Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

При проектировании электрических схем, инженеры сталкиваются с тем, что проводники обладают определенным сопротивлением, на которое оказывают влияния температурные колебания.

Статья даст подробное описание, что такое зависимость сопротивления от температуры и как температура влияет на проводимость различных веществ — металлов, газов и жидкостей.

Дополнительно будет приведена формула расчета такой зависимости.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Сопротивление

Сопротивлением называется способность проводника пропускать через себя электрический ток. Единицей измерения данной физической величины является Ом. На принципиальных схемах эта величина обозначается буквой «R».

На величину сопротивления любого проводника электрическому току влияет его структура. Двигаясь внутри структуры, свободные электроны сталкиваются с атомами и электронами, которые замедляют их движение.

Чем их концентрация больше, тем выше будет само электрическое сопротивление.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

О способности проводников проводит электрический ток судят по величине его удельного сопротивления.

Удельное сопротивление проводника — это сопротивление протеканию тока через проводник из любого вещества с площадью поперечного сечения 1 м² и длиной один метр. Обозначается в физике данная величина буквой «ρ».

Данный параметр является табличной величиной и измеряется в системе СИ как Ом×м (может также измеряться в Ом×см и Ом×мм²/м).

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Коэффициент сопротивления

Во время работы электрических цепей прослеживается прямая зависимость сопротивления металлов от температуры. Это явление называют коэффициентом температурного сопротивления. Оно определяет соотношение сопротивления к температурным изменениям.

Объясняется это явление следующим образом: с повышением температуры структура проводника получает долю тепловой энергии, вследствие чего эта энергия увеличивает скорость движения атомов. В результате повышается вероятность их столкновения со свободными электронами.

Чем чаще происходят эти столкновения, тем ниже будет проводимость.

Можно провести простой опыт: в электрическую схему из аккумулятора и омметра подключим кусок медной проволоки. При таком подключении схема будет иметь строго определенное значение сопротивления.

Далее надо будет нагреть медную проволоку. В момент нагрева можно заметить, что сопротивление всей схемы растет, а после остывания проводника оно наоборот уменьшается.

На основании такого опыта довольно просто прослеживается температурная зависимость сопротивления проводника.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Температурный коэффициент отображает увеличение сопротивления при изменении температуры вещества на 1 градус. Для максимально чистого металла это значение равняется 0.004 °С-1.

То есть, при увеличении температуры на 10 градусов, электрическая проводимость в металлах изменится на 4 % в большую сторону. Данная величина обозначается буквой «α».

При расчете сопротивления через удельное сопротивление используется такая формула:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

В данной зависимости:

  1. «R» — сопротивление, Ом;
  2. «l» — длина проводника, м;
  3. «s» — поперечное сечение проводника, м²;
  4. «ρ» — значение удельного сопротивления, Ом×м.

Зависимость проводимости металлического проводника от температуры можно проследить с помощью таких выражений:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Для металлов все предельно просто — изменение температуры приводит к увеличению его сопротивления. Ниже будет дано описание этой зависимости для газов, которые по своей природе являются диэлектриками.

Для закрепления материала, решим следующую задачу:

Имеется стальной проводник, диаметр которого равен один миллиметр, а длина его составляет 100 метров. Определите сопротивление такого проводника из стали, если величина удельного сопротивления стального проводника составляет 12×10-8 Ом×м.

  • Решение:
  • d=1 мм;
  • l=100 м;
  • ρ=13×10-8 Ом×м;
  • R–?
  • Определяем сопротивление проводника по формуле:
  • R=ρ(l/S)
  • где S является площадью поперечного сечения. Определить площадь можно с помощью формулы:

S= π×r2= π×d2/22=3.14×(1×10-3)2/4=3.14×10-6/4=0.785×10-6м2

После этого можно определить сопротивление:

R=12×10-8×100/(0.785×10-6)=15.287 Ом

Газы

Газы не являются проводниками, но их проводимость так же зависит от температуры. Происходит это за счет так называемого эффекта ионизации. Ионизация в газах происходит за счет насыщения их жидкостью или иными веществами, которые способны проводить электрический ток. Проследить то, как увеличивается сопротивление при повышении температуры газа можно на таком опыте.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

К схеме с амперметром и аккумулятором добавим 2 металлические пластины, которые не соприкасаются друг с другом. Такая электрическая цепь является разомкнутой. Между пластинами поместим зажженную горелку. При нагреве происходит смещение стрелки амперметра в сторону увеличения. То есть такую цепь можно считать замкнутой.

