Ртуть это металл или минерал

Содержание
  1. Структура
  2. Свойства
  3. Запасы и добыча
  4. Происхождение
  5. Применение
  6. Классификация
  7. Ртуть
  8. История[править]
  9. Происхождение названия[править]
  10. Нахождение в природе[править]
  11. Месторождения[править]
  12. В окружающей среде[править]
  13. Изотопы[править]
  14. Получение[править]
  15. Физические свойства[править]
  16. Химические свойства[править]
  17. Характерные степени окисления[править]
  18. Ртуть
  19. Как добывают ртуть? Описание, фото и видео
  20. Где содержится ртуть?
  21. Особенности месторождений ртути
  22. Как получают ртуть
  23. Разработка месторождений ртути
  24. В каких странах есть промышленные ртутные месторождения
  25. Ртуть – интересное видео
  26. Ртуть: свойства, сфера применения, опасности для здоровья и экологии
  27. История
  28. Происхождение названия
  29. Соединения ртути
  30. Нахождение в природе
  31. Месторождения
  32. Применение
  33. В окружающей среде
  34. Токсикология ртути
  35. Получение
  36. Свойства
  37. Физические свойства

Всем нам известна ртуть, которая содержится в термометрах и является очень опасной для человеческого здоровья. Однако минерал используется и в других сферах деятельности человека.

Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент — бром). Иногда содержит примесь серебра и золота.

Структура

Сингония тригональная, гексагонально-скаленоэдрическая (ниже -39°С).

Свойства

Цвет оловянно-белый. Блеск сильный металлический. Температура кипения 357 °C. Единственный жидкий минерал при обычной температуре. Затвердевает, приобретая кристаллическое состояние при −38°С. Плотность 13,55.

На огне легко испаряется с образованием ядовитых паров. В древности вдыхание этих паров было единственным доступным средством лечения сифилиса (по принципу: если больной не умрёт, то поправится. Является диамагнетиком.

Запасы и добыча

Ртуть — относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути.

Основная форма нахождения ртути в природе — рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т).

В водах Мирового океана содержание ртути — 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Одно из крупнейших в мире ртутных месторождений находится в Испании (Альмаден). Известны месторождения ртути на Кавказе (Дагестан, Армения), в Таджикистане, Словении, Киргизии (Хайдаркан — Айдаркен) Украине (Горловка, Никитовский ртутный комбинат).

В России находятся 23 месторождения ртути, промышленные запасы составляют 15,6 тыс. тонн (на 2002 год), из них крупнейшие разведаны на Чукотке — Западно-Палянское и Тамватнейское.

Ртуть получают обжигом киновари (сульфида ртути(II)) или металлотермическим методом. Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.

Происхождение

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах.

В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути — тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Применение

Ртуть используется как рабочее тело в ртутных термометрах (особенно высокоточных), так как обладает довольно широким диапазоном, в котором находится в жидком состоянии, её коэффициент термического расширения почти не зависит от температуры и обладает сравнительно малой теплоёмкостью. Сплав ртути с таллием используется для низкотемпературных термометров.

Парами ртути заполняют люминесцентные лампы, поскольку пары светятся в тлеющем разряде. В спектре испускания паров ртути много ультрафиолетового света и, чтобы преобразовать его в видимый, стекло люминесцентных ламп изнутри покрывают люминофором.

Без люминофора ртутные лампы являются источником жёсткого ультрафиолета (254 нм), в каковом качестве и используются. Такие лампы делают из кварцевого стекла, пропускающего ультрафиолет, поэтому они называются кварцевыми.

Ртуть и сплавы на её основе используются в герметичных выключателях, включающихся при определённом положении. Ртуть используется в датчиках положения.

Иодид ртути(I) используется как полупроводниковый детектор радиоактивного излучения. Фульминат ртути(II) («гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы). Бромид ртути(I) применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).

Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях. До середины 20 века ртуть широко применялась в барометрах, манометрах и сфигмоманометрах (отсюда традиция измерять давление в миллиметрах ртутного столба).

Соединения ртути использовались в шляпном производстве для выделки фетра.

