Что относиться к механическим свойствам металлов

Содержание
  1. Основные механические свойства металлов
  2. Физические свойства металлов
  3. Как определить механические свойства?
  4. Механические и технологические свойства металла
  5. Механические свойства металлов
  6. Технологические свойства металла
  7. Где купить металлопрокат?
  8. Механические свойства металлов
  9. Оценка свойств
  10. Конструкторская прочность металлов
  11. Критерии оценки
  12. Похожие материалы
  13. Механические свойства
  14. Упругость
  15. От чего зависит упругость?
  16. Пластичность
  17. Пластичность — важное механическое свойство
  18. Хрупкость
  19. Твёрдость
  20. Что относится к механическим свойствам?
  21. Какие механические свойства характеризуют прочность материала?
  22. Что относится к технологическим свойствам материала?
  23. Какие существуют основные показатели свойств материалов?
  24. Какое свойства металлов относятся к механическим?
  25. Что относится к механическим свойствам древесины?
  26. Что характеризуют механические свойства строительных материалов?
  27. Какие величины характеризуют прочностные свойства материалов?
  28. Какие показатели характеризуют прочность материала?
  29. Что относится к технологическим свойствам металлов?
  30. Что относится к технологическим свойствам металлических конструкций?
  31. Какие из свойств металлов относятся к технологическим?
  32. Что представляет собой сплав?
  33. Что такое Основы материаловедения?
  34. Что относится к физическим свойствам?

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень.

чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств.

Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

Что относиться к механическим свойствам металлов

— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

— Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

— Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.

Что относиться к механическим свойствам металлов

— Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

— Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Физические свойства металлов

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства — те что проявляется в покое, механические — только под воздействием извне.

Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла «прочность» может быть результатом его грамотной технологической обработки (с этой целью нередко используют «закалку» и «старение»).

Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Что относиться к механическим свойствам металлов

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств.

Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью.

Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции.

Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя «шов» под нагрузкой, будет зависеть безопасность и надежность всей конструкции.

Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Как определить механические свойства?

  • Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:
  • — испытания на растяжение;
  • — метод вдавливания по Бринеллю;

Что относиться к механическим свойствам металлов

  1. — определение твердости металла по Роквеллу;
  2. — оценка твердости по Виккерсу;
  3. — определение вязкости с помощью маятникового копра;

Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

Механические и технологические свойства металла

Для того чтобы определить механические свойства металлов, специалисты проводят механические испытания. Именно это позволяет им выявить твердость, прочность, вязкость металла, а также другие механические свойства этого материала. Чтобы определить механические свойства металла, необходимо взять технологические пробы для определения видов обработки для конкретного металла.

Читайте также:  Что ускоряет реакцию с металлами

Механические свойства металлов

Металлы обладают целым рядом механических свойств:

Твердость металла представляет собой его способность препятствовать проникновению в материал другого более твердого вещества. Твердость определяется благодаря специальной минералогической шкале Мосса. Специалисты отмечают, что практически все металлы находятся в твердом состоянии. Исключением являются ртуть, галлий, цезий и франций.

Считается, что чем больше металл сопротивляется при увеличивающихся ударных нагрузках, тем более он вязок.

Это свойство противоположно вязкости. Определяется в том случае, когда металл можно разрушить с применением силы. Самым хрупким металлом считается чугун.

Наиболее ярким примером пластичного металла является чугун. Чем большие нагрузки выдерживает металл, при этом, не разрушаясь и сохраняя придаваемую форму после того, как воздействие на материал прекратилось, тем больше металл пластичен.

Это свойство превращает собой способность металла возвращать свой первоначальный вид после воздействия на материал внешними силами. Упругость является важным качеством при изготовлении стальных пружин, которые должны возвращать свою форму после их растяжки.

Технологические свойства металла

Технологические свойства металла определяются изменениями механических и физических свойств металла. Это происходит в зависимости от обработки металла резанием, литьем, ковкой и другими способами. Каковы же технологические свойства металла?

  • Представляет собой способность металла к деформации.
  • Это свойство определяется во время закалки металла и обуславливается тем, чем глубже металл можно закалить, тем большей прокаливаемостью он обладает.
  • Это свойство способно выявиться при соединении двух металлических частей посредством их сварки.
  • Текучесть представляет собой способность металла в жидком состоянии растекаться, заполняя определенную форму.

Где купить металлопрокат?

Купить металлопрокат в Санкт-Петербурге и в Москве дешево можно в компании Оптовые базы. Более того, на сайте компании Вы сможете выбрать необходимый вид металла, обратившись в Каталог металлопроката.

Чтобы оформить заказ, достаточно позвонить по телефону, указанному на сайте компании, или отправить заявку по Интернету.

Механические свойства металлов

К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.

Прочность — способность металла сопротивляться разрушению при действии на него внешних сил.

Пластичность — способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.

