Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Содержание
  1. Устройство и принцип работы
  2. Типы и модификации пусковых устройств
  3. Отличия реверсивных и обычных контакторов-пускателей
  4. Обычная нереверсивная схема включения
  5. Реверсивная схема
  6. Реверсивный пускатель: принцип действия, применение в электродвигателях и техника безопасности
  7. Принцип работы асинхронного двигателя
  8. Трехфазная сеть
  9. Однофазный режим
  10. Машины постоянного тока
  11. Плюсы использования магнитных пускателей
  12. Техника безопасности
  13. Магнитные пускатели
  14. Устройство магнитного пускателя
  15. Принцип работы магнитного пускателя
  16. Схемы включения магнитных пускателей
  17. Советы по монтажу магнитных пускателей
  18. Подключение реверсивного магнитного пускателя
  19. Нереверсивное подключение электродвигателя
  20. Нереверсивный запуск
  21. Остановка
  22. Как происходит защита двигателя при нереверсивном пуске
  23. Устройство магнитного пускателя для реверсного пуска
  24. Как подключается реверсивный пускатель
  25. Как происходит включение
  26. Как происходит переключение
  27. Защита работы реверсного включения электродвигателя
  28. Что такое реверсивный пускатель: принципы работы и структурные особенности
  29. Что такое магнитный пускатель, и какое он имеет предназначение?
  30. Как устроен магнитный пускатель: все его основные составляющие
  31. Что такое реверсивный магнитный пускатель и в чем его преимущества?
  32. Где и когда используются реверсивные магнитные пускатели?
  33. Чем отличается схема магнитного реверсивного пускателя: правила комплектации
  34. Реверсивный магнитный пускатель — особенности подключения и принцип работы
  35. Принцип работы реверсивного магнитного пускателя

Содержание:

Реверсивный контактор, представляющий собой одну из разновидностей электромагнитных пускателей. Он обеспечивает вращение вала в обоих направлениях, поддерживает устойчивую работу двигателей, своевременно отключает питание, защищает оборудование в аварийных ситуациях.

С точки зрения устройства, такие контакторы являются улучшенным образцом электромагнитного пускового аппарата и предназначаются для прямой работы с двигателями. Некоторые модели оборудованы дополнительными устройствами, выполняющими аварийное отключение при обрывах фаз и коротких замыканиях.

Устройство и принцип работы

Магнитные контакторы или пускатели относятся к коммутационным устройствам, выполняющим дистанционный пуск электродвигателей и прочего оборудования.

Конструкция и схема этих приборов очень похожа на электромагнитное реле. Важной дополнительной функцией является возможность своевременно подключать и отключать трехфазную нагрузку. Основным конструктивным элементом служит магнитный сердечник, изготовленный в виде буквы Ш. В качестве материала использовалась электротехническая сталь в виде тонких листов.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Сам сердечник состоит из двух половинок, одна из которых является неподвижной и закрепляется на основании прибора. Другая часть – подвижная – при отсутствии тока удерживается на некотором расстоянии от неподвижной части при помощи пружины. Таким образом, между обеими частями возникает воздушный зазор.

Управление пускателем осуществляется через катушку, помещенную на центральный стержень сердечника, расположенный в неподвижной части. К подвижному магнитопроводу закрепляются контакты посредством мостового соединения. В момент срабатывания пускателя эти мостики перемещаются одновременно с магнитопроводом и совершают замыкание с неподвижной контактной группой.

Пусковое устройство срабатывает после того, как на катушку управления будет подано напряжение. Возникает электромагнитная сила, под действием которой происходит притягивание подвижной части сердечника к неподвижной детали.

В результате, силовые контактные группы оказываются замкнутыми, и ток начинает поступать к выходным клеммам. После прекращения подачи напряжения катушка обесточивается, и подвижная часть возвращается на свое место.

В этот момент в работу включается возвратная пружина, обеспечивающая размыкание контактов.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Во время выключения на каждом полюсе контактов образуется двойной разрыв, способствующий более эффективному гашению электрической дуги. Функцию дугогасительной камеры выполняет крышка устройства, под которой располагаются контакты.

В пускателе имеется не только основная контактная группа, но и дополнительная – в виде блок-контактов, используемая для вспомогательных целей. В основном, они используются в управлении, в сигнальных и блокирующих схемах.

Типы и модификации пусковых устройств

Основными параметрами, по которым выполняется классификация пускателей:

  • Величина рабочего тока, коммутируемого главными контактами.
  • Значение рабочего напряжения в подключенной нагрузке.
  • Параметры тока и напряжения в катушке управления.
  • Категория и область применения.