Ртуть (англ. Mercury) — Hg

Молекулярный вес 200.59 г/моль
Происхождение названия от латинского алхимического названия этого элемента hydrargyrum (от др.-греч. ὕδωρ «вода» и ἄργυρος «серебро»)
IMA статус действителен, описан впервые до 1959 (до IMA)

Классификация

Strunz (8-ое издание) 1/A.02-10
Nickel-Strunz (10-ое издание)

Ртуть

Материал из Википедии

80 Ртуть
4f145d106s2

Ртуть (Hg, от лат. Hydrargyrum) — элемент шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80, относящийся к подгруппе цинка (побочной подгруппе II группы).

Простое вещество ртуть — переходный металл, при комнатной температуре представляющий собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты.

Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент — бром).

История[править]

Файл:Mercury symbol.svg

Астрономический символ планеты Меркурий

Ртуть известна с древних времен. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари.

Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы.

Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твёрдость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г.

Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства: ковкость, электропроводность и др[4].

Происхождение названия[править]

Русское название ртути происходит от праслав. *rьtǫtь, связанного с лит. rìsti «катиться»[5]. Символ Hg заимствован от латинского алхимического названия этого элемента hydrargyrum (от др.-греч. ὕδωρ «вода» и ἄργυρος «серебро»).

Нахождение в природе[править]

Ртуть — относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами.

Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе — рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т).

Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути — 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации.

Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах.

Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента.

Известны крайне редкие селениды ртути — тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть не растворимы в воде, но при их наличии (Fe2(SO4)3, озон, пероксид водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS•nNa2S. Ртуть легко сорбируется глинами, гидроксидами железа и марганца, глинистыми сланцами и углями[6].

Читайте также:  Электрохимическая коррозия металлов 9 класс

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда — шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb4S7.

В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg2Cl2.

На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения — терлингуаит Hg2ClO, эглестонит Hg4Cl.

Месторождения[править]

Ртуть считается редким металлом.

Одно из крупнейших в мире ртутных месторождений находится в Испании (Альмаден). Известны месторождения ртути на Кавказе (Дагестан, Армения), в Таджикистане, Словении, Киргизии (Хайдаркан — Айдаркен) Украине (Горловка, Никитовский ртутный комбинат).

В России находятся 23 месторождения ртути, промышленные запасы составляют 15,6 тыс. тонн (на 2002 год), из них крупнейшие разведаны на Чукотке — Западно-Палянское и Тамватнейское.

В окружающей среде[править]

До индустриальной революции осаждение ртути из атмосферы составляло около 4 нанограммов на литр льда. Природные источники, такие, как вулканы, составляют примерно половину всех выбросов атмосферной ртути. За оставшуюся половину ответственна деятельность человека.

В ней основную долю составляют выбросы в результате сгорания угля главным образом в тепловых электростанциях — 65 %, добыча золота — 11 %, выплавка цветных металлов — 6,8 %, производство цемента — 6,4 %, утилизация мусора — 3 %, производство соды — 3 %, чугуна и стали — 1,4 %, ртути (в основном для батареек) — 1,1 %, остальное — 2 %.

Одно из тяжелейших загрязнений ртутью в истории случилось в японском городе Минамата в 1956 году, что привело к более чем трём тысячам жертв, которые либо умерли, либо сильно пострадали от болезни Минамата.

Изотопы[править]

Основная статья: Изотопы ртути

Природная ртуть состоит из смеси 7 стабильных изотопов: 196Hg (распространённость 0,155 %), 198Hg (10,04 %), 199Hg (16,94 %), 200Hg (23,14 %), 201Hg (13,17 %), 202Hg (29,74 %), 204Hg (6,82 %)[7]. Искусственным путём получены радиоактивные изотопы ртути с массовыми числами 171—210[8].

Получение[править]

Ртуть получают обжигом киновари (сульфида ртути(II)) или металлотермическим методом[источник не указан 3076 дней]:

Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.

На протяжении многих столетий в Европе основным и единственным месторождением ртути был Альмаден в Испании[источник не указан 3076 дней].

В Новое время с ним стала конкурировать Идрия во владениях Габсбургов (современная Словения). Там же появилась первая лечебница для поражённых отравлением парами ртути рудокопов. В 2012 г.

