительно ускоряется в присутствии катализаторов [58, 59]. В качестве катализаторов применяют соли тяжелых металлов высших жирных кислот, а также высокомолекулярные спирты и кетоны, выделенные из продуктов окисления парафина. В этом случае окисление идет более глубоко, и в качестве основных продуктов реакции образуются карбоновые кислоты и нейтральные карбонильные соединения. [c.60]
Соли тяжелых металлов. Катализаторы, как синтетические, так и природные, существенно изменяют избирательность при переработке сырья с высоким содержанием тяжелых металлов, главным образом никеля, меди и ванадия.
Эти металлы, отлагаясь на поверхности катализатора, превращаются в каталитически активные окислы и ведут себя как катализаторы дегидрирования увеличивается выход кокса и малополезных газов, снижается выход бензина и легкого крекинг-газойля.
Снижение активности является результатом спекания катализатора вследствие огромного выделения тепла в зоне вокруг адсорбированного металла во время регенерации и уменьшения удельной поверхности по мере закрытия пор. [c.21]
Для всех природных асфальтов характерна способность переходить в раствор при обработке некоторыми органическими растворителями и образовать по удалении его черные хрупкие вещества различной (до 2) твердости.» Хорошая растворимость в одних веществах и весьма ограниченная в других не раз являлась базисом неточных аналитических приемов.
Асфальты плавятся при различных температурах Б зависимости от содержания маслообразных примесей. Выше других (около 80°) плавятся естественные и много ниже дешевые искусственные продукты. При перегонке они образуют непредельные дестиллаты, дающие разнообразные красочные реакции и осадки с Солями тяжелых металлов. [c.
355]
Большое влияние на процесс алкилирования оказывают примеси, имеющиеся в сырье. Обычно в применяемых промышленных бутан-бутиленовых фракциях присутствуют диолефины (0,2—1,5%). Опыт работы промышленных установок алкилирования показал, что при таком сырье дополнительно расходуется кислоты 20 г/г диолефина [106].
Для снижения расхода кислоты необходима очистка сырья от диолефинов. Известно много методов их выделения [129] химические, основанные на способности диолефинов образовывать комплексы с солями тяжелых металлов (Си, Ag и др.
), физико-химические (избирательная адсорбция и экстракция растворителями —диметилформамидом, N-метилпирролидоном, азеотропная и экстрактивная перегонка и др.). [c.150]
В растворе углеводородов соли тяжелых металлов находятся в недиссоциированной форме. В отсутствие полярных молекул молекулы солей ассоциируются в мицеллы [29]. Средний размер мицелл тем больше, чем выше концентрация соли в растворе.
Например, степень ассоциации стеариновокислой меди в толуоле при комнатной температуре 6,4 при ее концентрации ОД г/кг раствора и 7,1 при концентрации 0,26 г/кг. Мицеллы образуются из-за диполь-дипольного притяжения частиц, и чем выше дипольный момент соли, тем выше степень ассоциации [29].
В результате образования полярных продуктов в окисляющемся углеводороде степень ассоциации молекул соли снижается, поскольку появляются комплексы типа соль — продукт.
Вместе с тем эти продукты конкурируют с ROOH как лигандом в координационной сфере металла, поэтому при накоплении продуктов окисления скорость каталитического распада ROOH на радикалы снижается. [c.193]
Реагирует с растворами солей тяжелых металлов с образованием труднорастворимых солей — сульфидов-, горит на воздухе голубоватым пламенем [c.161]
Полученный ацетальдегид окисляется в уксусную кислоту в жидкой фазе кислородом в присутствии солей тяжелых металлов (Мп, Со, Ре, V и др.) [c.323]
Как известно, при действии щелочей на соли тяжелых металлов в водном растворе выпадают осадки нерастворимых гидроксидов например [c.237]
Окисление о-ксилола проводится кислородом воздуха в каскаде реакторов в присутствии органической кислоты и соли тяжелого металла, напри.мер ацетата кобальта. [c.182]
В г. Барнауле внедрен электрокоагулятор для очистки сточных вод, содержащих взвешенные частицы, нефтепродукты и незначительные примеси солей тяжелых металлов.