Значения номинальных токов коммутационной аппаратуры представлены стандартным рядом в границах 6,3-250 А. Подобная классификация использовалась для устаревших приборов, которые в настоящее время используются все реже. Номинальному току соответствовал определенный класс – от 0 до 7.

Подобная классификация утратила свое значение с появлением на отечественном рынке зарубежной продукции. При выборе того или иного устройства в первую очередь рассматривается величина номинального тока.

Поскольку электромагнитные пускатели, в том числе и контакторы с функцией реверса, являются низковольтными устройствами, следовательно, они могут работать с напряжением, не превышающим 1000 В. Эти границы предполагают использование двух видов стандартных напряжений – 380 и 660 вольт.

Конкретное значение для данной модели отображается на корпусе и в технической документации устройства.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Значительно большим разнообразием отличаются напряжения, с которыми могут работать катушки управления. Это связано с тем, что магнитные пускатели и контакторы используются в разных условиях, и подключаются к различным типам потребителей и автоматическим системам управления.

Для подобных систем вовсе недостаточно обычных сетевых фаз. Питание осуществляется с помощью специальных цепей оперативного тока с собственными параметрами тока и напряжения. Обычно, катушки управления рассчитаны на переменное напряжение 12-660 вольт и постоянное – 12-440 В.

Кроме того, контакторы и магнитные пускатели различаются внешним видом и комплектацией. В большинстве случаев, это модели, помещаемые в пластиковый корпус с кнопками запуска и остановки, расположенными снаружи. Многие приборы изначально комплектуются тепловыми защитными реле.

Отличия реверсивных и обычных контакторов-пускателей

Прежде чем рассматривать отличия обоих устройств следует отметить, что магнитный пускатель является усовершенствованной версией контактора, предназначенной для работы с низковольтным оборудованием и установками.

По сравнению с обычными контакторами, магнитные пускатели отличаются более компактными размерами и меньшим весом. Они предназначены для узкоспециализированных действий по включению и отключению электродвигателей. Контакторы же выполняют более широкий круг задач в силовых электрических цепях.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Многие пускатели дополнительно оборудуются тепловыми реле, выполняющими аварийные отключения и защищающие при обрывах фазы. Управление пуском и отключением производится с помощью специальных кнопок или отдельной системой, состоящей из катушки и слаботочной контактной группы. В некоторых модификациях могут использоваться оба варианта.

Все магнитные пускатели разделяются на два вида. Они могут быть реверсивными и нереверсивными.

Реверсивный контактор состоит из двух отдельных магнитных пускателей, объединенных в общем корпусе и соединенных друг с другом электрическим путем.

Оба компонента устанавливаются на общее основание, но одновременно работать они не могут. По команде оператора включается лишь один из них – первый или второй.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Управление реверсивным магнитным пускателем осуществляется при помощи блокировочных контактов нормально-замкнутого типа. Их основная функция заключается в предотвращении одновременного включения обеих контактных групп – реверсивной и обычной.

В противном случае может произойти межфазное замыкание. Для этой же цели некоторые модели выпускаются с механической блокировкой. Поочередный запуск контакторов обеспечивает такое же поочередное переключение фаз.

В результате, прибор начинает выполнять свою основную задачу – изменять направление вращения вала электродвигателя.

Оба варианта включения необходимо рассмотреть более подробно. Чтобы лучше понять суть реверсного запуска, необходимо вначале остановиться на обычном способе включения.

Обычная нереверсивная схема включения

Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.

Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.

В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами.

Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента.

За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание.

Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение.

После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.

Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления.

Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя.

Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.

Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.

Реверсивная схема

Для того чтобы создать реверсивную схему включения электродвигателя, потребуется использование двух магнитных контакторов и трех кнопок управления. Оба пускателя устанавливаются в непосредственной близости для удобства соединений и подключений в том числе и с механической блокировкой.

Клеммы для подключения питания соединяются между собой на обоих устройствах. Контакты, подключаемые к электродвигателю, соединяются перекрестным способом. Провод питания электродвигателя может соединяться с любыми питающими клеммами одного из пускателей.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Следует помнить, что перекрестная схема подключения, категорически запрещает одновременное включение двух пускателей, поскольку это обязательно вызовет короткое замыкание.

В связи с этим, проводники блокирующих цепей в каждом из приборов вначале соединяются с замкнутым контактом управления другого устройства, а потом – с разомкнутым контактом собственного.

При включении второго контактора первый будет отключаться и наоборот.

