Методы контроля металлов сплавов

Содержание
  1. Методы разрушающего контроля   
  2. Методы неразрушающего контроля  
  3. Рентгеновский контроль
  4. Методы контроля
  5. Методы механических испытаний
  6. Методы и средства неразрушающего контроля распределяются по следующим направлениям:
  7. Визуальный и измерительный метод
  8. Радиационный метод
  9. Акустическая дефектоскопия (акустическй, ультразвуковой) метод
  10. Магнитопорошковый или магнитолюминесцентный метод
  11. Вихретоковый метод
  12. Капиллярные (люминесцентный, цветной и др.) методы
  13. Тепловой метод
  14. Методы течеискания (контроль герметичности)
  15. Ультразвуковая голография и голографическая интерферометрия
  16. Неразрушающий контроль металлов, спектральный анализ состава изделий
  17. Методы контроля изделий на производстве
  18. Преимущества метода
  19. Принцип метода
  20. Задачи изучения спектров
  21. Области применения
  22. Приборы наблюдения спектра
  23. Методы исследования строения металлов и сплавов и их свойств
  24. Вопросы для самоконтроля

Основная задача любой системы контроля – выявление дефектов и определение пределов прочности и надежности. Дефекты могут возникнуть в результате ошибки при конструировании, производстве или эксплуатации: дефекты литья, усталостное разрушение, атмосферная коррозия, изнашивание сопряженных деталей, дефекты при нанесении покрытий, дефекты неразъемных соединений металла и так далее. В каждом конкретном случае применяются специальные методики, позволяющие определить степень влияния дефекта на качество изделия: насколько уменьшится надежность, рабочие характеристики, как изменятся сроки и условия эксплуатации, или дефект является критичным и предмет не может быть допущен к использованию. Различают две основные группы испытаний: разрушающего и неразрушающего контроля.

Методы разрушающего контроля   

Разрушающий контроль служит для количественного определения максимальной нагрузки на предмет, после которой наступает разрушение. Испытания могут носить разный характер: статические нагрузки позволяют точно измерить силу воздействия на образец и подробно описать процесс деформации.

Динамические испытания служат для определения вязкости или хрупкости материала: это разного рода удары, при которых возникают инерционные силы в  частях образца и испытательной машины. Испытания на усталость – это многократные нагрузки небольшой силы, вплоть до разрушения.

Испытания на твердость служат для измерения силы, с которой более твердое тело (например, алмазный наконечник ударника) внедряется в поверхность образца. Испытания на изнашивание и истирание позволяют определить изменения свойств поверхности материала при длительном воздействии трения.

Комплексные испытания позволяют описывать основные конструкционные и технологические свойства материала, регламентировать максимально допустимые нагрузки для изделия.

Для определения характеристик механической прочности используют разрывные машины. Например, WEB 600, производства TIME Group Inc.: она способна развивать усилие 600 кН.

Машины для технологических испытаний, такие как ИА 5073-100, ИХ 5133, ИХ 5092 отечественного производства, поставляемые компанией ООО «Северо-Западные Технологии», служат для испытаний на скручивание проволоки, выдавливание листового металла, перегибов проволоки и так далее.

Есть несколько методов определения твердости металла: по Виккерсу, когда в поверхность вдавливается четырехгранная алмазная пирамидка под действием нагрузки в 5, 10, 20, 30, 50 и 100 кгс.

Затем отпечаток измеряют по диагоналям квадрата, и по таблице определяют число твердости. Машины для определения твердости  – твердомеры.

Например ИТ 5010 – машина для определения твердости по Виккерсу.

При исследовании твердости по методу Роквелла, образец плавно нагружают до 98 Н (10 кгс). Затем дается дополнительная нагрузка до максимального значения 490 Н (50 кгс) – 1373 Н (140 кгс).

После его достижения на шкале индикатора прибора отображается количество единиц твердости образца. Один из распространенных твердомеров по Роквеллу – ТР 5006 М.

Среди машин, предназначенных для испытания на усталость можно назвать МУИ-6000 (поставщик – «Северо-Западные Технологии»).   

Методы неразрушающего контроля  

Если методы разрушающего контроля применяются только к контрольным образцам, для выяснения общих механических свойств, то неразрушающий контроль служит для массового контроля качества продукции.

Работа приборов неразрушающего контроля основывается на принципах изменения свойств предмета при наличии дефектов.

Это ультразвуковая дефектоскопия и толщинометрия , радиография , магнитопорошковый и капиллярный контроль, вихретоковый контроль, оптико-визуальный контроль и другие.

Например, оборудование ультразвуковой дефектоскопии измеряет разницу в прохождении ультразвука, в зависимости от толщины и плотности металла.