Очистные сооружения состоят из электрокоагулятора, горизонтального отстойника, скребковой тележки. Производительность 250 м /ч, напряжение на электродах 12 В, удельный расход электроэнергии 0,78 кВт ч/м , время отстаивания 1 ч.
Условно-экономический эффект 209 тыс. рублей. [c.66]
Действие на диазосоединение солей тяжелых металлов также ведет к выделению азота и, кроме того, к осаждению тяжелого металла. Природа других продуктов этой реакции не установлена. [c.181]
Присоединение идет более полно и легко в присутствии солей тяжелых металлов железо, висмут), нанесенных на пемзу или асбест. [c.144]
Извлечение меркаптанов окислами и солями тяжелых металлов [c.112]
В зависимости от того, какие продукты хотят получать. Окисление ведут воздухом в периодически действующих реакторах из нержавеющей стали при 100—180° и 10—20 ama.
В качестве катализаторов, инициирующих реакцию окисления, применяют соли тяжелых металлов и высших кислот, а также спирты и кетоны высокого молекулярного веса, полученные в результате предыдущей операции.
При этих условиях кислород воздуха полностью вступает в реакцию. [c.74]
Нормальные жирные кислоты с длинной цепью получают из сырья нефтяного происхождения, а именно из твердого парафина окислением воздухом (гл. 4, стр. 74).
Такие кислоты можно использовать для производства высших жирных спиртов нормального строения при этом либо каталитически гидрируют сложные эфиры, либо соли тяжелых металлов этих кислот подвергают действию водорода при высоких температуре и давлении [19].
Этерификацией синтетических высших кислот с глицерином, полученным из пропилена (гл. 10, стр. 179), можно изготовить жир полностью искусственного происхождения. В Германии, исходя из синтетических Си—С12-кислот, производили этим способом синтетическое масло.
Последнее в некоторых отношениях имеет преимущество перед натуральным маслом, например синтетическое масло рекомендуют в пищу диабетикам [20]. [c.341]
КИСЛОТНОСТЬ среды или присутствие солей тяжелых металлов, которые образуют нерастворимые осадки с моющими средствами обычного типа. [c.362]
Особенно чувствительным становится ускоряющее действие поверхности на разложение перекиси водорода тогда, когда стенки сосудов, в которых она хранится, являются шероховатыми. Например, 38%-ная Н2О2 может быть нагрета в полированной платиновой чашке до 60 °С, тогда как в исцарапанной разложение уже наступает при обычной температуре.
Ускоряющее влияние твердой ловерхности на разложение перекиси возрастает при прибавлении солей тяжелых металлов, например сульфатов марганца или меди. Особенно активными являются азотнокислое серебро, сернокислая медь и уксуснокислый свинец. Уголь также действует разлагающе на перекись водорода.
Прп этом каталитическая актив-юность его зависит от пористости п величины его поверхности. [c.122]
Керосиновые кислоты при обыкновенном давлении и при температуре 360° С почти полностью пёрегонДются. Отделенные от фенолов и смолистых веществ и перегнаннрхе нафтеновые кислоты представляют собой слегка желтоватые я идкости с неприятным запахом.
Очищенные таким образом йизщие нафтеновые кислоты дают щелочные и щелочноземельные соли.
Соли щелочных металлов и серебряные хорошо растворимы в вОДе, щелочноземельные — плохо соли тяжелых металлов в воде не растворимы, но растворяются в углеводородах соли щелочных металлов растворимы в спирте и обладают моющей способностью. [c.96]
Эта реакция может быть объясняет, почему для докторского раствора нужно меньше серы, чем этого треброт уро внеиия (10) и (П).. но да ке временное образование перекиси водорода в присутствии соли тяжелого металла неправдоподобно. Конечно проще выглядит вся сумма последних реакций в присутствии таких окислителей как гипохлориты. [c.184]
Продажные сульфокислоты имеют вид густой, почти черной, вязкой жидкости или почти твердого вещества. Они легко омеши-ваются с водой во всех пропорциях, но из растворов выделяюггся обратно минеральными кислотами (крепкими).
Щелочные соли сульфокислот в воде растворимы и способны высаливаться щелочами или концентрированными растворами солей. Щелочноземельные соли и соли тяжелых металлов мало растворимы в воде, но растворимы в некоторых органических веществах.