Вторая клемма кнопки СТОП, находящейся в замкнутом положении, соединяется не с двумя, как обычно, а с тремя проводами. Два из них являются блокирующими, а через третий – подается питание на пусковые кнопки, соединенные параллельно между собой. Подобная схема позволяет отключить кнопкой остановки любой включенный пускатель и остановить вращение электродвигателя.

Источник: https://electric-220.ru/news/reversivnyj_kontaktor/2019-04-28-1683

Реверсивный пускатель: принцип действия, применение в электродвигателях и техника безопасности

Вид схемы реверсивного пуска двигателя зависит от следующих факторов:

  • тип электродвигателя;
  • питающее напряжение;
  • назначение электрооборудования.

Поэтому схемы реверса могут сильно отличаться, но, поняв принципы их построения, вы сможете собрать или отремонтировать любую подобную схему.

Прежде чем разбирать схемы реверса двигателя, нужно определиться с понятиями, которые будут использоваться при описании работы:

  • Нормально разомкнутый (открытый) контакт — это контакт, который без внешнего воздействия находится в разомкнутом состоянии. Под внешним воздействием, прежде всего, понимают подачу напряжения на катушку управления реле или магнитного пускателя. В случае с кнопками коммутация контактов производится механически.
  • Нормально замкнутый (закрытый) контакт — это контакт, который без воздействия внешних сил находится в замкнутом состоянии.
  • Магнитный пускатель — это электромагнитное устройство, имеющее три силовых нормально разомкнутых контакта и несколько вспомогательных контактов. При подаче питающего напряжения на катушку электромагнита, якорь притягивается и все контакты одновременно переключаются. Силовые контакты используются для подключения электродвигателя к сети, а вспомогательные нужны для построения схемы управления, поэтому они могут быть нормально открытыми или закрытыми. После снятия управляющего напряжения, под действием пружин устройство возвращается в исходное состояние.
  • Реверсивный пускатель — это два одинаковых магнитных пускателя, закреплённые на одном основании, с общим корпусом. Предназначен аппарат для реверсирования трёхфазных двигателей, поэтому силовые контакты соединены между собой определённым образом.
  • Тепловое реле — устройство для защиты двигателя от перегрева, вызванного повышенными токами в обмотках.
  • Контактор — коммутирующее устройство во многом аналогичное магнитному пускателю. Но в отличие от него может иметь от двух до четырёх нормально открытых силовых контактов с дугогасительными камерами и предназначен для переключения больших токов.
  • Автоматический выключатель — аппарат для защиты от токов короткого замыкания.
Читайте также:  Как проверить золото это или другой металл

Для того чтобы электродвигатель поменял своё вращение нужно изменить его магнитное поле. Для этого необходимо произвести некоторые переключения, которые зависят от типа электрической машины.

Принцип работы асинхронного двигателя

Работа электродвигателя может осуществляться как в трехфазном, так и однофазном режиме. Принцип действия схем меняется незначительно, однако имеются некоторые дополнения в устройстве питания от однофазной сети.

Трехфазная сеть

Электрическая принципиальная схемя реверсивного пуска трёхфазного электродвигателя с короткозамкнутым ротором выглядит следующим образом (схема представлена на Рис.1)Питание всей схемы осуществляется от трёхфазной сети переменного тока с напряжением 380 В через автомат АВ.

Для того чтобы сделать реверс такой электрической машины (М), нужно изменить чередование двух любых фаз, подключённых к статору. На схеме магнитный пускатель Мп1 отвечает за прямое вращение, а Мп2 — за обратное. На рисунке видно, что при включении Мп1 происходит чередование фаз на статоре А, В, С, а при включении Мп2 — С, В, А, то есть фазы А и С меняются местами, что нам и нужно.

При подаче на схему напряжения, катушки Мп1 и Мп2 обесточены. Их силовые контакты Мп1.3 и Мп2.3 разомкнуты. Электродвигатель не вращается.

При нажатии на кнопку Пуск1, подаётся питание на катушку Мп1, пускатель срабатывает и происходит следующее:

  1. Замыкаются силовые контакты Мп1.3, питающее напряжение подаётся на обмотки статора, двигатель начинает вращаться.
  2. Замыкается нормально разомкнутый вспомогательный контакт Мп1.1. Этот контакт обеспечивает самоблокировку пускателя Мп1. То есть, когда кнопка Пуск1 будет отпущена, катушка Мп1 останется под напряжением благодаря контакту Мп1.1 и пускатель не отключится.
  3. Размыкается нормально закрытый вспомогательный контакт Мп1.2. Этот контакт разрывает цепь управления катушкой Мп2, таким образом, обеспечивается защита от одновременного включения обоих контакторов.