Толщиномеры 26МG, 26MG-XT, 26XTDL, 36DLPLUS, производства компании Panametrics служат для определения остаточной толщины стенок труб, котлов и других конструкций,   подверженных износу. 36 DL PLUS – современный цифровой эхо-импульсный переносной контактный толщиномер, который позволяет измерять толщину даже тех объектов, к которым можно подойти только с одной стороны. Применяется в энергетике и машиностроении для измерения толщины стенок трубопроводов, сосудов давления, котлов и других объектов.

Один из распространенных методов неразрушающего контроля – вихретоковый. Он основан на измерении возмущений вихревых токов при наведении электрического тока на образец.

Даже малейшая трещина или каверна в металле, точечная коррозия или истончение сразу фиксируется в изменении вихревых токов.

Современные вихретоковые дефектоскопы служат для контроля посадочных полок дисков колес, ряда крепежных деталей авиационных конструкций, детектирования трещин вблизи крепежных отверстий, а также для отображения С-скана крепежных отверстий, контроля многослойной коррозии в автомобильной, авиационной и аэрокосмической отраслях. Среди оборудования вихретокового контроля можно назвать приборы компании Zetec, которые позволяют выполнять широкий спектр обследований различных конструкций самолетов, узлов двигателей и колес. Например, MIZ®-21SR – многорежимный вихретоковый дефектоскоп и бонд-тестер. Это легкий портативный прибор, использующий два метода вихретоковой дефектоскопии для обнаружения непроклея, расслоения и аномалий плотности. Кроме того, MIZ®-21SR  имеет функции измерения проводимости и толщины покрытий. Вся информация отображается на дисплее с высоким разрешением и четкостью изображения.   

Рентгеновский контроль

Этот метод обыкновенно используется для дефектоскопии крупных сварных металлических конструкций, подверженных коррозионному воздействию атмосферы: трубопроводов, опор и несущих и любых других металлических конструкций.

Рентгеновские аппараты могут быть стационарные (кабельного и моноблочного типа), переносные или монтироваться на кроулеры. Кроулер – самоходный, дистанционно управляемый робот, несущий автономный рентгеновский комплекс.

Он предназначен для контроля качества сварных соединений трубопроводов. Такой аппарат по команде извне перемещается в трубопроводе, останавливается и снимает рентгенограмму. Экспонирующее устройство кроулера работает полностью независимо.

Одни рентгеновские аппараты требуют экспонирования и проявки специальной пленки, другие отражают информацию сразу в цифровом виде.

Среди аппаратуры рентгеновского контроля нужно назвать продукцию ЗАО «Синтез НДТ», входящую в группу предприятий «ЮНИТЕСТ». Стационарные аппараты серии «Витязь» изготовлены моноблоком, со стеклянной рентгеновской трубкой. Их стоимость относительно невысока.

Серия «Бастион» – аппараты кабельного типа, в них  используется металлокерамическая трубка, что обеспечивает надежность и длительный срок службы, но они более дороги. Как правило, стационарные аппараты используются для контроля материалов или готовой продукции, они отличаются от переносных высокой стабильностью параметров тока, напряжения и минимумом пульсаций.

Переносные рентгеновские аппараты серии «РПД», того же производителя, предусматривают и варианты для работы в тяжелых климатических условиях, на  Крайнем севере. В этом случае, блок питания и управления монтируется в металлическом корпусе, категория защиты — IP65.  На кроулеры устанавливаются панорамные рентгеновские трубки серии СХТ.

Они обеспечивают максимально возможную жесткость спектра излучения с высоким КПД, аппараты питаются от аккумуляторной батареи кроулера. Оборудование СХТ  снабжено системой принудительного воздушного охлаждения анодов вентиляторами.

Сегодня не существует одного универсального метода, который позволял бы измерить все свойства металлического изделия разом.

Поэтому методы контроля качества применяются в комплексе: на стадиях разработки и изготовления – разрушающие, в процессе эксплуатации –  различные неразрушающие.

Выбор конкретного способа контроля зависит не только от специфики и назначения металлической конструкции, но и от многочисленных внешних факторов, которые непременно учитываются специалистами.

Методы контроля

Физические методы контроля качества металлов (дефектоскопия) осуществляются без их разрушений. В основе методов лежат проникающие излучения. Метод позволяет выявить внутренние дефекты (газовые и усадочные раковины, не провар, трещины и т.д.) в готовых изделиях (слитках, сварных соединениях) без их разрушения.

Используют рентгеновские и гамма лучи. Последние направляют на изделие, за которым находится устройство для регистрации интенсивности излучения прошедшего через изделие (фотопленка, светящийся экран, ионизационная камера).