[c.325]
Селективность стеклянных мембран может быть повышена изменением pH раствора или добавлением в раствор солей тяжелых металлов [87]. Так, при увеличении pH от 6 до 10 селективность мембраны по 0,03 М раствору МаС1 увеличилась от 10 до 35%. Добавка 0,051 М раствора ТЬСи в 0,03 М раствор КаС1 повысила селективность пористой стеклянной пластины с 6 до 63%. [c.74]
Однако некоторые экспериментальные данные прямо свидетельствуют об отсутствии в нефтях сколько-нибудь заметных количеств солей тяжелых металлов, в частности ванадия и никеля.
Так обработка нефтей кислотами и щелочами в условиях, полностью гарантирующая разложение солей органических кислот, как правило, не приводит к изменению содержания ванадия и никеля [830, 890].
Однако описаны и случаи необычно легкой гид-ролизуемости ванадийсодержащих нефтяных соединений [891], что авторы прямо связывают с солевой формой нахождения ванадия. [c.163]
Металлорганические катализаторы общей формулы МК (К — алкильная группа) применяют обычно в комплексе с солями тяжелых металлов, например Т1С1з и ИСЬ. [c.28]
В отсутствие кислородя и солей тяжелых металлов п растворах кислоты золото, платина, палладий обладают высокой коррозионной стойкостью. [c.842]
Окисление жидких углеводородов воздухом. В промышленности органического синтеза широко применяют жидкофазное окисление углеводородов воздухом, которое катализируется растворенными солями тяжелых металлов.
Эти процессы часто проводятся под давлением в несколько десятков атмосфер.
В определенных условиях возникает опасность обраговапия взрывчатых воздушных смесей, однако при соответствующем выборе регламента на всем протяжении технологического цикла газовая фаза может оставаться невзрывчатой. [c.70]
Сероводород может быть осажден в виде сернистого кадмия в кислой среде. Тиосульфат натрия (гипосульфит) разрушается в кислой среде. Выпадающая при этом сера должна бьсть отфильтрована. Меркаптаны могут быть осаждены солями тяжелых металлов, в частности меди. [c.796]
Некоторые соли тяжелых металлов нафтеновых кислот, в частности нафтенаты меди, растворимы в неполярных растворителях и поэтому могут применяться в виде растворов. Качественная реакция Харичкова на нафтеновые кислоты [20] основана на свойстве нафтенатов меди при растворении в петролейном эфире давать зеленое окрашивание.
Нафтенаты тяжелых металлов способны растворяться в нашатырном спирте в виде комплексных аммиачных солей. Этим свойством пользуются, чтобы высадить в виде пленки нерастворимые нафтенаты путем нейтрализации или упаривания их аммиачных растворов. Особенно большое и важное применение получили нафтенаты алюминия.
Раствор их в скипидаре используется в качестве лака для покрытия поверхности дерева и металлов. Способность нафтената алюминия диспергировать в углеводородах обеспечила ему успешное применение в качестве наполнителя резины, а затем и в качестве одного из компонентов рецептур напалма (вязких зажигающих композиций) [21].
[c.313]
В растворах окислительных солей тяжелых металлов, например, РеС1з и Реа(504)з. [c.330]
Тиофаны представляют собой жидкости с неприятным запахом, они довольно устойчивы при перегонке и не обладают корродирующим действием на металлы. Тиофаны впервые открыты были Мебери и Кайлем в 1905 г. в канадской нефти нри разложении водой кислого гудрона, в котором тиофаны находились в растворе.
Низшие представители, подобно ациклическим сульфидам, дают комплексные соединения с солями тяжелых металлов. Тиофаны, выделенные Мебери, обладают несколько отличными физическими свойствами по сравнению с синтетическими веществами и вероятно не являются индивидуальными веществами.
Затем были выделены из разных нефтей низшие тиофаны, в структуре которых не может быть сомнений (табл. 67). [c.175]
Установлено, что образование оксикислот растет с глубиной окисления, поэтому в настоящее время окисление углеводородов проводят лишь на 20—30%, в результате чего образуются почти исключительно жирные карбоновые кислоты.