Если возникла необходимость остановить двигатель или произвести реверс, нужно нажать

кнопку Стоп. При этом размыкается цепь питания Мп1, контактор отключается, его контакты возвращаются в первоначальное состояние, показанное на рисунке, электродвигатель останавливается.

Для того чтобы двигатель начал вращаться в обратную сторону, нужно нажать кнопку Пуск2. По аналогии с Мп1, сработают контакты Мп2.3, Мп2.1, Мп2.2, произойдёт переключение фаз на обмотке статора и двигатель начнёт вращаться в противоположном направлении.

Питание схемы управления осуществляется от двух фазовых проводов. При таком включении должны быть использованы контакторы с катушками на 380 В. Предохранители Пр1 и Пр2 обеспечивают защиту от токов короткого замыкания. Кроме того, извлечение этих предохранителей позволяет полностью обесточить все элементы управления и избежать риска получения электротравм при обслуживании и ремонте.

Защиту электрической машины от перегрузок обеспечивает тепловое реле РТ. При протекании повышенного тока в любой из трёх обмоток статора происходит нагрев биметаллической пластины РТ, в результате чего она изгибается.

При определённом токе пластина нагревается настолько, что её изгиб вызывает срабатывание теплового реле, из-за чего оно размыкает свой нормально закрытый контакт РТ в схеме управления катушками Мп1 и Мп2 и двигатель отключается от сети.

Время срабатывания зависит от величины тока: чем выше ток, тем меньше время срабатывания. Благодаря тому, что РТ действует с некоторой задержкой, пусковые токи, которые могут в 7-10 раз превышать номинальные, не успевают спровоцировать срабатывание защиты.

В зависимости от типа устройства и настроек после срабатывания теплового реле возможны два варианта возвращения схемы в рабочее состояние:

  • Автоматический — после остывания чувствительного элемента реле возвращается в нормальное состояние и двигатель можно запустить кнопкой Пуск.
  • Ручной — нужно нажать специальный флажок на корпусе РТ, после этого контакт замкнётся и схема будет готова к запуску.

Рассмотренная схема реверса трехфазного двигателя может видоизменяться в зависимости от условий и потребностей. Например, питание схемы управления можно осуществлять от сети 12 В, в этом случае все элементы управления будут находиться под безопасным напряжением и такую установку можно без риска использовать при высокой влажности.

Реверс двигателя можно осуществлять только в том случае, когда двигатель полностью неподвижен, иначе пусковые токи возрастут в несколько раз, что приведёт к срабатыванию защиты.

Для того чтобы контролировать выполнение этого условия, в схему управления могут быть добавлены реле времени, контакты которых подключаются последовательно к МП2.2 и Мп1.2.

Благодаря этому, после нажатия кнопки Стоп двигатель можно будет запустить в противоположном направлении только по истечении несколько секунд, которые необходимы для полной остановки механизма.

Однофазный режим

От обмотки статора электродвигателя отходит три провода. Два провода подключаются напрямую к фазному и нулевому проводам, а третий соединяется с одной из питающих жил через конденсатор. В этом случае направление вращения зависит от того, к какому из питающих проводников подключён конденсатор.

Если требуется превратить такую схему подключения в реверсивную, её нужно дополнить тумблером, который будет переключать ёмкость с одного провода питания на другой.

Машины постоянного тока

Реверсивный пуск двигателя постоянного тока можно осуществить изменением полярности подключения обмотки якоря или обмотки возбуждения. В зависимости от того, как эти две обмотки соединены между собой, двигатели постоянного тока имеют следующие типы возбуждения:

  • независимое — обмотки возбуждения и якоря запитывают от различных источников;
  • последовательное;
  • параллельное;
  • смешанное.

В случае применения коллекторного двигателя с параллельным или независимым возбуждением такой режим может возникнуть при обрыве обмотки возбуждения.

Поэтому схема подключения реверсивного двигателя в этом случае строится таким образом, чтобы осуществлялось переключение обмотки якоря, а обмотка возбуждения должна быть напрямую подключена к источнику питания.

То есть недопустимо цепь возбуждения подключать через какие-либо контакты или предохранители.

В остальном схема управления отличается от реверсивного подключения трехфазного двигателя только тем, что происходит переключение двух питающих проводов постоянного тока, вместо трёх фаз переменного.