При наличии дефектов поглощение лучей будет не одинаковым по сечению, по различию судят о размерах и характере дефекта.

Другой вид дефектоскопии — магнитный контроль, выявляет на поверхности стальных изделий трещины, волосовины, неметаллические включения. В местах дефекта намагниченного изделия оседает магнитная суспензия (частицы Fe3O4 в трансформаторном масле).

Люминисцентный метод выявляет поверхностные дефекты (трещины, поры, рыхлость). Метод основан на усилении видимости дефектов при облучении их ультразвуковыми лучами и используют эффект свечения некоторых жидкостей.

Изделия погружают в жидкость, потом лишнюю жидкость удаляют, поверхность посыпают порошком (тальком), порошок извлекает жидкость из полости дефекта и при его облучении ультрафиолетовыми лучами наблюдают свечение в темной комнате.

Ультразвуковой метод контроля основан на способности УЗК отражаться от поверхности внутренних дефектов, бывает: тепловой и эхо метод. Тепловой метод основан на ослабление интенсивности прошедших ультразвуковых колебаний. Его применяют для изделий простой формы (листы, трубы, подшипники скольжения).

Электроиндукционный метод контроля применяют для выявления поверхностных дефектов. Он основан на замере изменений возбуждаемых в металле вихревых токов под влиянием неоднородности металла.

Читайте также:  Болгарка хитачи: виды и технические характеристики, конструкция инструмента, сфера применения

Методы механических испытаний

Все детали в процессе эксплуатации подвергаются воздействию внешних сил в той или иной мере. Нагрузки, действующие на деталь во время работы, весьма разнообразны, и они могут растягивать деталь или сжимать ее, изгибать или создавать кручение.

При этом воздействия могут осуществляться плавно, постепенно (статически) или мгновенно (динамически). Поэтому важным свойством материалов является прочность при данном виде нагружения. Она характеризуется максимальной нагрузкой, которую выдерживает материал не разрушаясь.

Воздействуя на деталь, внешние нагрузки изменяют ее форму, то есть — деформируют.

Если к детали приложены сравнительно небольшие силы, под действием которых атомы в кристаллической решетке смещаются на расстояния меньше межатомных, то после прекращения действия внешней силы деталь принимает свою первоначальную форму, то есть атомы возвращаются в устойчивое положение, и деформация исчезает. Свойство материалов принимать первоначальную форму после прекращения действия внешних сил называется упругостью, а деформация, исчезающая после снятия нагрузки, получила название упругой.

Если к заготовке приложены большие усилия, под действием которых атомы в кристаллической решетке сместятся на расстояния больше межатомных, тогда они занимают новое устойчивое положение, соответствующее положению атомов соседнего ряда. После прекращения действия приложенной силы деформация не исчезает, и заготовка остается деформированной. Такая деформация называется пластической.

Способность материала деформироваться, под действием внешних нагрузок не разрушаясь, и сохранять измененную форму после прекращения действия усилий называется пластичностью. Таким образом, пластичность — это возможность металла изменять форму или деформироваться без нарушения целостности при обработке давлением.

Оценка качества металла при исследовании его пластичности производится визуально по состоянию поверхности. При этом проводят испытания на изгиб, испытания на перегиб лент, листов и полос толщиной до 4 мм, испытания на расплющивание, причем некоторые технологические пробы, используемые для исследования металлов, стандартизированы.

Материалы, не способные к пластическим деформациям, называются хрупкими. Такие материалы при значительной нагрузке или под действием ударных нагрузок разрушаются внезапно.

Для того, чтобы узнать, удовлетворяет ли деталь предъявляемым к ней требованиям, производят специальные испытания. Вид испытания и характер его проведения указывают в технических условиях или на чертеже детали. Наибольшее распространение получили следующие виды механических испытаний: на растяжение, на ударный изгиб и ударную вязкость, на выносливость, на твердость, на жаропрочность.

Механические свойства характеризуют способность материала сопротивляться деформации и разрушению при воздействии внешних сил. Они зависят от рода материала, его обработки, внутреннего строения, формы изделия и ряда других факторов. Их определяют путем испытания образцов.

Испытания бывают: динамические, статические, циклические.

Статические испытания — это испытания на растяжение, характеризуют упругость и пластичность и определяют пределы пропорциональности.

Испытания текучести и прочности, и испытание на твердость (способность материала сопротивляться вдавливанию в него другого более твердого тела) просты. Быстро проводятся и не разрушают изделия, поэтому широко используются.

Испытание на ползучесть также относится к статическим испытаниям. Ползучесть — способность металла изменять, хотя и медленно, форму и размеры под действием сравнительно небольшой нагрузки и температуры. Испытания проводят в печи, нагружая образцы, и строят график «удлинение-время». По полученным данным определяют предел ползучести.