По одному из многочисленных методов рекомендуется проводить окисление воздухом при 100° в течение 24 час. в присутствии солей тяжелых металлов, что дает смесь из 30% жирных карбоновых кислот и 70% неокислен-ных углеводородов.
Повышение температуры выше 100° нежелательно, так как в этом случае полученный продукт представляет смесь жидких и твердых карбоновых кислот с оксикислотами и их производными—лактидами, лактонами и эстолидами.
Эту смесь необходимо обрабатывать едким натром и содой при 300—400° под давлением в результате конверсии оксикислот и их производных повышается выход монокарбоновых кислот. [c.219]
Пропаргиловый спирт кипит при 14—115 будучи производным ацетилена, он обра.зует труднорастворимые соли тяжелых металлов, из которых характерны. и являются белая взрывчатая чувствительная к действию света серебряная соль и желтая соль одновалентной меди. [c.144]
Фармакология, под. ред. Ю. Ф. Крылова и В. М. Бобырева. — Москва, 1999. — 2.5.1.4. Соединения тяжелых металлов
◄ Листать назад Оглавление Листать вперед ►
Ионы тяжелых металлов денатурируют белки клеток (включая микробные) и тканей, образуя альбуминаты.
Фармакологический эффект зависит от того, насколько сильно выражена денатурация белков, которая, в свою очередь, определяется концентрацией иона и степенью диссоциации соли: малая концентрация вызывает гелификацию (уплотнение) белков на поверхности клетки, т.е. оказывает вяжущее действие, большая — раздражающее и глубокое прижигающее действие (вплоть до некроза).
Важную роль в противомикробном повреждающем эффекте препаратов играет плотность образующегося альбумината. Если альбуминат рыхлый, ион металла может свободно проникать вглубь клетки, коагулируя белки цитозоля. По убывающей плотности альбуминатов тяжелые металлы располагаются в следующей последовательности: свинец, алюминий, висмут, железо, цинк, медь, серебро, ртуть.
Препараты солей металлов, расположенных в начале ряда (алюминия ацетат; свинца ацетат, висмута нитрат основной и др.) оказывают преимущественно вяжущее и слабое противомикробное действие, а в конце ряда (серебра нитрат, ртути дихлорид) — прижигающее и выраженное антисептическое.
В качестве антисептиков наиболее широко применяют препараты серебра и ртути. Препараты серебра оказывают вяжущее и прижигающее действие, практически без фазы раздражения.
Серебра нитрат (ляпис) используют для прижигания афт, язвенных поражений и др.
Применяют также колларгол (коллоидальное серебро) и протаргол (белковый препарат серебра), которыми лечат гнойные раны и смазывают пораженную воспалительным процессом слизистую оболочку.
Сильнейшим антисептиком является ион ртути в виде ртути дихлорида, ртути амидохлорида, ртути окиси желтой. Эти препараты почти не оказывают вяжущего действия, поскольку альбуминаты ртути рыхлые (растворяются в присутствии натрия хлорида), но выраженно раздражают и прижигают ткани.
Антисептический эффект значительно снижается в присутствии белка. Ртути дихлорид (сулема) применяют для дезинфекции белья и других предметов ухода за больными (кроме металлических — сулема вызывает коррозию металлов).
Сулему не используют для дезинфекции рвотных масс и экскрементов, так как белки связывают ионы ртути. Из-за сильного раздражающего действия не применяют ее также и для обеззараживания рук.
В офтальмологической клинике применяют слабо диссоциируемые соединения ртути — ртути оксицианид (ртути цианид) и желтую окись ртути, назначают в виде мази.
При резорбции тяжелых металлов, особенно легко всасываемых солей ртути, может развиваться острое отравление, проявляющееся химическим ожогом слизистой оболочки пищеварительного тракта, угнетением ЦНС, ослаблением сердечной деятельности, коллапсом, тяжелым поражением почек и печени.
Помощь при отравлении включает: осторожное промывание желудка водой, чайным настоем с активированным углем. Внутрь назначают молоко, сырые яйца. Парентерально применяют унитиол или натрия тиосульфат, которые прочно связывают ион тяжелого металла. Обязательны также симптоматические средства (сердечные гликозиды, сосудосуживающие, наркотические анальгетики).
◄ Листать назад Оглавление Листать вперед ►