- Физико-химические характеристики
- Технология получения
- Сферы применения
- Классификация
- Основная группа
- Молибден
- Вольфрам
- Тантал
- Ниобий
- Рений
- Дополнительная группа
- Какой самый тугоплавкий металл: название и свойства :
- Физические свойства металлов
- Тугоплавкие и легкоплавкие металлы
- Вольфрам – самый тугоплавкий металл
- Исторические сведения
- Режущие свойства вольфрама
- Применение вольфрама
- Получение сплавов с вольфрамом
- Свойства сплавов
- Самые легкоплавкие и тугоплавкие металлы
- Коротко о железе
- Температура плавления железа
- Вместо заключения
- Таблица температур плавления различных металлов, и при скольки градусах они плавятся
- Как происходит
- Разделение металлов
- Таблица легкоплавких металлов и сплавов (до 600С о )
- Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о )
- Таблица тугоплавких металлов и сплавов (свыше 1600С о )
- Температура плавления металлов — Экобаланс
- Что такое температура плавления?
- Понятие о шкале температур
- Процесс плавления металла
- От чего зависит температура плавления металла?
- Классификация металлов по температуре плавления
- Таблица легкоплавких металлов и сплавов (до 600 Со )
- При какой температуре плавятся металлы?
- Плавление железа
- Плавление чугуна
- Плавление стали
- Плавление алюминия и меди
- Плавление серебра и золота
- Плавление ртути
Чтобы расплавить металлы этой группы, требуются сверхтемпературы. Самый известный – вольфрам, из которого сделана нить накаливания в лампочках. Другие члены «семейства» тоже востребованы.
- О признаке, по которому металл причисляют к группе, говорит название.
- Тугоплавкие металлы – это химические элементы с температурой плавления выше большинства остальных:
- В классическом понимании это более 2200°С. Таким свойством наделены пять металлов.
- Однако термин «тугоплавкие» применяют и в отношении металлов с температурой плавления выше железа, т.е. от 1850°С. По этому параметру тугоплавкими металлами являются еще девять элементов.
Таким образом, список тугоплавких элементов включает 14 позиций.
Физико-химические характеристики
Главная характеристика группы – тугоплавкость – обеспечивается структурой атомов. Электроны располагаются так близко, что для разрыва межатомных связок требуется температура до двух тысяч градусов.
Вторая общая черта – замедленность деформации ползучести. Чтобы они начали «расползаться», требуется нагрев 1500+°C. В отличие от легкоплавких металлов, которые растекаются при паре сотен градусов.
Однако большинство свойств тугоплавких металлов (плотность, твердость, сопротивляемость сжатию) разнятся из-за принадлежности к разным группам и отличий в структуре кристаллической решетки.
Больше схожести в химических свойствах:
- Легкость образования соединений с другими элементами, из-за чего обнаружить тугоплавы в чистом виде невозможно.
- На воздухе покрываются защитной пленкой. Скорость определяется температурой.
- При нагреве либо взаимодействии с газами (азотом, водородом, углеродом) первоначальные свойства утрачиваются, развивается коррозия, появляется хрупкость.
- Устойчивость перед воздействием кислот.
Учитывая такие характеристики, с элементами работают в вакууме. Самый распространенный пример – вольфрамовая нить накаливания внутри бытовой лампочки.
Технология получения
Исходник большинства тугоплавов – руда.
Процесс традиционен:
- Из нее удаляют примеси.
- Рафинируют (восстанавливают нужный элемент). Способ восстановления зависит от требуемой степени чистоты металла. Поэтому задействуют дугообразную, электронно-лучевую либо плазменную плавку.
- Лучший продукт дает плазма. Он представляет собой мелкие гранулы, порошок либо заготовки (проволока, фольга, слитки, арматура, прокат).
Технология плавления специфична, поэтому таким сырьем занимаются специальные предприятия. В СССР их было всего два.
Обработка тугоплавких металлов возможна только методами порошковой металлургии.
Сферы применения
Применение тугоплавких металлов не ограничивается бытовыми лампочками.
Их свойства обеспечивают использование всеми отраслями промышленного комплекса, ВПК, в быту:
- Металлургия. Компонент-лигатура для сплавов.
- Судо-, авиа-, космостроение. Детали двигателей.
- Ядерный сектор. Материал деталей реакторов.
- Химпром. Катализатор, источник света.
- Электроника. Конденсаторы.
Материал популярен как база жаропрочных, повышенно устойчивых конструкций (огнеупоров) для указанных отраслей. Особенно если требуются детали сложной конфигурации.
Особняком стоит выращивание рубинов. Для этого в бесцветный кристалл добавляют микродозы хрома.
Почти всегда применяются сплавы. Например, ядерщиками и строителями космических аппаратов востребована молибденово-танталово-вольфрамовая композиция. Она не деформируется при температурах порядка 4000°С, упруга, пластична, невосприимчива к ржавлению.
Классификация
В зависимости от температуры плавления тугоплавкие металлы причисляются к основной либо дополнительной группе.
Основная группа
Данный сегмент включает пять позиций: вольфрам, ниобий, тантал, молибден, рений. Плавятся при 2200°С+.