Испытания на ударную вязкость — наиболее применяемое испытание из всех динамических, позволяет определить степень сопротивления материала разрушению при ударной нагрузке. Испытания проводят на специальной установке.

Образец сечением 10 х 10 мм надрезают с одной стороны на 2 мм, устанавливают на опоры поднимают маятник на определенную высоту и дают свободно падать.

После разрушения образца маятник поднимается на определенный угол, по которому определяют (из таблиц) ударную вязкость ak. заготовка механический деталь втулка

Испытания на усталость. Усталостным разрушением называют явление разрушения металлов под действием повторных или знакопеременных напряжений, причем усталостное разрушение может наступить при значении напряжения меньше предела прочности и даже текучести. Сопротивление усталости называют выносливостью. Усталость наступает при превышении предела выносливости.

В основе неразрушающего контроля металла лежат физические процессы взаимодействия различных полей, излучений или веществ с объектами контроля.По этому признаку выделяют девять основных видов:

Каждый из этих видов осуществляется многими методами контроля, которые классифицируют по характеру взаимодействия физических полей с контролируемым объектом, по первичному информативному параметру и по способу получения информации (в совокупности более ста наименований по ГОСТ 18353-79 «Контроль неразрушающий. Классификация видов и методов»).

Методы и средства неразрушающего контроля распределяются по следующим направлениям:

  • дефектоскопия трубопроводов, металла и металлоконструкций (обнаружение дефектов типа нарушений сплошности – трещин, раковин, расслоений и т.д.);
  • контроль геометрических характеристик (наружных и внутренних диаметров; толщин стенок, покрытий и слоев; степени износа; ширины и длины изделий и т.д.);
  • определение физико–механических и физико–химических характеристик(электрических, магнитных и структурных параметров, отклонений от заданного химического состава,  твердости, пластичности, качества упрочненных слоев, содержания и распределения ферритной фазы и т.п.);
  • техническое диагностирование (определение технического состояния объекта в период эксплуатации).
  • Выбор метода и прибора Неразрушающего контроля при решении задач дефектоскопии, толщинометрии, структуроскопии и технического диагностирования зависит от параметров контролируемого объекта и условий его обследования.
  • Дефекты типа нарушений сплошности являются следствием несовершенства структуры материалов и возникают на разных стадиях технологического процесса и в процессе эксплуатации.
  • В авиационно-космическом машиностроении используют практически все существующие методы неразрушающего контроля металлоконструкций, распространенные более других – приведены ниже.

Визуальный и измерительный метод

Визуальный и измерительный метод, в том числе с использованием жестких и гибких видеоэндоскопов, позволяют выявить поверхностные дефекты, как на наружных поверхностях, так и во внутренних полостях изделий и измерить их параметры.

Радиационный метод

Радиационные методыс использованием излучения рентгеновских аппаратов и радиоактивных источников применяют для обнаружения внутренних несплошностей в деталях, узлах, изделиях, в сварных и паяных соединениях путем их просвечивания на рентгеновскую пленку или на другие преобразователи излучения; для измерения толщины деталей и покрытий на них, а также для контроля механических напряжений (рентгеновская дифрактометрия).

Акустическая дефектоскопия (акустическй, ультразвуковой) метод

С помощью Акустической дефектоскопии контролируют качество листовых материалов и других заготовок, сварных, паяных и клееных соединений, некоторые физико-механические свойства, используя законы распространения в веществе упругих колебаний (эхо-импульсный, импедансно-акустический, метод эмиссии волн напряжения – акустической эмиссии и др.).

Магнитопорошковый или магнитолюминесцентный метод

Поверхностные дефекты типа волосовин, трещин, непроваров в изделиях из ферромагнитных металлов выявляют в основном магнитопорошковым илимагнитолюминесцентным способами, используя специальные порошки, суспензии и пасты, которые наносят на предварительно намагниченные объекты, и затем рассматривая картину их распределения на поверхности.

Вихретоковый метод

Вихретоковые методы используют для определения свойств металла, однозначно связанных с электропроводностью и магнитной проницаемостью, для выявления дефектов, для измерения диаметра прутков, толщинометрии труб и листов, для измерения толщины и определения качества покрытий. Вихревые токи в металле можно возбуждать синусоидальным и несинусоидальным электромагнитным полем, импульсным полем, а также полем переменной частоты. В этих случаях измеряют частотный спектр, крутизну фронтов, длительность импульсов и другие параметры электрических сигналов.

Капиллярные (люминесцентный, цветной и др.) методы

Для обнаружения трещин, раковин, окисных пленок, непроваров, непропаев и других дефектов, имеющих выход на поверхность, применяют также капиллярные методы (люминесцентный, цветной и др.).