Твердость — способность металла сопротивляться внедрению в него более твердого тела.

Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла).

Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ (по Бринеллю) , а после закалки — 500 . . . 600 НВ.

Ударная вязкость — способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС (Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.

Упругость — способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а к вызванной им упругой деформации. Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

Оценка свойств

При оценке механических свойств металлических материалов различают несколько групп их критериев.

  1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).
  2. Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.
  3. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.
Читайте также:  Как убрать цинкарь с металла

Конструкторская прочность металлов

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

  • критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;
  • критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

Критерии оценки

Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина остаточных напряжений, дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

Похожие материалы

Механические свойства

Существует понятие предела прочности, который является основной количественной характеристикой прочности и численно равен разрушающему напряжению для конкретного материала. Предел прочности для каждого материала определяется средним результатом серии испытаний, так как основные материалы, используемые в строительстве, характеризуются неоднородностью.

Если происходит статическая нагрузка для выявления прочности проводится испытание образцов определенного стандарта (как правило речь идет об образцах, имеющих сечение круглой формы, реже прямоугольной), диаграмма таким образом отражает зависимость относительного удлинения от величины действующего на образец напряжения.
Прочность материала различных конструкций обосновывается при сравнении тех напряжений, которые возникают в конструкции при внешнем воздействии, также с учетом таких показателей как пределы прочности и текучести.

О так называемой усталости материала (в частности, металла) говорят если при большом числе циклически повторяющихся внешних напряжений разрушение происходит даже при напряжениях меньших чем предел прочности. В этом случае рассчитывается циклическая прочность, т.е. обоснование прочности материала, проводящееся с учетом нагрузки, которая меняется с определенным циклом.

Упругость

От чего зависит упругость?

Упругость материала непосредственно связана с силами взаимодействия, происходящими между отдельными атомами. В твёрдых телах при температуре равной абсолютному нулю и при отсутствии какого-либо внешнего воздействия атомы занимают положения, называемые равновесными.

Потенциальная энергия тела увеличивается при воздействии внешнего напряжения, и атомы смещаются из равновесного положения. Соответственно, когда прекращается внешнее напряжение, конфигурация неравновесных атомов деформированного материала постепенно становится неустойчивой и возвращается в равновесное состояние.

Помимо силы притяжения и отталкивания, которые действуют на каждый атом материала со стороны остальных, существуют и угловые силы, они непосредственно связаны с валентными углами, наблюдающимися между прямыми, которые соединяют атомы между собой.

Естественно, это характерно исключительно для макроскопических тел и молекул, содержащих много атомов. Угловые силы уравновешиваются при равновесных значениях валентных углов.

Когда говорят о количественной характеристике упругости материала, то используется модуль упругости, зависящий от напряжения воздействующего на материал и определяется производной зависимости напряжения от деформации, что применимо для области упругой деформации.

Пластичность

Пластичность является важным свойством, учитывающееся когда происходит выбор материала несущей конструкции, либо же определения технологии (методики) изготовления разнообразных изделий.

Для конструкций важно сочетание высокой пластичности материала и большого показателя упругости. Эта комбинация свойств предотвращает внезапное разрушение материала.

В целом пластичность в физике материалов противопоставляется как упругости, так и хрупкости — пластичный материал сохраняет форму, которую придают ему внешние воздействия.

Пластичность — важное механическое свойство

Изучение пластичности важно при прогнозировании долговечности и прочности какой-либо конструкции, так как пластичность зачастую предшествует разрушению и важно рассмотреть деформационные процессы, возникающие в материале. Измерение пластичности, являющейся важным свойством металлов, очень важно при обработке под давлением — ковке и прокатке.

Это свойство металлов непосредственно зависит от тех условий, в которых происходит деформирование — температуры, давления и т.д. Пластичность металлов влияет на такие характеристики как удлинение (абсолютное и относительное) и сужение материала.

При удлинении происходит увеличение длины образца под воздействием происходящего растяжения, а при сужении, соответственно, от растяжения образца происходит уменьшение площади поперечного сечения.

Хрупкость

Это характерно, например, для стекла. Если при статическом испытании материал характеризуется пластичностью, но при динамическом испытании разрушается, то речь идет о так называемой ударной хрупкости.

Причиной ударной хрупкости могут быть пределы текучести (то есть зависимость скорости деформации и сопротивления) и пределы прочности (изменение сопротивления разрушению). Хрупкое разрушение материала происходит если сопротивление деформации равно или больше сопротивления отрыву.

Соответственно, пластичность материала уменьшается, если рост сопротивления деформации происходит быстрее роста сопротивления разрушению.

Фактором, от которого непосредственно зависит хрупкое состояние материала является однородность напряженного состояния. Материал переходит от пластичности к хрупкости при неоднородном напряженном состоянии. Расчет сопротивления хрупкому разрушению является важным обоснованием прочности конструкции.