На основании этого можно сделать вывод, что с ростом температуры воздух ионизируется, происходит снижение его сопротивления и увеличение проводимости заряженных электронов. Данный эффект называют пробоем изоляционного слоя газа, зависящий от степени их ионизации и величины протекающего напряжения.

Подобное явление знакомо каждому из нас — это грозовой разряд.

Жидкости

В жидкостях прослеживается обратная зависимость. С увеличением температуры, сопротивление жидкого проводника уменьшается. Для электролита свойственно правило отрицательного значения температурного коэффициента — а˂0. Удельное сопротивление электролита рассчитывается следующим образом:

ρ= ρ0(1+ αt) или R=R0(1+ αt), где а˂0.

При этом увеличившееся значение температуры электролита сопровождается уменьшением сопротивления и ростом его проводимости.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Сверхпроводимость

Снижение температуры металлических проводников сильно увеличивает их проводимость.

Это связано с тем, что в структуре вещества замедляется движение атомов и электронов, благодаря чему снижается вероятность их столкновения со свободными электронами.

При температуре абсолютного 0 (–273 градуса Цельсия) возникает явление падения до нуля сопротивления проводника. Зависимость сопротивления проводника от температуры при абсолютном 0 — сверхпроводимость.

Температура, при которой обычный проводник становится сверхпроводником, называется критической. Она будет разной для различных чистых металлов и сплавов. Все будет зависеть от их структуры, химического состава и структуры кристаллов.

Например, серое олово с алмазной структурой является полупроводником. Но белое олово при своей тетрагональной кристаллической ячейке, мягкости и плавкости, переходит в состояние сверхпроводника при температуре 3.70 К.

Также при критической температуре прослеживается целый ряд других способностей:

  1. Повышение частоты переменного тока вызывает рост сопротивления, значение гармоник с периодом световой волны.
  2. Способность удерживать величину силы тока ранее приложенного, а затем отключенного источника.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Металл или сплав может перейти в состояние сверхпроводника и при нагревании. Такое явление называют высокотемпературной проводимостью. Ответ на вопрос, почему от высокой температуры сопротивление металлов снижается, может довольно просто объяснить их кристаллическая структура.

В момент нагрева до критических значений, электроны перестают хаотично перемещаться внутри структуры вещества. Они выстраиваются в цепочку. Такое построение не мешает движению свободных электронов, а значит падает общее сопротивление.

Переход в состояние высокотемпературной проводимости начинается с порога 1000К и этот показатель выше, чем точка кипения азота.

Применение

Свойство проводников изменять сопротивление при определённой температуре используют для создания различных элементов электрических схем и измерительных приборов. О них будет рассказано далее в данной статье.

Резистор

Сопротивление устройств старого типа сильно зависело от их нагрева. При нагревании проводимость резистора пропорционально изменялась в меньшую сторону.

Для электрических цепей требуется идеальный резистор, который обладает наивысшим коэффициентом проводимости.

Для снижения нагрева при производстве данных устройств теперь используется материал, имеющий малую зависимость сопротивления от температуры нагрева. Это позволило применять резисторы с малым сопротивлением для цепей с большим напряжением.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Терморезистор

Существует отдельная группа резисторов, которые применяют для измерения температуры. Особенностью такого устройства является то, что он может снижать свою проводимость при нагреве. При этом он отключает цепь при достижении определенного порогового значения.

Термометр сопротивления

Это прибор был разработан для измерения температуры среды. Он состоит из тонкой платиновой проволоки, защитного чехла и корпуса. Прибор имеет стабильную реакцию на перепады температуры. Измеряемой величиной в данном устройстве служит сопротивление этой проволоки из платины. Чем выше будет температура, тем сопротивление соответственно будет больше.