При его использовании на поверхность контролируемого объекта наносят так называемые индикаторные пенетранты, способные проникать в капиллярные отверстия и имеющие характерный цветовой тон или (и) люминесцирующие под действием ультрафиолетового излучения.

После некоторой выдержки остатки жидкости смывают с неповрежденной поверхности изделия, поверхностные же дефекты при этом остаются заполненными ею.

Тепловой метод

Тепловые методы, использующие тепловые свойства контролируемого изделия, основаны на регистрации инфракрасного излучения, исходящего с поверхности нагретого тела, или его теплового поля приемниками различного типа. Основная область применения – контроль паяных и клееных соединений, дефектоскопия изделий из композиционных и других неметаллических материалов, выявление воды в конструкциях.

Методы течеискания (контроль герметичности)

Работоспособность и надежность изделий и отдельных узлов помимо их прочности обеспечиваются герметичностью оболочек и перегородок. Нарушение герметичности могут вызвать так называемые течи – каналы или пористые участки.

Читайте также:  Перфоратор для домашних работ: как выбрать и на какие технические характеристики следует обратить внимание

Для выявления и при необходимости измерения величины течей применяют методы  течеискания (контроль герметичности). Все они герметичности основаны на проникновении через эти несплошности тех или иных веществ, в т.ч. газов.

Среди них выделяют следующие: гидравлический, керосиновый, люминесцентный, газоаналитический, пузырьковый, химический, манометрический, галогеннный, масс-спектрометрический, радиоактивный и другие.

Ультразвуковая голография и голографическая интерферометрия

К методам Неразрушающего контроля металла, не требующим сканирования контролируемых объектов, относятся ультразвуковая голография и голографическая интерферометрия.

Возможность реализации голографии в ультразвуке базируется на свойстве когерентности ультразвуковых колебаний, получаемых с помощью обычных ультразвуковых излучателей.

Поскольку эти колебания легко проникают в оптически непрозрачные среды, имеется возможность получать изображения внутренней структуры объектов, в том числе изображения дефектов.

Метод голографической интерферометрии основан на том, что восстановленное с голограммы изображение полностью совпадает с реальным объектом. Однако при наличии любых изменений реального объекта (например, деформации, смещения, изменения коэффициента преломления или отражения) на изображении появятся интерференционные полосы, однозначно связанные с изменениями в объекте и дефектами в нем.

Для изделий авиационно-космического машиностроения, отличающихся большим разнообразием применяемых в них материалов с различными физико-механическими свойствами, методов и технологических процессов их изготовления необходимо применение комплекса взаимодополняющих методов и средств неразрушающего контроля металлоконструкций.

Технология CALS предполагает представление в электронной форме всех данных и документов, которые используются для описания изделия или того, как оно производится и эксплуатируется, для информационной поддержки различных процедур, используемых в течение всего жизненного цикла изделия (включая проектирование, испытания, производство, эксплуатацию и утилизацию).

Для того, чтобы получать информацию о качестве контролируемых объектов в электронной форме, требуется прежде всего решить вопросы автоматизации. В автоматизированных средствах НК все процессы выполняются автоматически без участия оператора.

В их состав входят средства перемещения контролируемых объектов, устройства стабилизации их положения, системы механического сканирования преобразователем (ультразвуковым, вихретоковым и др.

) поверхности изделия, связующие элементы электрических исполнительных устройств, системы сопровождения проконтролированной продукции, дефектоотметчики, блокировочные устройства и т.д.

Как правило, стоимость и объем работ по созданию автоматизированных средств НК значительно превышают затраты на приборную часть.

Работа всех входящих в них устройств должна быть согласована с работой основного технологического оборудования.

Процесс разработки и проектирования автоматизированных средств НК не должен отдаляться во времени от процесса разработки основного оборудования для производства.

Особую сложность представляют системы сканирования, применяющиеся в авиационно-космическом машиностроении там, где невозможна разборка конструкций и затруднен подход к контролируемым поверхностям сложной конфигурации.

В процессе сканирования должен поддерживаться постоянный зазор между преобразователем, источником поля и контролируемым изделием. Движение преобразователя и контролируемого изделия относительно друг друга может быть поступательным, вращательным, сложным возвратно-поступательным и т.п.

Системы сканирования требуют высокой точности изготовления. Массовое производство промышленных роботов и манипуляторов позволило создать на этой основе разнообразные технологические комплексы НК.

В основу их создания положена совокупность серийно выпускаемых приборов НК, имеющих выход на компьютер; промышленных роботов, выполняющих функции перемещения датчика прибора относительно объекта.