Температура плавления | 2750 K (2477 °C) | 2896 K (2623 °C) | 3290 K (3017 °C) | 3695 K (3422 °C) | 3459 K (3186 °C) |
Температура кипения | 5017 K (4744 °C) | 4912 K (4639 °C) | 5731 K (5458 °C) | 5828 K (5555 °C) | 5869 K (5596 °C) |
Плотность | 8,57 г·см³ | 10,28 г·см³ | 16,69 г·см³ | 19,25 г·см³ | 21,02 г·см³ |
Модуль Юнга | 105 ГПа | 329 ГПа | 186 ГПа | 411 ГПа | 463 ГПа |
Твёрдость по Виккерсу | 1320 МПа | 1530 МПа | 873 МПа | 3430 МПа | 2450 МПа |
Молибден
- Самый востребованный из тугоплавких элементов.
- Сфера использования номер один – металлургия:
- Молибденом «усиливают» сталь, чтобы получить твердый сплав.
- На пару с нержавеющей сталью применяют как материал инфраструктуры трубопроводов, деталей автомобилей, другой продукции машиностроения.
- Благодаря температуре плавления, износостойкости, малой истираемости используется как легирующая присадка.
Молибдену требуется пара процентов лигатур в составе, чтобы свойства сплава изменились.
- Например, полпроцента титана плюс 0,08% циркония создают молибденовый сплав, не снижающий прочность до 1060°C.
- Неординарные параметры по трению обусловили использование молибдена как долговечной смазки с высоким КПД.
- Материал незаменим для ртутных реле, поскольку амальгама с данным металлом ртутью не формируется.
Вольфрам
Открыт в конце 18 века. Самый твердый и самый тугоплавкий (3422°C) металл.
Тугоплавкий прочный металл, светло-серого цвета – вольфрам
Вместе с медью и железом используется как основа (до 80%) сплавов с рением, торием, никелем. Такие добавки повышают плотность, порог стойкости к ржавлению, надежность.
Востребован как материал систем электроснабжения, приборов, боеприпасов, ядерных боеголовок ракет. Никелевые сплавы как материал клюшек ценят поклонники гольфа.
Вольфрам в слитках
Вольфрам, его сплавы востребованы там, где нужна повышенная плотность в условиях запредельных температур.
Тантал
Самый стойкий к кислотам, коррозии из сегмента тугоплавких металлов.
Тяжёлый твёрдый металл серого цвета – тантал
Поэтому используется в конденсаторах смартфонов, планшетов, других гаджетов.
Совместим с биологическими организмами (не меняется под воздействием природных кислот). Благодаря этому применяется медициной.
В природе ниобий и тантал соседи. Не случайно названы по именам отца и дочери – Тантала и Ниобы, персонажей древнегреческих мифов.
Ниобий
Металл с небанальными характеристиками:
- Самый легкий (малой плотности) в сегменте.
- Уникален благодаря свойству менять коэффициент твердости и упругости в зависимости от степени отжига.
- Самый частый в сплавах-суперпроводниках.
Применяется как материал конденсаторов, газовых турбин ракет, самолетов. А также элемент ядерных реакторов и ламп электронных приборов.
Вместе с гафнием и титаном – материал двигателей космических аппаратов (например, американского Аполлона).
Рений
Самый редкий и дорогой из тугоплавких металлов:
- В сплавах выступает легирующим, никогда – основным компонентом.
- Как лигатура, повышает утилитарные кондиции сплава: прочность, ковкость (например, с медью и платиной).
- Обнаружен последним в тугоплавком сегменте.
Оксид рения – самый неустойчивый, плотный поток кислорода способен сорвать оксидный слой.
Сплавы с рением служат катализаторами, начинкой электронного оборудования, гироскопов, реакторов атомных объектов.
Дополнительная группа
Данный сегмент тугоплавких металлов включает девять позиций. Их общий признак – порог плавления от 1850°C.
Сюда зачислены девять элементов из трех групп (четвертый – шестой периоды) таблицы Менделеева.
У каждого своя «изюминка»:
- Осмий – самое плотное вещество планеты, самый тяжелый тугоплав.
- Иридий встречается чаще в метеоритах, чем на Земле.
- Метаморфозы теплоемкости гафния необъяснимы наукой до сих пор.
- Рутений назван в честь России.
- Из чистого ванадия вытачивают жетоны и медали для коллекционеров.
- Титан – единственный тугоплавкий цветной металл. Материал зубных и костных протезов.
- Без циркония невозможны салюты и фейерверки. Медицинский «дублер» титана.
Тонким слоем хрома и благородного родия покрывают поверхность изделий класса люкс, включая ювелирные. Процессы называются хромированием и родированием.
Какой самый тугоплавкий металл: название и свойства :
Металлы относятся к самым распространенным материалам наравне со стеклом и пластмассами. Они используются людьми с давних времен.
На практике люди познавали свойства металлов и с выгодой использовали их для изготовления посуды, бытовых предметов, различных сооружений и произведений искусства.
Основной характеристикой этих материалов является их тугоплавкость и твердость. Собственно, от этих качеств зависит их применение в той или иной области.
Физические свойства металлов
Все металлы обладают следующими общими свойствами:
- Цвет – серебристо-серый с характерным блеском. Исключение составляют: медь и золото. Они соответственно выделяются красноватым и желтым оттенком.