Понижение сопротивления так же фиксируется, так как в этот момент меняются проводимость и сопротивление. Для измерения температуры термометром сопротивления, в настоящее время применяются проволочные индикаторы из разнообразных металлов. В зависимости от свойств используемого металла, погрешность устройства может составлять не более 0.1 %.

Читайте также:  Отличие фуганка электрического стационарного и фуговально-рейсмусового станка

Благодаря этому достигается очень высокая точность измерения температуры.

Газ

Самый известный нам газовый проводник — это люминесцентная лампа. Газ нагревается за счет увеличения напряжения между анодом и катодом лампы.

Известным жидкостным проводником является щелочной аккумулятор. При понижении температуры нарушается структура жидкости и изменяется ее сопротивление.

Нагрев провоцирует движение атомов и электронов, увеличивая сопротивление и зарядный ток устройства.

Заключение

В данной статье мы рассмотрели, как зависит сопротивление от температуры. Металлы, газы и жидкости имеют свойства изменять свою проводимость и сопротивление при температурных перепадах.

Это свойство изменения электрического сопротивления используются для измерения температуры среды.

Наибольшая точность измерений температуры в настоящее время достигается за счет применения современных материалов, даже в бытовой технике.

Видео по теме

Электронная проводимость металлов. Зависимость сопротивления от температуры

Как вы знаете, электрический ток могут проводить и твердые, и жидкие, и газообразные тела. На практике, чаще всего применяются металлические проводники. Можно привести много примеров: линии электропередач, обеспечивающие передачу энергии от различных источников тока к потребителям.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Генераторы, электронагревательные приборы и так далее. Как мы уже говорили ранее, хорошими проводниками являются некоторые растворы. Наиболее распространенный пример — это батарейка, в которой используется электролит. Примеров использования батарей и аккумуляторов тоже достаточно: они используются в автомобилях, ноутбуках, мобильных телефонах, планшетах и так далее.

Напомним, что помимо проводников, существуют такие тела, как полупроводники и диэлектрики. Как вы знаете, диэлектрики используются для изоляции проводки или электроприборов. Полупроводники представляют довольно большой интерес, поскольку их проводимостью достаточно легко управлять, а это открывает большие возможности.

Со всем выше перечисленным мы познакомимся по окончании курса физики десятого класса, и начнем с проводимости металлов.

Мы уже много раз говорили, что электрический ток — это упорядоченное движение заряженных частиц, и всегда утверждали, что в металлах носителями свободных зарядов являются электроны. Дело в том, что за этим утверждением стоят многочисленные опыты разных ученых. Мы рассмотрим несколько таких опытов.

В 1901 году, Эдуард Рикке провел следующий эксперимент: он подключил к электрической цепи металлические цилиндры, плотно прилегающие друг к другу. В центре находился алюминиевый цилиндр, а по краям — медные.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

В течение приблизительно одного года через эти цилиндры протекал электрический ток. После окончания эксперимента, все три цилиндра были исследованы на предмет изменения химического состава.

Выяснилось, что никаких изменений не произошло, за исключением очень незначительной диффузии. Это послужило доказательством того, что ток в металлах обусловлен именно движением электронов.

Если бы в движении участвовали какие-то другие частицы (например, ионы кристаллической решетки), то это, неизбежно привело бы к изменению химического состава.

Другой опыт, был проведен в 1912 году учеными Леонидом Мандельштамом и Николаем Папалекси. К катушке, которая могла вращаться вокруг своей оси, был подключен гальванометр при помощи скользящих контактов.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

При резкой остановке катушки, гальванометр регистрировал кратковременные токи. Дело в том, что при резкой остановке заряженные частицы какое-то время могли двигаться по инерции относительно проводника (то есть проволоки катушки).

Поскольку сила тока характеризуется зарядом, а инерция — массой частиц, переносимый при торможении заряд пропорционален отношению заряда частиц к их массе.

Из этого эксперимента было определено это соотношение, которое совпало с найденным до этого из других опытов отношением модуля заряда электрона к его массе:

Таким образом, эксперимент Мандельштама и Папалекси еще раз подтвердил, что ток в металлах обусловлен движением электронов. Поэтому, проводимость металлов называют электронной проводимостью.