Следующими задачами, проистекающими из требований CALS-технологий, являются автоматизация разработки технологий контроля, расшифровки его результатов и архивирования.

В состав средств представления информации входят устройства, предназначенные для преобразования полученных от входных преобразователей электрических сигналов в динамические, либо статические изображения исследуемых излучений или полей.

Эти средства количественно характеризуют дефекты типа нарушений сплошности, отклонения размеров, изменения физико-механических свойств, сигнализируют о возможности возникновения аварийной ситуации или достижении выбранных уровней разбраковки изделий.

Там, где информация о контролируемом объекте выдается прибором в виде электрических сигналов (ультразвуковая дефектоскопия, вихретоковая дефектоскопия и др.), задачи расшифровки и архивирования результатов в электронной форме решаются.

В тоже время такие методы, как радиографический, рентгенотелевизионный, магнитопорошковый, капиллярный и др., результаты которых оператор оценивает визуально по изображениям дефектов, автоматизированы не полностью. Создание автоматизированных систем обработки и анализа изображений на уровне возможностей человеческого зрения на сегодняшний день является актуальной задачей.

В последние годы достигнут существенный прогресс в вычислительной промышленной рентгеновской томографии (получение послойных изображений контролируемых объектов), где эти изображения изначально существуют в электронной форме, и в автоматической расшифровке рентгеновских снимков.

В принципе, эта технология применима для всех случаев, когда оператор был вынужден визуально оценивать изображения контролируемых объектов.

Технология автоматической расшифровки предусматривает следующее:- ввод изображения и сопроводительной информации в компьютер;- предварительный анализ изображения, обеспечение пригодности к дальнейшей компьютерной обработке по специальным программам;- поиск и выделение контуров дефектов, их идентификация, определение геометрических характеристик с помощью специальных программ;- автоматическое получение заключений по дефектности контролируемых объектов;- статистическая обработка получаемых результатов;

— занесение результатов работы в архив.

Каждое новое изделие авиационно-космической техники требует использования как традиционных, так и принципиально новых материалов и конструкций.

В связи с этим возникает необходимость не только использовать существующие, но и создавать новые методы и средства НК их качества.

Наиболее сложные новые проблемы НК обычно возникают по следующим элементам этих изделий:- теплозащитные материалы;- жаропрочные материалы;- композиционные и другие неметаллические материалы;- металлоконструкции из новых материалов и их неразъемные соединения;

— агрегаты из неметаллических материалов и их неразъемные соединения.

При создании орбитального корабля (ОК) «Буран» эти проблемы были решены совместно с МНПО «Спектр», ведущей организацией страны в области НК, и другими специализированными организациями.

Так например, с помощью оригинальных алгоритмов обработки и реконструкции изображений была существенно повышена чувствительность и разрешающая способность компьютерной рентгеновской томографической системы для выявления несплошностей в металлических и неметаллических конструкциях.

В области теплового НК выявлены закономерности распространения тепловой энергии в анизотропных материалах. Эти закономерности были использованы при создании новых средств НК неметаллических материалов.

В области акустического НК разработаны эффективные способы формирования акустических полей заданной формы, методы распознавания типов дефектов и оценки их размеров.

Изучены и применены многие другие методы НК: электромагнитной эмиссии для прогнозирования остаточного ресурса теплозащитных покрытий; акустической эмиссии для оценки качества монтажа этих покрытий на изделии; тепловые, нейтронные и радиоволновые методы контроля содержания влаги в теплозащите в процессе эксплуатации; твердометрия, виброметрии и другие способы проверки физико-механических характеристик, оценки напряженно-деформированного состояния и остаточного ресурса отдельных элементов и изделия в целом.

Создание ОК «Буран» было обеспечено эффективными методами и средствами НК на всех этапах его жизненного цикла. Работы, проведенные в этой области, нашли применение и получили дальнейшее развитие при разработке многоцелевой авиационно-космической системы МАКС. Их результаты подходят для широкого применения и в других отраслях отечественной промышленности.

Этим требованиям соответствуют представленные на рисунках современные цифровые средства НК, разработанные в АО «НИИ интроскопии МНПО «Спектр» (г. Москва).