- Агрегатное состояние – твердое тело, кроме ртути, которая является жидкостью.
- Тепло- и электропроводность – для каждого вида металлов выражается по-разному.
- Пластичность и ковкость – изменяющийся параметр в зависимости от конкретного металла.
- Температура плавления и кипения – устанавливает тугоплавкость и легкоплавкость, обладает разными значениями для всех материалов.
Все физические свойства металлов зависят от строения кристаллической решетки, ее формы, прочности и пространственного расположения.
Этот параметр становится важным, когда возникает вопрос о практическом применении металлов. Для таких важных отраслей народного хозяйства, как авиастроение, кораблестроение, машиностроение, основой являются тугоплавкие металлы и их сплавы.
Кроме этого, их используют для изготовления высокопрочного рабочего инструмента. Литьем и выплавкой получают многие важные детали и изделия. По прочности все металлы делятся на хрупкие и твердые, а по тугоплавкости их подразделяют на две группы.
Тугоплавкие и легкоплавкие металлы
- Тугоплавкие – их температура плавления превышает точку плавления железа (1539 °C). К ним можно отнести платину, цирконий, вольфрам, тантал. Таких металлов всего несколько видов. На практике их применяется еще меньше.
Некоторые не используются, так как они имеют высокую радиоактивность, другие – слишком хрупкие и не обладают нужной мягкостью, третьи – подвержены коррозии, а есть такие, что экономически невыгодные. Какой металл самый тугоплавкий? Как раз об этом пойдет речь в данной статье.
- Легкоплавкие – это металлы, которые при температуре меньше или равной температуре плавления олова 231,9 °C могут изменить свое агрегатное состояние. Например, натрий, марганец, олово, свинец. Металлы применяются в радио- и электротехнике.
Их часто используют для антикоррозийных покрытий и в качестве проводников.
Вольфрам – самый тугоплавкий металл
Это твердый и тяжелый материал с металлическим блеском, светло-серого цвета, обладающий высокой тугоплавкостью. Механической обработке поддается трудно. При комнатной температуре он является хрупким металлом и легко ломается.
Вызвано это загрязнением его примесями кислорода и углерода. Технически чистый вольфрам при температуре более 400 градусов Цельсия становится пластичным. Проявляет химическую инертность, плохо вступает в реакции с другими элементами.
В природе вольфрам встречается в виде сложных минералов, таких как:
- шеелит;
- вольфрамит;
- ферберит;
- гюбнерит.
Вольфрам получают из руды, применяя сложные химические переработки, в виде порошка. Используя методы прессования и спекания, изготовляют детали простой формы и бруски. Вольфрам — очень стойкий элемент к температурным воздействиям. Поэтому размягчить металл не могли в течение ста лет.
Не имелось таких печей, которые могли бы разогреваться до нескольких тысяч градусов. Ученые доказали, что самым тугоплавким металлом является вольфрам.
Хотя существует мнение, что сиборгий, по теоретическим данным, обладает большей тугоплавкостью, но утверждать твердо этого нельзя, так как он радиоактивный элемент и имеет маленький срок существования.
Исторические сведения
Знаменитый шведский химик Карл Шееле, имеющий профессию аптекаря, в небольшой лаборатории, проводя многочисленные опыты, открыл марганец, барий, хлор и кислород.
А незадолго до смерти в 1781 году выявил, что минерал тунгстен является солью неизвестной тогда кислоты. После двух лет работы его ученики, два брата д’Элуяр (испанские химики), выделили из минерала новый химический элемент и назвали его вольфрамом.
Только через столетие вольфрам – самый тугоплавкий металл — произвел настоящий переворот в промышленности.
Режущие свойства вольфрама
В 1864 году английский ученый Роберт Мюшет использовал вольфрам как легирующую добавку к стали, которая выдерживала красное каление и еще больше увеличивала твердость. Резцы, которые изготовляли из полученной стали, увеличили скорость резания металла в 1,5 раза, и она стала составлять 7,5 метра в минуту.
Работая в этом направлении, ученые получали все новые технологии, увеличивая скорость обработки металла с использованием вольфрама.
В 1907 году появилось новое соединение вольфрама с кобальтом и хромом, которое стало основоположником твердых сплавов, способных увеличивать скорость резания.
В настоящее время она возросла до 2000 метров в минуту, и все это благодаря вольфраму – самому тугоплавкому металлу.
Применение вольфрама
Этот металл обладает сравнительно высокой ценой и тяжело обрабатывается механическим способом, поэтому применяют его там, где невозможно заменить другими, сходными по свойствам материалами.
Вольфрам прекрасно выдерживает высокие температуры, имеет значительную прочность, наделен твердостью, упругостью и тугоплавкостью, поэтому находит широкое использование во многих областях промышленности:
- Металлургической. Она является основным потребителем вольфрама, который идет на производство высокого качества легированных сталей.
- Электротехнической. Температура плавления самого тугоплавкого металла составляет почти 3400 °C. Тугоплавкость металла позволяет применять его для производства нитей накаливания, крючков в осветительных и электронных лампах, электродов, рентгеновских трубок, электрических контактов.
- Машиностроительной. Благодаря повышенной прочности сталей, содержащих вольфрам, изготавливают цельнокованые роторы, зубчатые колеса, коленчатые валы, шатуны.