Читайте также:  Лестницы перила металла труб

Твёрдость

Методы, с помощью которых экспериментально устанавливают твердость бывают как статическими (например, в поверхность вдавливается твердый предмет или же она царапается), так и динамическими.

К статическим методам также относятся измерения твёрдости по Бринеллю (вдавление шарика в поверхность), Виккерсу (вдавление алмазного наконечника) и Роквеллу (для материалов с высокой твердостью используется алмазный конус, с низкой — шарик из стали).

Также к статическим методам относится склерометрия — царапание алмазной структурой в виде конуса, пирамиды, или же карандашом различной твердости — оценивается нагрузка, которую необходимо приложить, чтобы создать царапину, а также размеры созданной царапины.

При динамических методах установления твердости материала благодаря ударной нагрузке наносится отпечаток шариком (по принципу маятника) и величина твердости характеризуется тем, как материал сопротивляется деформации от удара или же параметрами отскока шарика от поверхности, в том числе затуханию маятниковых колебаний.

Что относится к механическим свойствам?

Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность — это способность материала сопротивляться разрушающему воздействию внешних сил.

К механическим свойствам металлов и сплавов относятся: прочность, твердость, упругость, пластичность, ударная вязкость, ползучесть и усталость. …

и внутренними (изменение размеров тела от нагревания и охлаждения, изменение структуры металла и т. д.), а также статическими, т. е.

Какие механические свойства характеризуют прочность материала?

Механические свойства характеризуются способностью материала сопротивляться всем видам внешних воздействий с приложением силы. По совокупности признаков различают прочность материала при сжатии, изгибе, ударе, кручении и т. д., твердость, пластичность, упругость, истираемость.

Что относится к технологическим свойствам материала?

К технологическим свойствам материалов относятся литейные свойства (жидкотекучесть, усадка, склонность к ликвации), деформируемость, свариваемость и обрабатываемость режущим инструментом. Жидкотекучесть способность расплавленного мате- риала заполнять литейную форму.

Какие существуют основные показатели свойств материалов?

Основными показателями свойств материалов являются:

  • прочность;
  • твердость;
  • триботехнические характеристики.

Какое свойства металлов относятся к механическим?

К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др. Прочность — это способность материала сопротивляться разрушающему воздействию внешних сил.

Что относится к механическим свойствам древесины?

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие. Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. … Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины.

Что характеризуют механические свойства строительных материалов?

Механические свойства характеризуют способность строительных материалов сопротивляться разрушению и деформированию под дей- ствием внешних сил. Основные механические свойства строительных материалов: прочность, твердость, деформативность (упругость, пластичность).

Какие величины характеризуют прочностные свойства материалов?

Испытание на статическое растяжение устанавливает следующие основные прочностные характеристики исследуемого материала: предел прочности, σв (МПа); предел текучести, σт (МПа); относительное удлинение, δ (%).

Какие показатели характеризуют прочность материала?

Прочность материала характеризуется пределом прочности при трех видах воздействия на него — сжатии, изгибе и растяжении.

Что относится к технологическим свойствам металлов?

Технологические свойства определяют пригодность материала для изготовления из него детали тем или иным способом. К числу этих свойств относятся: обрабатываемость резанием, ковкость, свариваемость, жидкотекучесть, усадка, склонность к ликвации и др.

Что относится к технологическим свойствам металлических конструкций?

К технологическим свойствам относятся обрабатываемость резанием, деформируемость (ковкость, штампуе- мость, способность к загибу, перегибу, отбортовке, получению двойного кровельного замка и т. д.), свариваемость, литейные свойства, паяемость, упрочняемость и др.

Какие из свойств металлов относятся к технологическим?

Технологические свойства металлов и сплавов: ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами.

Что представляет собой сплав?

Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов. … Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс.

Что такое Основы материаловедения?

В основе материаловедения лежит изучение взаимосвязи между структурой материалов, методами обработки для получения этого материала и получаемыми в результате свойствами материала. Сложная комбинация всех этих аспектов обеспечивает характеристики материала в конкретном применении.

Что относится к физическим свойствам?

К физическим свойствам материала относятся плотность, пористость, водопоглощение, влагоотдача, гигроскопичность, водопроницаемость, морозостойкость, теплопроводность, звукопоглощение, огнестойкость, огнеупорность и некоторые другие.

Интересные материалы:

Где разрешены азартные игры? Где сохраняются все игры? Как адаптировать игру под Windows 10? Как бесплатно получить алмазы в игре Cooking Fever? Как бесплатно получить игры на Xbox? Как бесплатно получить кардамон в игре моя кофейня? Как быстро переключить режим игры в Майнкрафт? Как быстро поднять уровень в игре Hay Day? Как часто проводились Олимпийские игры 5 класс? Как часто проводились Олимпийские игры Сколько дней они продолжались история 5 класс?

Понравилась статья? Поделиться с друзьями:
Станок