ЮНЕСКО объявило промышленную инфраструктуру Альмадена и Идрии памятником Всемирного наследия человечества[9].

В надписях во дворце древнеперсидских царей Ахеменидов (VI—IV века до н. э.) в Сузах упоминается, что ртутную киноварь доставляли сюда с Зеравшанских гор и использовали в качестве краски[10].

Физические свойства[править]

Файл:Mercury2.jpg

Металлическая ртуть

Файл:Pouring liquid mercury bionerd.jpg

Переливание ртути из сосуда в сосуд

Ртуть — единственный металл, который находится в жидком состоянии при комнатной температуре.

Температура плавления составляет 234,32 K (-38,83 °C)[2], кипит при 629,88 K (356,73 °C)[2], критическая точка — 1750 K (1477 °C), 152 МПа (1500 атм). Обладает свойствами диамагнетика.

Образует со многими металлами жидкие и твёрдые сплавы — амальгамы. Стойкие к амальгамированию металлы: V, Fe, Mo, Cs, Nb, Ta, W, Co [11].

Плотность ртути при нормальных условиях — 13 500 кг/м3.

Температура в °С ρ, 103 кг/м3 Температура в °С ρ, 103 кг/м3
0 13,5951 50 13,4723
5 13,5827 55 13,4601
10 13,5704 60 13,4480
15 13,5580 65 13,4358
20 13,5457 70 13,4237
25 13,5335 75 13,4116
30 13,5212 80 13,3995
35 13,5090 90 13,3753
40 13,4967 100 13,3514
45 13,4845 300 12,875

Химические свойства[править]

Характерные степени окисления[править]

Степень окисления
Оксид
Гидроксид
Характер
Примечания
+1 Hg2O * Слабоосновный Склонность к диспропорционированию
+2 HgO ** Очень слабое основание, иногда — амфотерный

'*Гидроксид не получен, существуют только соответствующие соли
'**Гидроксид существует только в очень разбавленных (

Ртуть

Таблица Менделеева

 Ртуть — элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum).

Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент — бром). В природе находится как в самородном виде, так и образует ряд минералов. Ртуть (англ. Mercury, франц. Mercure, нем. Quecksilber) входит в число семи металлов древности.

Она была известна по крайней мере за 1500 лет до н.э., уже тогда ее умели получать из киновари. Ртуть употребляли в Египте, Индии, Месопотамии и Китае; она считалась важнейшим исходным веществом в операциях священного тайного искусства по изготовлению препаратов, продлевающих жизнь и именуемых пилюлями бессмертия. В IV — Ш вв. до н.э.

о ртути как о жидком серебре ( от греч. вода и серебро) упоминают Аристотель и Теофраст. Позднее Диоскорид описал получение ртути из киновари путем нагревания последней с углем. Ртуть считали основой металлов, близкой к золоту и поэтому называли меркурием (Mercurius), по имени ближайшей к солнцу (золоту) планеты Меркурий.

С другой стороны, полагая, что ртуть представляет собой некое состояние серебра, древние люди именовали ее жидким серебром (откуда произошло лат. Hydrargirum). Подвижность ртути вызвала к жизни другое название — живое серебро (лат. Argentum vivum); немецкое слово Quecksilber происходит от нижнесаксонского Quick (живой) и Silber (серебро).

Интересно, что болгарское обозначение ртути — живак — и азербайджанское — дживя — заимствованы, вероятно, от славян.

80 элемент таблицы Менделеева В эллинистическом Египте и у греков употреблялось название скифская вода, что позволяет думать о вывозе ртути в какой-то период времени из Скифии. В арабский период развития химии возникла ртутно-серная теория состава металлов, согласно которой ртуть почиталась матерью металлов, а сера (сульфур) их отцом.

Сохранилось множество тайных арабских названий ртути, что свидетельствует о ее значении в алхимических тайных операциях. Усилия арабских, а позднее и западноевропейских алхимиков сводились к так называемой фиксации ртути, т. е. к превращению ее в твердое вещество.