- Авиационной. Какой самый тугоплавкий металл используют для получения твердых и жаропрочных сплавов, из которых делают детали авиационных двигателей, электровакуумных приборов, нити накаливания? Ответ прост – это вольфрам.
- Космической. Из стали, содержащей вольфрам, производят реактивные сопла, отдельные элементы для реактивных двигателей.
- Военной. Высокая плотность металла позволяет изготавливать бронебойные снаряды, пули, броневую защиту торпед, снарядов и танков, гранаты.
- Химической. Стойкая вольфрамовая проволока против кислот и щелочей используется для сеток к фильтрам. С помощью вольфрама меняют скорость химических реакций.
- Текстильной. Вольфрамовая кислота используется как краситель для тканей, а вольфрамит натрия применяют для производства кожи, шелка, водоустойчивых и огнестойких тканей.
Приведенный перечень использования вольфрама в разных областях индустрии указывает на высокую ценность этого металла.
Получение сплавов с вольфрамом
Вольфрам, самый тугоплавкий металл в мире, часто используют для получения сплавов с другими элементами для улучшения свойств материалов. Сплавы, которые содержат вольфрам, как правило, получают по технологии порошковой металлургии, так как при общепринятом способе все металлы превращаются в летучие жидкости или газы при его температуре плавления.
Процесс сплавления проходит в вакууме или в атмосфере аргона, чтобы избежать окисления. Смесь, состоящую из металлических порошков, прессуют, спекают и подвергают плавке. В некоторых случаях только вольфрамовый порошок подвергают прессовке и спеканию, а затем пористую заготовку насыщают расплавом другого металла.
Сплавы вольфрама с серебром и медью получают именно таким способом. Даже небольшие добавки самого тугоплавкого металла увеличивают жаростойкость, твердость и стойкость к окислению в сплавах с молибденом, танталом, хромом и ниобием. Пропорции в этом случае могут быть совершенно любыми в зависимости от потребностей промышленности.
Более сложные сплавы, зависящие от соотношения компонентов с железом, кобальтом и никелем, имеют следующие свойства:
- не тускнеют на воздухе;
- обладают хорошей химической стойкостью;
- имеют отличные механические свойства: твердость и износоустойчивость.
Довольно сложные соединения образует вольфрам с бериллием, титаном и алюминием. Они выделяются устойчивостью при высокой температуре к окислению, а также жаропрочностью.
Свойства сплавов
В практической деятельности вольфрам часто соединяют с группой иных металлов.
Соединения вольфрама с хромом, кобальтом и никелем, обладающие повышенной стойкостью к кислотам, используют для изготовления хирургических инструментов.
А особые жаропрочные сплавы, кроме вольфрама – самого тугоплавкого металла, содержат в своем составе хром, никель, алюминий, никель. Вольфрам, кобальт и железо входит в состав лучших марок магнитной стали.
Вольфрамсодержащие стали устойчивы к истиранию, не трескаются, неизменно сохраняют твердость. Режущие инструменты не только увеличивают скорость обработки металла, но и имеют длительный срок службы.
Самые легкоплавкие и тугоплавкие металлы
К легкоплавким относятся все металлы, температура плавления которых меньше, чем у олова (231,9 °C). Элементы этой группы находят применение в качестве антикоррозийных покрытий, в электро- и радиотехнике, входят в состав антифрикционных сплавов.
Ртуть, точка плавления которой -38,89 °C, при комнатной температуре является жидкостью и находит широкое применение в научных приборах, ртутных лампах, выпрямителях, переключателях, в хлорном производстве. У ртути самая низкая температура плавления по сравнению с другими металлами, входящими в группу легкоплавких.
К тугоплавким металлам принадлежат все, температура плавления которых больше, чем у железа (1539 °C). Чаще всего их используют в качестве добавок при изготовлении легированных сталей, а также они могут служить и основой для некоторых специальных сплавов.
Вольфрам, имеющий максимальную температуру плавления 3420 °C, в чистом виде используют в основном для нитей накала в электролампах.
Довольно часто в кроссвордах задают вопросы, какой из металлов самый легкоплавкий или самый тугоплавкий? Теперь, не задумываясь, можно ответить: самый легкоплавкий – ртуть, а самый тугоплавкий – вольфрам.
Коротко о железе
Этот металл называют основным конструкционным материалом. Детали из железа встречаются как на космическом корабле или подводной лодке, так и дома на кухне в виде столовых приборов и различных украшений.
Этот металл имеет серебристо-серый цвет, обладает мягкостью, пластичностью и магнитными свойствами. Железо является очень активным элементом, на воздухе образуется оксидная пленка, которая препятствует продолжению реакции.
Во влажной среде появляется ржавчина.
Температура плавления железа
Железо обладает пластичностью, хорошо поддается ковке и плохо обрабатывается литьем. Этот прочный металл легко обрабатывается механическим способом, используется для изготовления магнитоприводов.
Хорошая ковкость позволяет его применять для декоративных украшений. Является ли железо самым тугоплавким металлом? Следует отметить, что его температура плавления равна 1539 °C.
А по определению, к тугоплавким относятся металлы, температура плавления которых больше, чем у железа.