  1. При создании ОК «Буран» была предложена и внедрена концепция управления качеством новых технически сложных изделий с помощью методов и средств НК, комплексно охватывающая весь их жизненный цикл и обеспечивающая опережающую разработку средств и технологий НК с целью их своевременного внедрения в условиях производства, испытаний и эксплуатации. Концепция предусматривает в главных чертах следующее:- обеспечение взаимодействия конструкторов и технологов со специалистами по неразрушающему контролю, начиная с самых ранних этапов создания изделия, с целью обеспечения его контролепригодности и сокращения затрат на испытания, эксплуатацию и утилизацию;- разработка перечней особо-ответственных деталей и узлов в условиях производства и в условиях эксплуатации, а также технических требований, предъявляемых к НК; определение видов и размеров несплошностей и отклонений физико-механических и физико-химических характеристик, выявление которых с помощью методов и средств НК обеспечит требуемую надежность изделия, — совместно конструкторами и специалистами по НК, специалистами по прочности, ресурсу и испытаниям, технологами;- опережающая во времени разработка технических заданий (ТЗ), программ работ по созданию новых методов и средств НК, их реализация и разработка нормативно-технической документации по НК;- создание баз данных по возможностям существующих и вновь разработанных методов, средств и технологий НК, по результатам НК материалов, деталей и узлов в процессе производства, испытаний и эксплуатации для каждого экземпляра изделия;
  2. — использование методов, средств и технологий НК в комплексной системе управления качеством продукции (эти положения отражены в международных стандартах серии ISO 9000, которые определяют принципы технической политики руководства организаций в области обеспечения качества и описывают возможные модели управления качеством).
Читайте также:  Обручальные кольца металлы сравнение

Неразрушающий контроль ОК «Буран» опирался на продуманную систему государственных и отраслевых стандартов, с учетом которых была разработана соответствующая нормативно-техническая документация (методики, технологические рекомендации, производственные инструкции, технологические карты и т.д.), легко переводимая в электронную форму.

Таким образом, в части НК впервые в отечественном машиностроении была реализована технология управления качеством, в основном решавшая те задачи, которые теперь связывают с CALS.

Для дальнейшего развития работ в этой области требуются специалисты высокой квалификации по НК авиационно-космической техники, владеющие знаниями по материаловедению, вопросам прочности, остаточного ресурса и управления качеством.

Неразрушающий контроль на всех этапах жизненного цикла изделий является одним из стержней CALS авиационно-космического машиностроения.

    

Автор(ы): Клюев В.В., Коннов В.В., Башилов А.С., Носков А.А.

Правообладатель: АО НПЦ «Молния»

Неразрушающий контроль металлов, спектральный анализ состава изделий

Любое литейное и металлообрабатывающее производство не может обойтись без систем контроля своей продукции. Снижение качества поставляемых изделий стало большой проблемой для отечественных предприятий, которые теперь вынуждены закупать требуемые материалы за границей. Именно поэтому важным фактором на производстве является система контроля поставляемой продукции и контроль изделий.

Методы контроля изделий на производстве

Методы химического анализа являются основными при определении состава различных веществ. Современный химический анализ металлов и сплавов является важным этапом экспертизы, которая используется для определения качества продукции и проверки ее соответствия текущим стандартам.

Без этой процедуры не проводятся технологические процессы в отрасли производства сталей, она необходима при создании и выпуске новых материалов, а также контроле выпускаемой продукции современными предприятиями.

От правильности и точности проведенного анализа будет зависеть качество и надежность будущей продукции, которая производится с использованием металлов и их сплавов.

Однако очень часто возникает необходимость повысить оперативность контроля, а также иметь возможность автоматизировать контроль. В связи с этим были разработаны физико-химические и физические методы определения состава материалов. Среди этих методов одно из главных мест занимает спектральный анализ.

Преимущества метода

Благодаря высокой избирательности, оказывается возможным быстро и с высокой чувствительностью определить химический состав анализируемого материала. Исследовать состав металла по спектру можно без нарушения его пригодности к использованию, т.е.

можно проводить неразрушающий контроль образцов. Несмотря на громадное число аналитических методик, предназначенных для исследования различных объектов, все они основаны на общей принципиальной схеме: каждому химическому элементу принадлежит свой спектр.

Благодаря индивидуальности спектров имеется возможность определить химический состав тела. Сравнительная простота и универсальность спектрального анализа сделали метод основным методом контроля состава вещества в металлургии, машиностроении, атомной промышленности. С его помощью определяют химический руд и минералов, особое место в этой области занимает неразрушающий контроль металлов.

Принцип метода

Для проведения исследования вещество необходимо испарить, так как свет, излучаемый веществом в газообразном состоянии, определяется химическим составом этого вещества, в отличие от света, излучаемого твердыми телами или жидкостями. Для испарения и возбуждения вещества используют высокотемпературное пламя, различного типа электрические разряды в газах: дуга, искра и т. д.

Высокая температура в разрядах (тысячи и десятки тысяч градусов) приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и очень редко – молекулярного. Излучение паров вещества складывается из излучения атомов всех элементов. Для исследования необходимо выделить излучение каждого элемента.