По мнению алхимиков, получающееся при этом чистое серебро (философское) легко превращалось в золото. Легендарный Василий Валентин (XVI в.) основал теорию трех начал алхимиков (Tria principia) — ртути, серы и соли; эту теорию развил затем Парацельс.

В подавляющем большинстве алхимических трактатов, излагающих способы трансмутации металлов, ртуть стоит на первом месте либо как исходный металл для любых операций, либо как основа философского камня (философская ртуть).

Физические свойства ртути

Металлическая ртуть Переливание ртути из сосуда в сосудРтуть — единственный металл, который находится в жидком состоянии при комнатной температуре.

Температура плавления составляет 234,32 K (-38,83 °C), кипит при 629,88 K (356,73 °C). Обладает свойствами диамагнетика. Образует со многими металлами жидкие и твёрдые сплавы — амальгамы.

Стойкие к амальгамированию металлы: V, Fe, Mo, Cs, Nb, Ta, W.

Плотность ртути при нормальных условиях — 13 500 кг/м3

Температура в °С ρ, 103 кг/м3 Температура в °С ρ, 103 кг/м3
13,5951 50 13,4723
5 13,5827 55 13,4601
10 13,5704 60 13,4480
15 13,5580 65 13,4358
20 13,5457 70 13,4237
25 13,5335 75 13,4116
30 13,5212 80 13,3995
35 13,5090 90 13,3753
40 13,4967 100 13,3514
45 13,4845 300 12,875

Как добывают ртуть? Описание, фото и видео

Добыча ртути во все времена не обходилась для человечества без потерь. Это опасный для здоровья металл, который приносит отравление всему организму. В промышленном производстве ртуть незаменима – это единственный жидкий металл.

Но интерес к нему был всегда, особенно у ремесленников в Средней Азии. Именно здесь появились первые ртутные рудники в 6-4 веках до нашей эры.

Где содержится ртуть?

Киноварь

Металл содержится в минерале, который называется киноварью — красным камнем, используемым с самых древних времён как натуральный и качественный краситель. Ртуть есть и в других минеральных образований (примерно 20 наименований), но в них этого редкого металла содержится мало.

Читайте также:  Самодельная насадка штроборез на болгарку: особенности работы и изготовление инструмента

Особенности месторождений ртути

В промышленном производстве ртуть незаменима, потому что является единственным жидким металлом. Другого такого вещества в текучем виде при стандартной температуре со свойствами, характерными металлам, в природе нет. Поэтому ценность его высокая и поисками месторождений киновари занимаются во всех странах.

Из Древнего Китая и Индии в наши дни пришла вера в целебные свойства этого вещества. Там его считали кровью дракона и придавали священные качества получаемому из него серебристому металлу. Со временем его целебные свойства подтвердила наука. Во все века алхимики из соединения ртути и серы пытались получить золото, это значительно повышало ценность металла.

Как получают ртуть

Киноварь содержит более 85% сульфида ртути, другого такого богатого полезным ископаемым минерала геологи не знают.

Минеральные конгломераты встречается в виде зернообразных или ромбообразных фрагментов в породах, залегающих на небольшой глубине. Ртутные тела содержатся в кварцитовых, доломитовых и сланцевых отложениях.

Ртуть выделяют из руды с помощью нагревания, в этом случае она стекает из каменных образований небольшими каплями, которые собирают в специальные защищённые резервуары.

Интересно:  Как добывают золото? Виды золотодобычи, описание, фото и видео

Разработка месторождений ртути

В практике горнодобывающих работ разработка ртутных тел проводится несколькими способами.

  1. Подземные рудники. В них порода дробится с помощью взрывов, затем доставляется на поверхность. Извлечение металла производится путём окислительно-дистиляционного обжига, при котором образуются пары ртути при высоких температурах. Готовый продукт выделяют из фазы газообразного состояния в стадию конденсата и собирают.
  2. Способом закачивания в штольни газов, разогретых до 1000 градусов. Этот процесс вызывает переход металла в газовую фазу. Перед началом процедуры рассыпают в ящики с дном в виде сетки сорбент и располагают его в штольне на стеллажах. Затем начинается охлаждение энергоносителя, в результате чего на сорбент выпадает ртутосодержащий конденсат. Его собирают и отправляют на фабрику для извлечения чистого металла.