Плюсы использования магнитных пускателей

Основным элементом в реверсивных схемах подключения электродвигателя является магнитный пускатель. Применение этих аппаратов позволяет решить ряд задач:

  • Одновременное подключение трёх фаз.
  • Осуществление коммутации больших токов малыми сигналами. Некоторые аппараты могут коммутировать токи порядка сотен ампер, а ток необходимый для питания катушки редко превышает один ампер.
  • Дистанционный запуск. Благодаря конструкции пускателя и малым токам срабатывания, кнопки управления могут находиться на расстоянии нескольких сотен метров от электродвигателя, что, в свою очередь, обеспечивает не только удобство эксплуатации, но и безопасность оператора.
  • Нулевая защита. Если в процессе работы отключится напряжение, например, из-за срабатывания токовой защиты, то после возобновления электроснабжения, механизм начнёт работать самопроизвольно, что может привести не только к порче оборудования, но и к человеческим жертвам. Применение контактора исключает такую вероятность, так как после обесточивания он отключится и будет сохранять своё состояние до тех пор, пока оператор не нажмёт кнопку запуска.
  • Универсальность. Катушки для определённого типа пускателей имеют одинаковые характеристики и конструкцию, но напряжение срабатывания может быть разным. Благодаря этому, установив соответствующую катушку, контактор можно использовать в различных сетях. Об этой особенности следует помнить при замене одного пускателя на другой, так как внешне совершенно одинаковые устройства, могут иметь разное рабочее напряжение.

Техника безопасности

При монтаже, наладке и ремонте необходимо строго соблюдать правила техники безопасности.

В случае работы со схемой управления электродвигателями для полного отключения нужно обесточить силовую часть и цепи управления.

Некоторые электродвигатели могут получать питание от двух независимых источников питания, поэтому необходимо обязательно изучить схему подключения.

Произведите необходимые отключения и проверьте индикатором отсутствие напряжения не только на силовых, но и на вспомогательных контактах.

Если в схеме установлены конденсаторы, после отключения питания следует дать им время для разрядки, прежде чем касаться токопроводящих частей.

Источник: https://220v.guru/elementy-elektriki/shemy/primenenie-reversivnogo-puskatelya-v-sheme-upravleniya-elektrodvigatelya.html

Магнитные пускатели

Устройства, которые предназначены (основное их назначение) для автоматического включения и отключения трехфазных электрических двигателей от сети, а также их реверсирования называют магнитными пускателями.

Как правило, они используются для управления асинхронными электродвигателями с напряжением питания до 600 В. Пускатели могут быть реверсивные и не реверсивные.

Кроме того, в них довольно часто встраивается тепловое реле для защиты электрических машин от перегрузки по току в длительном режиме.

Магнитные пускатели могут выпускаться в различных исполнениях:

  • Реверсивные;
  • Не реверсивные;
  • Защищенного типа – устанавливаются в помещениях, где в окружающей среде не содержится большого количества пыли;
  • Пыленепроницаемые – устанавливаются в местах, где они не будут подвергаться прямому воздействию на них солнца, дождя, снега (при наружном размещении  располагаются под навесом);
  • Открытого типа – предназначены для установки в местах, защищенных от попаданий посторонних предметов а также пыли (шкафы электрические и прочее оборудование)

Устройство магнитного пускателя

Устройство магнитного пускателя довольно простое. Он состоит из сердечника, на котором помещена втягивающая катушка, якоря, пластмассового корпуса, механических индикаторов включения, а также основных и вспомогательных блок – контактов.

Принцип работы магнитного пускателя

Давайте рассмотрим на примере, показанном ниже:

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

При подаче напряжения на катушку пускателя 2, протекающий в ней ток притянет якорь 4 к сердечнику 1, следствием чего станет замыкание силовых контактов 3, а также замыкание (или размыкание в зависимости от исполнения) вспомогательных блок контактов, которые в свою очередь, сигнализируют в систему управления о включении или отключении устройства. При снятии напряжения с катушки магнитного пускателя под действием возвратной пружины контакты разомкнутся, то есть вернутся в свое начальное положение.

Принцип работы реверсивных магнитных пускателей такой же как и не реверсивных. Отличие заключается в чередовании фаз, которые подключает к пускателям (А – В – С одно устройство, С – В – А другое устройство).

Читайте также:  Кто подходит 8 металлу

Это условие необходимо для выполнения реверса двигателя переменного тока.

Также при реверсивном включении магнитных пускателей предусматривается блокировка одновременного включения устройств, чтоб избежать короткого замыкания.