Задачи изучения спектров

Точность атомного спектрального анализа зависит, главным образом, от состава и структуры исследуемых объектов. Анализировать состав близких по своей структуре и составу образцов, можно с погрешностью ±1 – 3% по отношению к определяемой величине.

В металлургии и машиностроении спектральный анализ металлов стал в настоящее время основным методом неразрушающего контроля, перед которым ставятся следующие задачи:

  1. Исследование сплавов в процессе плавки с целью получения сплава нужного состава;
  2. Анализ готовых сплавов с целью определения марки сплава (сортировки), либо точное определение его состава или определение содержания вредных примесей;
  3. Контроль качества готовых изделий;
  4. Контроль правильности применения сплавов при монтаже готовых изделий;
  5. Проверка различного рода покрытий;
  6. Иногда необходимо определять распределение примесей и включений в металле.

Области применения

Методы атомного спектрального анализа, качественного и количественного, разработаны значительно лучше, чем молекулярного, и имеют более широкое практическое применение.

Атомные спектральные исследования используют для анализа самых разнообразных объектов.

Область его применения очень широка: черная и цветная металлургия, машиностроение, геология, химия, биология, астрофизика и многие другие отрасли науки и промышленности.

Область использования молекулярной спектроскопии в основном охватывает анализ органических веществ, хотя применима и для изучения неорганических соединений. Молекулярный анализ спектров внедряется, главным образом, в химической, нефтеперерабатывающей и химико-фармацевтической промышленности.

Приборы наблюдения спектра

Это осуществляется с помощью оптических приборов – спектральных аппаратов. В этих приборах световые лучи с разными длинами волн отделяются пространственно друг от друга, позволяя проводить изучение спектра исследуемого вещества.

Для визуального наблюдения спектра используются приборы:

  • Спектроскопы – спектр наблюдается визуально;
  • Спектрографы – спектр фотографируется на фотопленку;
  • Монохроматоры – выделяется свет одной длины волны, и его интенсивность может быть зарегистрирована с помощью фотоэлемента

Для измерения спектров используются спектрометры.

Можно выделить следующие стадии изучения спектров:

  1. Получение спектра анализируемой пробы;
  2. Определение длины волны спектральных линий или полос, после чего устанавливают их принадлежность к определенным элементам или соединениям, т. е. находят качественный состав пробы;
  3. Измерение интенсивности спектральных линий или полос, принадлежащих определенным элементам, что позволяет провести количественный спектральный анализ, т.е. найти их концентрацию в анализируемой пробе

Методы исследования строения металлов и сплавов и их свойств

Для исследования строения металлов и сплавов и их свойств используют макро- и микроанализ, рентгеновский, ультразвуковой и другие методы анализа.

Макроскопический анализ (макроанализ) представляет собой метод изучения строения металлов и сплавов невооруженным глазом или при небольших увеличениях до 10 раз с помощью лупы.

Макроанализ позволяет выявить неметаллические включения, пористость, усадочную раковину, трещины, а также определять расположение волокон при прокатке, ковке, штамповке и т.д. На основании этих наблюдений делают качественную оценку исследуемого металла.

Микроскопический анализ — метод изучения строения металлов и сплавов с помощью специального металлографического микроскопа при больших увеличениях (до 2000 раз). С помощью микроанализа определяют величину и форму кристаллов и структурных составляющих сплавов, наличие в них неметаллических включений и т.д.

Наряду с обычными оптическими микроскопами, широко применяют электронные микроскопы, в которых вместо световых лучей используются электронные лучи. Электронный микроскоп позволяет получить увеличение не менее 20 ОООх.

  • Термический анализ — применяют для определения критических точек при нагревании и охлаждении металлов и сплавов с последующим построением диаграмм состояния.
  • Кривые нагревания и охлаждения металлов позволяют определить температуры превращений и выбрать рациональный температурный интервал обработки металлов или сплавов.
  • Неразрушшощий контроль качества металлов и сплавов выполняют с использованием магнитной, ультразвуковой и рентгеновской дефектоскопии, а также других методов контроля.

При помощи ультразвуковой дефектоскопии кроме определения макро- и микродефектов в металлических телах измеряют глубину закаленного или цементованного слоя, определяют внутренние напряжения, модуль упругости, плотность металла и т.п. Метод наиболее распространен на производстве.

Вопросы для самоконтроля

  • 1. Какие свойства относятся к основным свойствам металлов и сплавов?
  • 2. Какие параметры относятся к механическим свойствам?
  • 3. Какие испытания называются статическими?
  • 4. Какие методы применяют для испытания на твердость?
  • 5. Что характеризуют технологические свойства материалов?
  • 6. Перечислите технологические свойства материалов.
  • 7. Перечислите эксплуатационные свойства материалов.
Понравилась статья? Поделиться с друзьями:
Станок