Есть и другие технологии добычи ртути, но все они сводятся к тому, что в первичных ореолах залегания руды делаются просечки, в них вводится раскалённый газ для образования ртутных паров и сорбент, который потом извлекают с накопившимся на нём ртутным конденсатом и отправляют на предприятие, где получают металл.

В каких странах есть промышленные ртутные месторождения

Значительные ртутные богатства залегают в недрах нескольких стран. Это, Испания, Италия, Китай, Канада, Мексика, США, государствах Средней Азии. Испания является самой богатой на месторождения ртути, здесь 75% мировых запасов металла и самый крупный рудник — Альмаден. Его начали разрабатывать более двух тысячелетий назад.

В России основные разработки ведутся в Забайкалье, на Камчатке, Алтае, Кавказе. Известными богатыми месторождениями ртути являются рудники ближнего зарубежья — Никитовский в Украине и Хайдаркен в Узбекистане (Ферганская долина).

Интересно:  Как добывают уголь? Способы добычи угля, фото и видео

Ртуть – интересное видео

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ртуть: свойства, сфера применения, опасности для здоровья и экологии

  • 1 История 1.1 Происхождение названия
  • 2 Нахождение в природе
  • 3 В окружающей среде
  • 4 Изотопы
  • 5 Получение
  • 6 Физические свойства
  • 7 Химические свойства
      7.1 Характерные степени окисления
  • 7.

    2 Свойства металлической ртути

  • 8 Применение ртути и её соединений
  • 8.2 Техника
  • 8.3 Металлургия
  • 8.4 Химическая промышленность
  • 8.5 Сельское хозяйство
  • 9 Токсикология ртути
      9.1 Гигиеническое нормирование концентраций ртути
  • 9.

    2 Демеркуризация

  • 9.3 Запрет использования содержащей ртуть продукции
  • Металл характеризуется степенью окисления +1 и +2.

    В первом случае он представлен двухъядерным катионом Hg22+ с металлической связью и склонен к диспропорционированию, которое проходит при нагревании и разбавлении водой.

    На холоде вещество со степенью окисления +2 и металлическая ртуть сопропорционируют. Реагируя с нитратом металла, элемент образует нитрат ртути. При степени окисления +2 получаются катионы Hg2+, которые легко гидролизуются. Гидроксид металла существует лишь в разбавленных растворах, а в жидкостях с высокой концентрацией он дегидратируется.

    Элемент со степенью окисления +2 образует с различными лигандами устойчивые комплексы. Прочные ковалентные связи наблюдаются с йодом, серой и углеродом. С последним веществом ртуть образует самые устойчивые соединения.

    История

    Астрономический символ планеты Меркурий

    Ртуть известна с древних времён. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы.

    Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твёрдость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 году.

    Для представления элемента как у алхимиков, так и в настоящее время используется символ планеты Меркурий.

    Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства в твёрдом состоянии: ковкость, электропроводность и др.

    Происхождение названия

    Русское название ртути происходит от праслав. *rьtǫtь, связанного с лит. rìsti «катиться». Символ Hg заимствован от латинского алхимического названия этого элемента hydrargyrum

      Как ртуть из одного градусника может разрушить ваше здоровье

    (от др.-греч. ὕδωρ «вода» и ἄργυρος «серебро»).

    Соединения ртути

    Ртуть и её соединения применяются в технике, химической промышленности, медицине. Желтый оксид ртути (II) входит в состав глазной мази и мазей для лечения кожных заболеваний. Красный оксид ртути (II) применяется для получения красок.

    Хлорид ртути (I), который называется каломель, используется в пиротехнике, а также в качестве фунгицида.

    В ряде стран каломель используется в качестве слабительного. Токсическое действие каломели проявляется особенно тогда, когда после приема её внутрь не наступает слабительное действие и организм долгое время не освобождается от этого препарата.

    Хлорид ртути (II), который называется сулема, является очень токсичным. Сулема применялась в медицине как дезинфицирующее средство, в технике она используется для обработки дерева, получения некоторых видов чернил, травления и чернения стали.