Схемы включения магнитных пускателей

Одна из простейших схем подключения магнитного пускателя показана ниже:

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Принцип работы данной схемы довольно прост: при замыкании автоматического выключателя QF собирается схема питания катушки магнитного пускателя. Предохранитель PU обеспечивает защиту схемы управления от коротких замыканий. При нормальных условиях контакт тепловых реле Р замкнут.

Итак, для запуска асинхронника нажимаем кнопку «Пуск», цепь замыкается, через катушку магнитного пускателя КМ начинает протекать ток, сердечник втягивается, тем самым замыкая силовые контакты КМ, а также блок контакт БК. Блок контакт БК нужен для того, чтоб замкнуть цепь управления, поскольку кнопка после того как ее отпустят, вернется в исходное положение.

Для остановки этой электродвигателя достаточно нажать кнопку «Стоп», которая разберет схему управления.

При длительном токе перегрузке сработает тепловой датчик Р, который разомкнет контакт Р, и это тоже приведет к остановке машины.

При схеме включения приведенной выше следует учесть напряжение номинальное катушки. Если напряжение катушки 220 В, а двигателя (при соединении в звезду) 380 В, то данную схему употреблять нельзя, а можно применить с нейтральным проводником, а если в обмотки двигателя соединены треугольником (220 В), то данная система вполне жизнеспособна.

Схема с нейтральным проводником:

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Единственное отличие этих схем включения, что в первом случае питание системы управления подключено к двум фазам, а во втором к фазе и нейтральному проводнику. При автоматическом управлении системой пуска вместо кнопки «Пуск» может включатся контакт из системы управления.

  • Посмотреть как подключить не реверсивное магнитное пусковое устройство вы можете здесь:
  • Реверсивная схема включения показана ниже:
  • Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Эта схема более сложная, чем при подключении не реверсивного устройства. Давайте рассмотрим принцип ее работы. При нажатии кнопки «Вперед» происходят все описанные выше действия, но как вы видите из схемы, перед кнопкой вперед появился нормально замкнутый контакт КМ2.

Это нужно для выполнения электрической блокировки одновременного включения двух устройств (избежание короткого замыкания). При нажатии кнопки «Назад»  во время работы электропривода ничего не произойдет, так как контакт КМ1 перед кнопкой «Назад» будет разомкнут.

Для произведения реверса машины необходимо нажать кнопку «Стоп» и только после отключения одного устройства можно будет включить второе.

И видео подключения реверсивного магнитного пускового устройства:

Советы по монтажу магнитных пускателей

При монтаже магнитных пусковых устройств с тепловыми реле необходимо устанавливать с минимальной разностью температур окружающей среды между электродвигателем и магнитным пусковым устройством.

Нежелательна установка магнитных устройств в местах подверженных сильным ударам или вибрациям, а также рядом с мощными электромагнитными аппаратами, токи которых превышают 150 А, так как они при срабатывании создают довольно большие удары и толчки.

Для нормальной работы теплового реле температура окружающей среды не должна превышать 40 0С. Также не рекомендуется установка рядом с нагревательными элементами (реостаты) и не устанавливать их в наиболее нагреваемых частях шкафа, например вверху шкафа.

Сравнение магнитного и гибридного пускателя:

Источник: https://elenergi.ru/magnitnye-puskateli.html

Подключение реверсивного магнитного пускателя

Реверсивный пускатель часто встречается в оборудовании, обеспечивающем работу механизмов и агрегатов, в которых есть функциональное назначение изменения вращения вала электрического двигателя. Схема подключения магнитного пускателя с реверсивным пуском электродвигателя всегда является предметом изучения электриков-любителей и профессионалов для создания собственных конструкций.

В промышленности существует два вида магнитных пускателей: для прямого пуска асинхронного электродвигателя, а также для реверсного пуска электрического двигателя.

Нереверсивное подключение электродвигателя

Специалисты для лучшего понимания реверсного пуска электродвигателя предлагают рассмотреть, как работает нереверсивная схема включения электрического двигателя. В конкретном примере рассматривается пускатель с катушкой управления 220 вольт. Электродвигатель подключается к цепи по следующей цепочке:

  • автоматический трехфазный выключатель;
  • силовые клеммы пускателя (КМ);
  • тепловое реле (ТР).

Катушка управления пускателя (КМ) с одной стороны подключена к рабочему нулю, а другая сторона через цепочку кнопок управления «Пуск» и «Стоп» — к фазе цепи.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия
Подключение катушки 220 вольт

Пост управления (КМ) имеет две кнопки: «Пуск» и «Стоп»:

  • у кнопки «Пуск» контакты нормально разомкнутого вида;
  • у кнопки «Стоп» контакты нормально замкнутого вида.