Однозначно можно сказать, что железо — не самый тугоплавкий металл, и даже не принадлежит к этой группе элементов. Он относится к среднеплавким материалам. Назовите самый тугоплавкий металл? Такой вопрос не застанет теперь вас врасплох. Можно смело отвечать – это вольфрам.
Вместо заключения
Примерно тридцать тысяч тонн в год вольфрама производится во всем мире. Этот металл непременно входит в состав наилучших сортов сталей для изготовления инструментов. На нужды металлургии расходуется до 95% всего вырабатываемого вольфрама.
Для удешевления процесса в основном используют более дешевый сплав, состоящий из 80% процентов вольфрама и 20% железа. Используя свойства вольфрама, его сплав с медью и никелем применяют для производства контейнеров, используемых под хранение радиоактивных веществ.
В радиотерапии этот же сплав служит для изготовления экранов, обеспечивая надежную защиту.
Таблица температур плавления различных металлов, и при скольки градусах они плавятся
Самая высокая температура плавления среди металлов принадлежит вольфраму: она составляет 3422Со, самая низкая — у ртути: элемент плавится уже при — 39Со. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.
Как происходит
При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул, возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.
Разделение металлов
В зависимости от температуры плавления металлы делятся на:
- Легкоплавкие: им необходимо не более 600Со. Это цинк, свинец, виснут, олово.
- Среднеплавкие: температура плавления колеблется от 600Со до 1600Со. Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
- Тугоплавкие: требуется температура свыше 1600Со, чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.
В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.
Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.
Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.
- Увеличивается давление — увеличится величина плавления.
- Уменьшается давление — уменьшается величина плавления.
Таблица легкоплавких металлов и сплавов (до 600С о )
Название элемента | Латинское обозначение | Температуры | |
Плавления | Кипения | ||
Олово | Sn | 232 Со | 2600 Со |
Свинец | Pb | 327 Со | 1750 Со |
Цинк | Zn | 420 Со | 907 Со |
Калий | K | 63,6 Со | 759 Со |
Натрий | Na | 97,8 Со | 883 Со |
Ртуть | Hg | — 38,9 Со | 356.73 Со |
Цезий | Cs | 28,4 Со | 667.5 Со |
Висмут | Bi | 271,4 Со | 1564 Со |
Палладий | Pd | 327,5 Со | 1749 Со |
Полоний | Po | 254 Со | 962 Со |
Кадмий | Cd | 321,07 Со | 767 Со |
Рубидий | Rb | 39,3 Со | 688 Со |
Галлий | Ga | 29,76 Со | 2204 Со |
Индий | In | 156,6 Со | 2072 Со |
Таллий | Tl | 304 Со | 1473 Со |
Литий | Li | 18,05 Со | 1342 Со |
Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о )
Название элемента | Латинское обозначение | Температураы | |
Плавления | Кипения | ||
Алюминий | Al | 660 Со | 2519 Со |
Германий | Ge | 937 Со | 2830 Со |
Магний | Mg | 650 Со | 1100 Со |
Серебро | Ag | 960 Со | 2180 Со |
Золото | Au | 1063 Со | 2660 Со |
Медь | Cu | 1083 Со | 2580 Со |
Железо | Fe | 1539 Со | 2900 Со |
Кремний | Si | 1415 Со | 2350 Со |
Никель | Ni | 1455 Со | 2913 Со |
Барий | Ba | 727 Со | 1897 Со |
Бериллий | Be | 1287 Со | 2471 Со |
Нептуний | Np | 644 Со | 3901,85 Со |
Протактиний | Pa | 1572 Со | 4027 Со |
Плутоний | Pu | 640 Со | 3228 Со |
Актиний | Ac | 1051 Со | 3198 Со |
Кальций | Ca | 842 Со | 1484 Со |
Радий | Ra | 700 Со | 1736,85 Со |
Кобальт | Co | 1495 Со | 2927 Со |
Сурьма | Sb | 630,63 Со | 1587 Со |
Стронций | Sr | 777 Со | 1382 Со |
Уран | U | 1135 Со | 4131 Со |
Марганец | Mn | 1246 Со | 2061 Со |
Константин | 1260 Со | ||
Дуралюмин | Сплав алюминия, магния, меди и марганца | 650 Со | |
Инвар | Сплав никеля и железа | 1425 Со | |
Латунь | Сплав меди и цинка | 1000 Со | |
Нейзильбер | Сплав меди, цинка и никеля | 1100 Со | |
Нихром | Сплав никеля, хрома, кремния, железа, марганца и алюминия | 1400 Со | |
Сталь | Сплав железа и углерода | 1300 Со — 1500 Со | |
Фехраль | Сплав хрома, железа, алюминия, марганца и кремния | 1460 Со | |
Чугун | Сплав железа и углерода | 1100 Со — 1300 Со |
Таблица тугоплавких металлов и сплавов (свыше 1600С о )
Название элемента | Латинское обозначение | Температуры | |
Плавления | Кипения | ||
Вольфрам | W | 3420 Со | 5555 Со |
Титан | Ti | 1680 Со | 3300 Со |
Иридий | Ir | 2447 Со | 4428 Со |
Осмий | Os | 3054 Со | 5012 Со |
Платина | Pt | 1769,3 Со | 3825 Со |
Рений | Re | 3186 Со | 5596 Со |
Хром | Cr | 1907 Со | 2671 Со |
Родий | Rh | 1964 Со | 3695 Со |
Рутений | Ru | 2334 Со | 4150 Со |
Гафний | Hf | 2233 Со | 4603 Со |
Тантал | Ta | 3017 Со | 5458 Со |
Технеций | Tc | 2157 Со | 4265 Со |
Торий | Th | 1750 Со | 4788 Со |
Ванадий | V | 1910 Со | 3407 Со |
Цирконий | Zr | 1855 Со | 4409 Со |
Ниобий | Nb | 2477 Со | 4744 Со |
Молибден | Mo | 2623 Со | 4639 Со |
Карбиды гафния | 3890 Со | ||
Карбиды ниобия | 3760 Со | ||
Карбиды титана | 3150 Со | ||
Карбиды циркония | 3530 Со |
- Виталий Данилович Орлов
- Распечатать
Температура плавления металлов — Экобаланс
24 ноября 2021
Металлы и сплавы — это незаменимая основа для литейного и ювелирного производства, ковки и многих других сфер. Что бы ни делал человек из металла (какой бы это ни был процесс), для правильной работы ему нужно знать, при какой температуре плавится тот или иной металл.