    В сельском хозяйстве сулема применяется как фунгицид. Амидохлорид ртути (белый преципитат ртути) входит в состав некоторых мазей. В ветеринарии амидохлорид ртути применяется как средство против паразитарных заболеваний кожи.

    Нитрат ртути (II) применяется для отделки меха и получения других соединений этого металла. Токсичность нитрата ртути (II) примерно такая же, как и токсичность сулемы. Многие органические соединения ртути используются в качестве пестицидов и средств для обработки семян.

    Отдельные органические соединения ртути применяются как диуретические средства.

    Нахождение в природе

    Ртуть — относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами.

    Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе — рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т).

    Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути — 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации.

    Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

    Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах.

    Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента.

    Читайте также:  Напильник для насечки на металле

    Известны крайне редкие селениды ртути — тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

    Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

    В обычных условиях киноварь и металлическая ртуть не растворимы в воде, но в присутствии некоторых веществ (Fe2(SO4)3, озон, пероксид водорода) растворимость в воде этих минералов достигает десятков мг/л.

    Особенно хорошо растворяется ртуть в сульфидах щелочных металлов с образованием, например, комплекса HgS•nNa2S. Ртуть легко сорбируется глинами, гидроксидами железа и марганца, глинистыми сланцами и углями.

    В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда — шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb4S7.

    В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg2Cl2.

    На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения — терлингуаит Hg2ClO, эглестонит Hg4Cl.

    Месторождения

    Ртуть считается редким металлом.

    Одно из крупнейших в мире ртутных месторождений находится в Испании (Альмаден). Известны месторождения ртути на Кавказе (Дагестан, Армения), в Таджикистане, Словении, Киргизии (Хайдаркан — Айдаркен), Донбассе (Горловка, Никитовский ртутный комбинат).

    В России находятся 23 месторождения ртути, промышленные запасы составляют 15,6 тыс. тонн (на 2002 год), из них крупнейшие разведаны на Чукотке — Западно-Палянское и Тамватнейское.

    Применение

    Ртуть применяется в изготовлении термометров, парами ртути наполняются ртутно-кварцевые и люминесцентные лампы. Ртутные контакты служат датчиками положения. Кроме того, металлическая ртуть применяется для получения целого ряда важнейших сплавов.

      Переработка отработанного масла: выбираем лучший метод

    Ранее различные амальгамы металлов, особенно амальгамы золота и серебра, широко использовались в ювелирном деле, в производстве зеркал и зубных пломб. В технике ртуть широко применялась для барометров и манометров.

    Соединения ртути использовались как антисептик (сулема), слабительное (каломель), в шляпном производстве и т.д.

    , но в связи с её высокой токсичностью к концу XX века были практически вытеснены из этих сфер (замена амальгамирования на напыление и электроосаждение металлов, полимерные пломбы в стоматологии).

    Сплав ртути с таллием используется для низкотемпературных термометров.

    Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей, в некоторых химических источниках тока (например, ртутно-цинковых — тип РЦ), в эталонных источниках напряжения (Вестона элемент). Ртутно-цинковый элемент (эдс 1,35 Вольт) обладает очень высокой энергией по объёму и массе (130 Вт/час/кг, 550 Вт/час/дм).

    Ртуть используется для переработки вторичного алюминия и добычи золота (см. амальгамная металлургия).

    • Ртуть также иногда применяется в качестве рабочего тела в тяжелонагруженных гидродинамических подшипниках[3].
    • Ртуть используется в качестве балласта в подводных лодках и регулирования крена и дифферента некоторых аппаратов.[источник не указан 236 дней
    • ] Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.
    • Ртуть входит в состав некоторых биоцидных красок для предотвращения обрастания корпуса судов в морской воде.
    • Ртуть-203 (T1/2 = 53 сек) используется в радиофармакологии.
    • Также используются и соли ртути:

    Иодид ртути используется как полупроводниковый детектор радиоактивного излучения. Фульминат ртути («Гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).

    Бромид ртути применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).

    Некоторые соединения ртути применяются как лекарства (например, мертиолят для консервации вакцин), но в основном из-за токсичности ртуть была вытеснена из медицины (сулема, оксицианид ртути — антисептики, каломель — слабительное и др.) в середине-конце XX века.