Нормально разомкнутый контакт катушки управления включается параллельно пусковой кнопке. Тепловое реле в этой схеме играет для электродвигателя защитную функцию от перегрузки и включено в разрыв питающей фазы. Контакт нормально замкнутый (ТР) включается в цепь катушки управления (КМ).

После включения автоматического трехфазного выключателя напряжение поступает на силовые контакты пускателя и в управляющую цепь катушки — схема приведена в рабочее состояние.

Нереверсивный запуск

Для осуществления пуска электрического двигателя оператору необходимо нажать кнопку «Пуск», тогда в управляющую цепь катушки поступает напряжение, цепь замыкается и срабатывает, втягивая якорь с одновременным замыканием шунтирующего контакта катушки управления. Силовые контакты электрического двигателя получают питание, он начинает вращаться.

Когда оператор отпускает кнопку «Пуск», обмотка (КМ) получает питание от его вспомогательного контакта, двигатель работает.

Остановка

Оператору для остановки нереверсивного двигателя надо нажать кнопку «Стоп», в этом случае происходит разрыв питания катушки управления (КМ), шунтирующий контакт размыкается, якорь катушки приходит в начальное положение, тем самым размыкая силовые контакты. На электродвигателе пропадает напряжение, он останавливается.

Кода отпускается кнопка «Стоп», контакт управляющей обмотки остается разомкнутым, ожидая следующего пуска электросхемы.

Как происходит защита двигателя при нереверсивном пуске

Защита электрического двигателя реализуется при помощи биметаллических контактов (ТР), они изгибаются при увеличении тока, и расцепитель воздействует на контакт в пусковой обмотке, прекращая подачу электрической энергии. Все контакты пускателя (КМ) возвращаются в начальное положение, а двигатель останавливается. Ниже представлена принципиальная схема подключенного электродвигателя с защитой.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия
Установка монтажных предохранителей в цепочку защиты

В схеме защиты работы электрического двигателя предусматривается дополнительная защита управления пуском и остановкой механизма, это включение в цепь предохранителя, который реагирует на межвитковое замыкание катушки управления пускателя (КМ).

Устройство магнитного пускателя для реверсного пуска

Реверсивный магнитный пускатель имеет функциональное назначение — запуск электрического двигателя, а также других механизмов, у которых есть функциональное назначение работы в прямом и обратном направлении с изменением вращения вала двигателя. Пускатель выполняет коммутационную функцию силовыми контактами и подачу напряжения на двигатель.

В отличие от контакторов пускатель используется как защита при частых пусках и остановках механизмов и устройств. Пускатели марки ПМЛ широко применяются в схемах реверса трехфазного двигателя для реализации дистанционного пуска в насосных станциях, в башенных кранах и вентиляционных системах, в других механизмах.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия
Пускатель марки ПМЛ

Магнитный пускатель в своей конструкции имеет следующие функциональные составляющие:

  • электромагнитная часть с катушкой и подвижным якорем,  нормально разомкнутый магнитопровод;
  • главные силовые контакты, назначение которых — соединение и отключение фаз электродвигателя при пуске и остановке. Реверсивные магнитные пускатели в своем устройстве могут иметь контакты в верхней части конструкции и на стороне обмотки якоря (КМ);
  • блок-контакты функционально предназначены для коммутации цепи управления;
  • переход в начальное положение пускатель осуществляет при помощи возвратного механизма, это пружина, которую якорь катушки управления (КМ) возвращает в начальное положение, размыкая все контакты.

Как подключается реверсивный пускатель

Схема подключения реверсивного магнитного пускателя необходима для работы электрического двигателя в прямом, а также в обратном направлении. Подключить этот вид пускового устройства для специалиста не составит труда.

Очень часто в промышленности реверсивное подключение используется для работы станочного оборудования разного вида (сверлильный, токарный станок и др.). Реверсивная схема реализуется в работе лифтов не бытового назначения.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия
Схема реверсивного пуска асинхронного двигателя

Реверсивные пускатели имеют отличие в подключении, это дополнительная цепочка управления, а также разница соединения силовой части. В схеме реализована защита от короткого замыкания, это контакты КМ1.2 и КМ2.2, которые имеют нормально замкнутый вид и размещены на пускателях КМ1 и КМ2. Реверсивная схема, представленная на фото, имеет цветовое отличие силовой и управляющей цепей:

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия
Реверсивная схема подключения двигателя

Как происходит включение

Схему реверса асинхронного двигателя можно образно разбить на этапы включения: выключатель (QF1) переводим в рабочее положение, в этом случае все реверсивные магнитные пускатели на силовых контактах получают напряжения КМ1 и КМ2 и остаются в таком положении.