Что такое температура плавления?
Каждый металл имеет неповторимые свойства, и в этот список входит температура плавления. При плавке металл уходит из одного состояния в другое, а именно из твёрдого превращается в жидкое.
Чтобы сплавить металл, нужно приблизить к нему тепло и нагреть до необходимой температуры – этот процесс и называется температурой плавления. В момент, когда температура доходит до нужной отметки, он ещё может пребывать в твёрдом состоянии.
Если продолжать воздействие – металл или сплав начнет плавиться.
Плавление и кипение – это не одно и то же. Точкой перехода вещества из твердого состояния в жидкое, зачастую называют температуру плавления металла. В расплавленном состоянии у молекул нет определенного расположения, но притяжение сдерживает их рядом, в жидком виде кристаллическое тело оставляет объем, но форма теряется.
При кипении объем теряется, молекулы между собой очень слабо взаимодействуют, движутся хаотично в разных направлениях, совершают отрыв от поверхности. Температура кипения – это процесс, при котором давление металлического пара приравнивается к давлению внешней среды.
Понятие о шкале температур
Некоторые неметаллические предметы тоже обладают похожими свойствами. Самым распространённым является вода. Относительно свойств жидкости, занимающей господствующее положение на Земле, была разработана шкала температур. Реперными точками признаны температура изменения агрегатных состояний воды:
- Превращения из жидкости в твердое вещество и наоборот приняты за ноль градусов.
- Кипения (парообразования внутри жидкости) при нормальном атмосферном давлении (760 мм рт. ст.) принята за 100 ⁰С.
Кроме шкалы Цельсия на практике измеряют температуру в градусах Фаренгейта и по абсолютной шкале Кельвина. Но при исследовании свойств металлических предметов другие шкалы используют довольно редко.
Процесс плавления металла
При термовоздействии на деталь изменение внутренней структуры происходит за счет накопления энергии молекулами. Скорость их движения возрастает. В критической точке нагрева начинается разрушение кристаллической структуры, межмолекулярные связи уже не могут удержать молекулы в узлах решетки.
Взамен колебательным движениям в пределах узла происходит хаотическое движение, образуется ванна расплава в месте нагрева. Точку начала расплавления вещества в лабораторных условиях определяют до сотых долей градуса, причем этот показатель не зависит от внешнего давления на заготовку.
В вакууме и под давлением металлические заготовки начинают плавиться при одной и той же температуре, это объясняется процессом накопления внутренней энергии, необходимой для разрушения межмолекулярных связей.
От чего зависит температура плавления металла?
Для разных веществ температура, при которой полностью перестраивается структура до жидкого состояния – разная. Если взять во внимание металлы и сплавы, то стоит подметить такие моменты:
- В чистом виде не часто можно встретить металлы. Температура напрямую зависит от его состава. В качестве примера укажем олово, к которому могут добавлять другие вещества (например, серебро). Примеси позволяют делать материал более либо менее устойчивым к нагреву.
- Бывают сплавы, которые благодаря своему химическому составу могут переходить в жидкое состояние при температуре свыше ста пятидесяти градусов. Также бывают сплавы, которые могут «держаться» при нагреве до трех тысяч градусов и выше. С учетом того, что при изменении кристаллической решетки меняются физические и механические качества, а условия эксплуатации могут определяться температурой нагрева. Стоит отметить, что точка плавления металла — важное свойство вещества. Пример этому – авиационное оборудование.
Термообработка, в большинстве случаев, почти не изменяет устойчивость к нагреву. Единственно верным способом увеличения устойчивости к нагреванию можно назвать внесение изменений в химический состав, для этого и проводят легирование стали.
Классификация металлов по температуре плавления
В физике переход твердого тела в жидкое состояние характерен только для веществ кристаллической структуры. Температуру плавления металлов чаще обозначают диапазоном значений, для сплавов точно определить нагрев до пограничного фазового состояния сложно. Для чистых элементов каждый градус имеет значение, особенно, если это легкоплавкие элементы,
значения не имеет. Сводная таблица показателей t обычно делится на 3 группы. Помимо легкоплавких элементов, которые максимально нагревают до +600°С, указывают тугоплавкие, выдерживающие нагрев свыше +1600°С, и среднеплавкие. В этой группе сплавы, образующие ванну расплава при температуре от +600 до 1600°С.