Вы уже знаете, что электроны в металлах двигаются с постоянной скоростью из-за того, что взаимодействуют с ионами кристаллической решетки. Это приводит к тому, что скорость движения электронов пропорциональна напряженности электрического поля:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

В свою очередь, напряженность пропорциональна напряжению. Из чего мы можем заключить, что скорость электронов в проводнике пропорциональна напряжению на концах этого проводника:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Напомним, что не так давно мы выяснили, что скорость также пропорциональна и силе тока:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Из этого мы можем сделать вывод, что ???? ~ ????, а это подтверждает закон Ома.

Теперь, когда мы выяснили, что электрический ток в металлах действительно обусловлен движением электронов, следует обратить внимание на одно из следствий этого явления.

Электроны взаимодействуют с ионами кристаллической решетки и, тем самым нагревают проводник. Но, чем больше проводник нагревается, тем более интенсивными становятся колебания частиц проводника и тем больше они мешают движению электронов.

Следовательно, в металлах существует определенная зависимость их электрического сопротивления от температуры.

Экспериментально была установлена зависимость сопротивления от температуры:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

В формуле мы видим коэффициент пропорциональности α, который называется температурным коэффициентом сопротивления. Мы можем немного преобразовать выражение, описывающее зависимость сопротивления от температуры, чтобы дать определение температурному коэффициенту сопротивления:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Итак, температурный коэффициент сопротивления численно равен относительному изменению сопротивления при нагревании на 1 оС. Под относительным изменением сопротивления понимается отношение изменения сопротивления к конечному сопротивлению. Поскольку мы выяснили, что у металлов сопротивление увеличивается с увеличением температуры, можно сделать вывод, что для всех металлов коэффициент α > 0.

  • Вспомним, что сопротивление проводника зависит от трех величин: удельное сопротивление материала, из которого сделан проводник, площадь поперечного сечения проводника и его длина:
  • Поскольку геометрические размеры проводника при нагревании меняются ничтожно мало, можно сделать вывод, что изменяется удельное сопротивление:
  • Из полученной формулы можно сделать вывод, что удельное сопротивление металлов линейно зависит от температуры.

Эта зависимость используется в так называемых термометрах сопротивления. Термометр сопротивления представляет собой проводник, зависимость сопротивления которого от температуры хорошо известна.

Чаще всего используют платиновую проволоку. Измеряя ее сопротивление можно судить о температуре.

Преимущество подобного термометра заключается в том, что он пригоден для измерения температур в значительно более широком диапазоне, чем это возможно, используя жидкостные термометры.

Возникает вопрос: а что будет происходить при очень низких температурах? Этим вопросом еще в 1911 году задался Хейке Камерлинг-Оннес. В качестве опыта, он поместил ртуть в жидкий гелий и наблюдал, как постепенно уменьшается удельное сопротивление с падением температуры.

Однако, когда температура опустилась до четырех целых одной десятой кельвина, сопротивление резко упало до нуля. Такое явление получило название сверхпроводимости, а температура, при которой наступает это состояние, была названа критической температурой.

Явление сверхпроводимости возникает во многих металлах при достаточно низких температурах (около 25 К). Это явление можно объяснить тем, что при таких низких температурах беспорядочное движение электронов становится очень незначительным. Иными словами, они двигаются, не соударяясь с ионами кристаллической решетки, таким образом, не замедляя своего движения и не нагревая проводник.

Конечно, это объяснение существенно упрощено, но оно дает общее представление о том, как возникает явление сверхпроводимости. Тот факт, что в состоянии сверхпроводимости проводники не нагреваются, открывает большие перспективы.

Если найти способ создать явление сверхпроводимости при обычных (комнатных) температурах, то можно было бы передавать электроэнергию по проводам без всяких потерь.

Сверхпроводимость используется для создания электромагнитов, которые могут создавать магнитное поле в течение длительного времени без всяких потерь энергии.

Также, сверхпроводящие магниты используются в ускорителях элементарных частиц (таких как Большой Адронный Коллайдер). В 1986 году удалось создать некоторые соединения, переходящие в состояние сверхпроводимости при температурах около 100 К.