    В окружающей среде

    Содержание ртути в ледниках за 270 лет

    До индустриальной революции осаждение ртути из атмосферы составляло около 4 нанограммов на 1 кубический дециметр льда. Природные источники, такие, как вулканы, составляют примерно половину всех выбросов атмосферной ртути. Причиной появления остальной половины является деятельность человека.

    В ней основную долю составляют выбросы в результате сгорания угля (главным образом в тепловых электростанциях) — 65 %, добыча золота — 11 %, выплавка цветных металлов — 6,8 %, производство цемента — 6,4 %, утилизация мусора — 3 %, производство соды — 3 %, чугуна и стали — 1,4 %, ртути (в основном для батареек) — 1,1 %, остальное — 2 %.

    Одно из тяжелейших загрязнений ртутью в истории случилось в японском городе Минамата в 1956 году, что привело к более чем трём тысячам жертв, которые либо умерли, либо сильно пострадали от болезни Минамата.

    Токсикология ртути

    Пары́ ртути, а также металлическая ртуть очень ядовиты, могут вызвать тяжёлое отравление.

    Ртуть и её соединения (сулема, каломель, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании — дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха).

    По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образованием растворимой в воде и токсичной метилртути.

    • Органические соединения ртути (метилртуть и др.) в целом намного более токсичны, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма.

    Подробнее смотрите статью отравление ртутью.

      Драгметаллы в печатных платах

    1. Гигиеническое нормирование концентраций ртути
    2. Предельно допустимые уровни загрязнённости металлической ртутью и её парами:
    3. ПДК в населенных пунктах (среднесуточная) — 0,0003 мг/м³
    4. ПДК в жилых помещениях (среднесуточная) — 0,0003 мг/м³
    5. ПДК воздуха в рабочей зоне (макс. разовая) — 0,01 мг/м³
    6. ПДК воздуха в рабочей зоне (среднесменная) — 0,005 мг/м³
    7. ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) — 0,005 мг/мл
    8. ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоемов — 0,0005 мг/л
    9. ПДК рыбохозяйственных водоемов — 0,00001 мг/л
    10. ПДК морских водоемов — 0,0001 мг/л
    11. ПДК в почве — 2,1 мг/кг

    Получение

    Ртуть получают обжигом киновари (сульфида ртути II) или металлотермическим методом:

    HgS + O2 ⟶ Hg + SO2↑ HgS + Fe ⟶ FeS↓ + Hg

    Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.

    На протяжении многих столетий в Европе основным и единственным месторождением ртути был Альмаден в Испании. В Новое время с ним стала конкурировать Идрия во владениях Габсбургов (современная Словения).

    Там же появилась первая лечебница для поражённых отравлением парами ртути рудокопов. В 2012 г. ЮНЕСКО объявило промышленную инфраструктуру Альмадена и Идрии памятником Всемирного наследия человечества.

    В надписях во дворце древнеперсидских царей Ахеменидов (VI—IV века до н. э.) в Сузах упоминается, что ртутную киноварь доставляли сюда с Зеравшанских гор и использовали в качестве краски.

    Свойства

    Цвет оловянно-белый. Блеск сильный металлический. Температура кипения 357 °C. Единственный жидкий минерал при обычной температуре. Затвердевает, приобретая кристаллическое состояние при −38°С. Плотность 13,55.

    На огне легко испаряется с образованием ядовитых паров. В древности вдыхание этих паров было единственным доступным средством лечения сифилиса (по принципу: если больной не умрёт, то поправится. Является диамагнетиком.

    Физические свойства

    Цвет минерала оловянный белый
    Цвет черты не может быть взята
    Прозрачность непрозрачный
    Блеск металлический
    Спайность нет
    Твердость (шкала Мооса) не может быть измерена
    Излом нет
    Плотность (измеренная) 13.596 г/см3
    Радиоактивность (GRapi)
    Магнетизм диамагнетик

    ( 2 оценки, среднее 4.5 из 5 )

    Понравилась статья? Поделиться с друзьями:
    Станок