В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.
Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.
Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.
- Увеличивается давление — увеличится величина плавления.
- Уменьшается давление — уменьшается величина плавления.
У разных веществ разные температуры плавления. Теоретически, металлы делят на:
- Легкоплавкие – достаточно температуры до 600 градусов Цельсия, для получения жидкого вещества.
- Среднеплавкие – необходима температура от 600 до 1600 ⁰С.
- Тугоплавкие – это металлы, для плавления которых требуется температура выше 1600 ⁰С.
Таблица легкоплавких металлов и сплавов (до 600 Со )
Ниже указана таблица с наименованием легкоплавких металлов и сплавов с температурой плавления до 600 Со.
Название элемента | Латинское обозначение | Температуры | |
Плавления | Кипения | ||
Олово | Sn | 232 Со | 2600 Со |
Свинец | Pb | 327 Со | 1750 Со |
Цинк | Zn | 420 Со | 907 Со |
Калий | K | 63,6 Со | 759 Со |
Натрий | Na | 97,8 Со | 883 Со |
Ртуть | Hg | — 38,9 Со | 356.73 Со |
Цезий | Cs | 28,4 Со | 667.5 Со |
Висмут | Bi | 271,4 Со | 1564 Со |
Палладий | Pd | 327,5 Со | 1749 Со |
Полоний | Po | 254 Со | 962 Со |
Кадмий | Cd | 321,07 Со | 767 Со |
Рубидий | Rb | 39,3 Со | 688 Со |
Галлий | Ga | 29,76 Со | 2204 Со |
Индий | In | 156,6 Со | 2072 Со |
Таллий | Tl | 304 Со | 1473 Со |
Литий | Li | 18,05 Со | 1342 Со |
Ниже указана таблица с наименованием среднеплавких металлов и сплавов с температурой плавления от 600 Со от 1600 Со.
Название элемента | Латинское обозначение | Температураы | |
Плавления | Кипения | ||
Алюминий | Al | 660 Со | 2519 Со |
Германий | Ge | 937 Со | 2830 Со |
Магний | Mg | 650 Со | 1100 Со |
Серебро | Ag | 960 Со | 2180 Со |
Золото | Au | 1063 Со | 2660 Со |
Медь | Cu | 1083 Со | 2580 Со |
Железо | Fe | 1539 Со | 2900 Со |
Кремний | Si | 1415 Со | 2350 Со |
Никель | Ni | 1455 Со | 2913 Со |
Барий | Ba | 727 Со | 1897 Со |
Бериллий | Be | 1287 Со | 2471 Со |
Нептуний | Np | 644 Со | 3901,85 Со |
Протактиний | Pa | 1572 Со | 4027 Со |
Плутоний | Pu | 640 Со | 3228 Со |
Актиний | Ac | 1051 Со | 3198 Со |
Кальций | Ca | 842 Со | 1484 Со |
Радий | Ra | 700 Со | 1736,85 Со |
Кобальт | Co | 1495 Со | 2927 Со |
Сурьма | Sb | 630,63 Со | 1587 Со |
Стронций | Sr | 777 Со | 1382 Со |
Уран | U | 1135 Со | 4131 Со |
Марганец | Mn | 1246 Со | 2061 Со |
Константин | 1260 Со | ||
Дуралюмин | Сплав алюминия, магния, меди и марганца | 650 Со | |
Инвар | Сплав никеля и железа | 1425 Со | |
Латунь | Сплав меди и цинка | 1000 Со | |
Нейзильбер | Сплав меди, цинка и никеля | 1100 Со | |
Нихром | Сплав никеля, хрома, кремния, железа, марганца и алюминия | 1400 Со | |
Сталь | Сплав железа и углерода | 1300 Со — 1500 Со | |
Фехраль | Сплав хрома, железа, алюминия, марганца и кремния | 1460 Со | |
Чугун | Сплав железа и углерода | 1100 Со — 1300 Со |
Ниже указана таблица с наименованием тугоплавких металлов и сплавов с температурой плавления свыше 1600 Со.
Название элемента | Латинское обозначение | Температуры | |
Плавления | Кипения | ||
Вольфрам | W | 3420 Со | 5555 Со |
Титан | Ti | 1680 Со | 3300 Со |
Иридий | Ir | 2447 Со | 4428 Со |
Осмий | Os | 3054 Со | 5012 Со |
Платина | Pt | 1769,3 Со | 3825 Со |
Рений | Re | 3186 Со | 5596 Со |
Хром | Cr | 1907 Со | 2671 Со |
Родий | Rh | 1964 Со | 3695 Со |
Рутений | Ru | 2334 Со | 4150 Со |
Гафний | Hf | 2233 Со | 4603 Со |
Тантал | Ta | 3017 Со | 5458 Со |
Технеций | Tc | 2157 Со | 4265 Со |
Торий | Th | 1750 Со | 4788 Со |
Ванадий | V | 1910 Со | 3407 Со |
Цирконий | Zr | 1855 Со | 4409 Со |
Ниобий | Nb | 2477 Со | 4744 Со |
Молибден | Mo | 2623 Со | 4639 Со |
Карбиды гафния | 3890 Со | ||
Карбиды ниобия | 3760 Со | ||
Карбиды титана | 3150 Со | ||
Карбиды циркония | 3530 Со |
При какой температуре плавятся металлы?