На сегодняшний день, нет известных соединений, в которых бы наблюдалась сверхпроводимость при температуре выше 138 К (при нормальном давлении).

Рассмотрим еще один интереснейший эффект явления сверхпроводимости, который получил название эффекта Мейснера. Поместим два керамических цилиндра в специальную емкость и зафиксируем их.

При температуре 93 К эти цилиндры становятся сверхпроводящими. Для охлаждения можно использовать жидкий азот. Если теперь поднести к цилиндрам достаточно сильный магнит, то он зависнет над ними. Как вы знаете из курса физики девятого класса, при изменении магнитного потока через контур, возникает индукционный ток.

Читайте также:  Прибор для резки по металлу

В обычных условиях, этот ток был бы незначительным и кратковременным. Однако, в состоянии сверхпроводимости, сопротивление равно нулю, поэтому, ток продолжает течь по цилиндрам. Этот ток создает магнитное поле, которое и вызывает силы отталкивания между цилиндрами и магнитом.

Если же теперь мы поместим над цилиндрами магнит в виде колесика и раскрутим его, то он будет продолжать крутиться до тех пор, пока цилиндры находятся в состоянии сверхпроводимости. Заметим, что магнит крутится, не касаясь цилиндров и не нагреваясь, то есть никаких потерь энергии не происходит.

Тем не менее, нет возможности получить сколь угодно большой ток в сверхпроводниках, поскольку определенное критическое значение силы тока разрушает состояние сверхпроводимости.

Однако, конструкции, основанные на подобном принципе, могли бы существенно усовершенствовать электродвигатели и генераторы, значительно упростить устройства для аккумулирования энергии и многое другое. Поэтому, сегодня получение сверхпроводимости при комнатных температурах является одной из очень важных задач в физике.

Температурный коэффициент сопротивления

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

  •     Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение
  • где — удельное сопротивление проводника при температуре равной 0oC; — температурный коэффициент сопротивления.
  • Величина служит характеристикой связи электросопротивления с температурой.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

  1. Иногда говорят о среднем температурном коэффициенте сопротивления, определяя его как:
  2.     Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение
  3. где — средняя величина температурного коэффициента в заданном интервале температур ().

Температурный коэффициент сопротивления для разных веществ

Большая часть металлов имеет температурный коэффициент сопротивления больше нуля. Это означает, что сопротивление металлов с ростом температуры возрастает. Это происходит как результат рассеяния электронов на кристаллической решетке, которая усиливает тепловые колебания.

При температурах близких к абсолютному нулю (-273oС) сопротивление большого числа металлов резко падает до нуля. Говорят, что металлы переходят в сверхпроводящее состояние.

Полупроводники, не имеющие примесей, обладают отрицательным температурным коэффициентом сопротивления. Их сопротивление при увеличении температуры уменьшается. Это происходит вследствие того, что увеличивается количество электронов, которые переходят в зону проводимости, значит, при этом увеличивается число дырок в единице объема полупроводника.

Растворы электролитов имеют . Сопротивление электролитов при увеличении температуры уменьшается.

Это происходит потому, что рост количества свободных ионов в результате диссоциации молекул превышает увеличение рассеивания ионов в результате столкновений с молекулами растворителя.

Надо сказать, что температурный коэффициент сопротивления для электролитов является постоянной величиной только в малом диапазоне температур.

Единицы измерения

Основной единицей измерения температурного коэффициента сопротивления в системе СИ является:

Примеры решения задач

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Понравился сайт? Расскажи друзьям!

Температурный коэффициент сопротивления

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко — от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Известен каждому и закон Ома для однородного участка электрической цепи, из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда — составных частей тока — электронов проводимости. Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение — образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях — причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление металлических проводников зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Обратим внимание на коэффициенты. Пусть при 0°C сопротивление проводника равно R0, тогда при температуре t°C оно примет значение R(t), и относительное изменение сопротивления будет равно α*t°C. Вот этот коэффициент пропорциональности α и называется температурным коэффициентом сопротивления. Он характеризует зависимость электрического сопротивления вещества от его текущей температуры.