Металлические элементы, какими бы они ни были — плавятся почти один в один. Этот процесс происходит при нагреве. Оно может быть, как внешнее, так и внутреннее.
Первое проходит в печи, а для второго используют резистивный нагрев, пропуская электричество либо индукционный нагрев. Воздействие выходит практически схожее. При нагреве, увеличивается амплитуда колебаний молекул.
Образуются структурные дефекты решётки, которые сопровождаются обрывом межатомных связей. Под процессом разрушения решётки и скоплением подобных дефектов и подразумевается плавление.
Плавление железа
Температура плавления железа достаточно высока. Для технически чистого элемента требуется температура +1539 °C. В этом веществе имеется примесь — сера, а извлечь ее допустимо лишь в жидком виде.
Без примесей чистый материал можно получить при электролизе солей металла.
Плавление чугуна
Чугун – это лучший металл для плавки. Высокий показатель жидкотекучести и низкий показатель усадки дают возможность эффективнее пользоваться им при литье. Далее рассмотрим показатели температуры кипения чугуна в градусах Цельсия:
- Серый — температурный режим может достигать отметки 1260 градусов. При заливке в формы температура может подниматься до 1400.
- Белый — температура достигает отметки 1350 градусов. В формы заливается при показателе 1450.
Показатели плавления такого металла, как чугун – на 400 градусов ниже, по сравнению со сталью. Это значительно снижает затраты энергии при обработке.
Плавление стали
Сталь — это сплав железа с примесью углерода. Её главная польза — прочность, поскольку это вещество способно на протяжении длительного времени сохранять свой объем и форму. Связано это с тем, что частицы находятся в положении равновесия. Таким образом силы притяжения и отталкивания между частицами равны.
Сталь плавится при 1400 °C.
Температура плавления нержавеющей стали колеблется в среднем диапазоне между чугуном и сталью. Нержавеющей сталью называется вещество из легированной стали, обладающее антикоррозийными свойствами за счет содержания хрома в своем составе от 11% процентов и больше.
Показатели температуры плавления нержавейки составляют от 1 300 до 15 000 °C.
Плавление алюминия и меди
Температура плавления алюминия равна 660 градусам, это означает то, что расплавить его можно в домашних условиях.
Чистой меди – 1083 градусов, а для медных сплавов составляет от 930 до 1140 градусов.
Плавление серебра и золота
Серебро в чистом виде плавится при температуре 9 620 °C. При этом при температуре плавления серебра, оно может сравниться с температурой плавления в градусах со сплавами из меди.
Золото плавится при температуре в 10 640 °C.
Плавление ртути
Ртуть обладает самой низкой температурой плавления с отрицательным значением. Она составляет – 38,80 °C.
Вольфрам – самый тугоплавкий металл, 3422 °C (6170 °F).
Твердый, тугоплавкий, достаточно тяжелый материал светло-серого цвета, который имеет металлический блеск. Механической обработке поддается с трудом. При комнатной температуре достаточно хрупок и ломается. Ломкость металла связана с загрязнением примесями углерода и кислорода.
Технически, чистый металл при температуре выше 400 °C становится очень пластичным. Демонстрирует химическую инертность, неохотно вступает в реакции с другими элементами. В природе встречается в виде таких сложных минералов, как: гюбнерит, шеелит, ферберит и вольфрамит.
Вольфрам можно получить из руды, благодаря сложным химическим переработкам, в качестве порошка. Используя прессование и спекание, из него создают детали обычной формы и бруски.
Вольфрам — крайне стойкий элемент к любым температурным воздействиям. По этой причине размягчить вольфрам не могли более сотни лет. Не существовало такой печи, которая смогла бы нагреться до нескольких тысяч градусов по Цельсию.
Ученым удалось доказать, что это самый тугоплавкий металл.
Хотя бытует мнение, что сиборгий, по некоторым теоретическим данным, имеет большую тугоплавкость, но это лишь предположение, поскольку он является радиоактивным элементом и у него небольшой срок существования.
В заключение о плавлении металлов можно выделить следующее:
- Температура плавления зависит от природы самого вещества. Чаще всего – это постоянная величина.
- На практике используют не чистые металлы, а их сплавы. Обычно они имеют свойства гораздо лучше, чем чистый металл.
- https://plazmen.ru/kakova-temperatura-plavleniya-zheleza
- https://svarkaprosto.ru/tehnologii/pri-kakoj-temperature-plavitsya-metall
- https://stanok.guru/stanki/metallorezhuschiy-stanok/temperatura-plavleniya-raznyh-metallov-v-tablice.html
- https://metmastanki.ru/temperatura-plavleniya-metallov-i-nemetallov-tablitsy
- https://pressadv.ru/stali/temperatura-plavleniya-metallov-tablica.html
- https://tutsvarka.ru/vidy/temperatura-plavleniya-metallov-tablitsa-i-ponyatie