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате — сопротивление при нагревании проводника возрастает. Данное явление используется технически в термометрах сопротивления.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Итак, температурный коэффициент сопротивления α характеризует зависимость электрического сопротивления вещества от температуры и измеряется в 1/К — кельвин в степени -1. Величину с обратным знаком называют температурным коэффициентом проводимости.

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

Читайте также:  Нержавеющая мойка чем чистить

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в электроизмерительных приборах.

Физика. 10 класс

Типичными представителями класса проводников являются металлы. Какова природа электрического тока в металлах?

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Рис. 194

Природа электрического тока в металлах. В металлических проводниках носители электрического заряда — свободные электроны. Под действием внешнего электрического поля свободные электроны упорядоченно движутся, создавая электрический ток (рис. 194).

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Рис. 195

Электронная проводимость металлов была впервые экспериментально подтверждена немецким физиком К. Рикке (1845–1915) в 1901 г. Суть опыта Рикке заключалась в следующем: по проводнику, состоявшему из трёх отполированных и плотно прижатых друг к другу цилиндров — двух медных и одного алюминиевого (рис. 195), в течение года проходил ток одного и того же направления.

За этот промежуток времени через проводник прошёл заряд более 3,5 МКл. После завершения опыта взвешивание показало, что массы цилиндров остались неизменными.

Это явилось экспериментальным доказательством того, что перенос заряда при прохождении тока в металлах не сопровождается химическими процессами и переносом вещества, а осуществляется частицами, которые являются одинаковыми для всех металлов, т. е. электронами.

В 1916 г. американский физик Р. Толмен (1881—1948) и шотландский физик Т. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением свободных электронов.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Рис. 195.1

В этих опытах катушку с большим числом витков тонкой проволоки подключали к гальванометру и приводили в быстрое вращение вокруг своей оси (рис. 195.1). При резком торможении катушки в цепи возникал кратковременный ток, обусловленный инерцией носителей заряда.

По направлению отклонения стрелки гальванометра было установлено, что электрический ток создают отрицательно заряженные частицы. При этом экспериментально полученное отношение заряда каждой из этих частиц к её массе (удельный заряд) близко к удельному заряду электрона, полученному из других опытов.

Так было экспериментально доказано, что носителями свободных зарядов в металлах являются электроны.

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Рис. 196

Вещества, обладающие электронной проводимостью, называют проводниками первого рода.

В соответствии с классической электронной теорией проводимости металлов, созданной немецким физиком П. Друде (1863–1906) в 1900 г., металлический проводник можно рассматривать как физическую систему, состоящую из свободных электронов и положительно заряженных ионов, колеблющихся около положений равновесия (рис. 196).

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Рис. 196.1

Появление свободных электронов при образовании металлического кристалла из нейтральных атомов можно упрощённо объяснить следующим образом. Электроны, находящиеся на внешних оболочках атомов, слабо связаны со своими ядрами.

При образовании кристалла атомы сближаются на расстояние r 0,1 нм, и электроны начинают взаимодействовать не только со своими ядрами, но и с ядрами соседних атомов.

В результате этого их взаимодействие с собственными ядрами значительно ослабевает, вследствие чего они теряют с ними связь и могут двигаться по всему кристаллу в любом направлении как свободные частицы. Атомы превращаются при этом в положительно заряженные ионы.

В пространстве между ионами беспорядочно движутся подобно частицам идеального газа свободные электроны. Поэтому для описания движения электронов используют модель «электронный газ» — совокупность свободных электронов в кристаллической решётке металла. На рисунке 196.1 пунктирной линией изображена траектория движения одного из электронов.

В этой модели электроны, упорядоченное движение которых является током проводимости, рассматривают как материальные точки, модуль потенциальной энергии взаимодействия которых пренебрежимо мал по сравнению с их кинетической энергией.

Считают, что движение электронов под действием электрического поля подчиняется законам классической механики, а их столкновения с ионами кристаллической решётки металла являются неупругими, т. е. при столкновениях электроны полностью передают ионам кинетическую энергию своего упорядоченного движения.

В промежутках между столкновениями свободные электроны совершают беспорядочное тепловое движение и в то же время движутся упорядоченно и равноускоренно под воздействием электрического поля.

Интересно знать

Модель электронного газа позволяет теоретически объяснить природу сопротивления и обосновать закон Ома для участка цепи, не содержащего источника тока, на основе классической электронной теории проводимости металлов. Проанализируем упорядоченное движение электронов проводимости.

Пусть электрон движется с ускорением в направлении, противоположном направлению напряжённости электрического поля (рис. 196.2): где m0 — масса электрона, e — элементарный электрический заряд (модуль заряда электрона).

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение Рис. 196.2

Поскольку электрическое поле внутри однородного прямолинейного проводника с током однородное, то модуль напряжённости этого поля где l — длина проводника, U — напряжение между его концами. Тогда модуль средней скорости направленного движения электронов пропорционален напряжению между концами проводника .

Сила тока в проводнике пропорциональна модулю средней скорости направленного движения электронов:

где q — модуль заряда электронов проводимости, находящихся в проводнике, — усреднённое время прохождения этих электронов по проводнику, N — количество электронов проводимости в проводнике, n — концентрация этих электронов, V = Sl — объём проводника. Следовательно, сила тока пропорциональна напряжению между концами проводника I U.

6. Температурный коэффициент сопротивления

Температурный коэффициент сопротивления

Как вы могли заметить, значения удельных электрических сопротивлений в таблице из предыдущей статьи даны при температуре 20 ° Цельсия. Если вы предположили, что они могут измениться при изменении температуры, то оказались правы.

Зависимость сопротивления проводов от температуры, отличной от стандартной (составляющей обычно 20 градусов Цельсия), можно выразить через следующую формулу:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Константа «альфа» (α) известна как температурный коэффициент сопротивления, который равен относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на единицу.

Так как все материалы обладают определенным удельным сопротивлением (при температуре 20 ° С), их сопротивление  будет изменяться на определенную величину в зависимости от изменения температуры. Для чистых металлов температурный коэффициент сопротивления является положительным числом, что означает увеличение их сопротивления с ростом температуры.

Для таких элементов, как углерод, кремний и германий, этот коэффициент является отрицательным числом, что означает уменьшение их сопротивления с ростом температуры. У некоторых металлических сплавов температурный коэффициент сопротивления очень близок к нулю, что означает крайне малое изменение их сопротивления при изменении температуры.

В следующей таблице приведены значения температурных коэффициентов сопротивления нескольких распространенных типов металлов:

Проводник α, на градус Цельсия
Никель 0,005866
Железо 0,005671
Молибден 0,004579
Вольфрам 0,004403
Алюминий 0,004308
Медь 0,004041
Серебро 0,003819
Платина 0,003729
Золото 0,003715
Цинк 0,003847
Сталь (сплав) 0,003
Нихром (сплав) 0,00017
Нихром V (сплав) 0,00013
Манганин (сплав) 0,000015
Константан (сплав) 0,000074
  • Давайте на примере нижеприведенной схемы посмотрим, как температура может повлиять на сопротивление проводов и ее функционирование в целом:
  • Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение
  • Общее сопротивление проводов этой схемы (провод 1 + провод 2) при стандартной температуре 20 ° С  составляет 30 Ом. Проанализируем схему с помощью таблицы напряжений токов и сопротивлений:
  • Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

При 20 ° С  мы получаем 12,5 В на нагрузке, и в общей сложности 1,5 В (0,75 + 0,75) падения напряжения на сопротивлении проводов. Если температуру поднять до 35 ° С, то при помощи вышеприведенной формулы мы легко сможем рассчитать изменение сопротивления на каждом из проводов. Для медных проводов (α = 0,004041) это изменение составит:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Пересчитав значения таблицы, мы можем увидеть к каким последствиям привело изменение температуры:

Как объяснить что температурный коэффициент сопротивления для металлов имеет положительное значение

Сравнив эти таблицы можно прийти к выводу, что напряжение на нагрузке при увеличении температуры снизилось (с 12,5 до 12,42 вольт), а падение напряжения на проводах увеличилось (с 0,75 до 0,79 вольт). Изменения на первый взгляд незначительны, но они могут быть существенны для протяженных линий электропередач, связывающих электростанции и подстанции, подстанции и потребителей.

Ссылка на основную публикацию
Adblock
detector