Одна фаза задействована в цепи управления обмоток пускателей, ее прохождение:

  • защитный автомат (SF1) — кнопка «Стоп» (SB1) — контактная группа №3 (функционируют с кнопками (SB2) и (SB3);
  • контакт 1ЗНО в пускателях КМ1 и КМ2 становится в ожидание — у него дежурное значение;
  • пускатель реверсивный готов к работе.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия
Схема подключения электродвигателя

Как происходит переключение

Схема реверса электродвигателя предусматривает следующие манипуляции в пускателе: когда оператор нажимает кнопку SB2, он дает питание управления катушкой пускателя (КМ1), далее срабатывают нормально разомкнутые контакты и размыкаются нормально замкнутые контакты в конфигурации КМ1, катушка обеспечивает «подпитку», и питание через силовые контакты поступает на мотор, он начинает вращение.

Если возникла рабочая необходимость сделать реверс электродвигателя, оператору надо поменять приложение силовых контактов (фаз), это реализуется при помощи КМ2.

Важно! Всегда, когда делается подключение двигателя для обратного вращения, должна происходить его остановка, это достигается отключением в управлении обмотки КМ1 фазы №1, контакты пускателя занимают начальное положение, электродвигатель обесточен.

Оператор, нажимая кнопку SB3, подает питание на управление обмоткой КМ2, а оно изменяет включение силовых контактов «фаза №2» и «фаза №3» для подключения трехфазного электродвигателя. Он начинает вращение в другом направлении до тех пор, пока не произойдет размыкание контактов управления обмоткой.

Защита работы реверсного включения электродвигателя

Всегда, перед тем как изменить порядок подключения 3-фазного двигателя, изменяя порядок фаз на обмотках электродвигателя, надо его остановить.

Это реализуют в схеме включения нормально замкнутые контакты, которые «подстраховывают» работу оператора и не допускают межфазного замыкания в электрическом двигателе, когда происходит реверсирование его подсоединения.

Читайте также:  Топоры компании «фискарс»: описание, материалы изготовления и эргономические особенности

В рассмотренной схеме подключения реверсного пускателя видно, что работать может только один пускатель.

Ежедневно происходит работа по подключению электродвигателей прямого и обратного вращения, схема включения пускателей не составляет сложностей для квалифицированных электриков. Необходимо всегда помнить, что должна реализовываться функция остановки двигателя перед его обратным вращением.

Источник: https://domelectrik.ru/oborudovanie/dvigatel/puskatel-reversivnyy

Что такое реверсивный пускатель: принципы работы и структурные особенности

Всем нам известна пара слов – «аверс и реверс». Эти лексемы — латинского происхождения. Имеют семантику, противоположную друг другу, означая: «прямой и обратный», «лицевая сторона и оборотная сторона» и так далее.

Эти понятия часто используют в нумизматике, но физика и математика не являются в этом плане исключением. Например, существует реверсивный пускатель, который просто незаменим в электромеханике, ему и будет посвящена данная статья.

Но прежде чем разбираться, как устроен реверсивный пускатель, стоит понять принципы его работы. Для этого рекомендуем обратить внимание на ключевые понятия, связанные с магнитным пускателем.

Что такое магнитный пускатель, и какое он имеет предназначение?

Стандартный магнитный пускатель – это типичное электромеханическое устройство, которое нацелено на работу с трехфазными электродвигателями. Его целевое назначение – обеспечение непрерывной и безопасной работы двигателя, включая контроль отключения питания агрегата, если будут возникать внештатные или аварийные ситуации.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Используемая схема реверсивного пускателя позволяет успешно его применять для электрокотлов, тэнов, электродвигателей, то есть когда необходимо проявить функционал коммутационного аппарата или осуществить автоматическое подключение или отключение от электрического источника.

Определим основные задачи магнитного пускателя, а они следующие:

  • дистанционное управление агрегатами. Например, асинхронным двигателем. Созданная схема реверсивного пускателя с кнопками позволяет менять направление вращения вала.
  • контроль нагрузок агрегата. Применятся для разгрузки маломощных контактов. Даже есть возможность подключить магнитный пускатель к домашнему выключателю, подготавливая его к работе с большим количеством лампочек.

Как устроен магнитный пускатель: все его основные составляющие

Стандартный магнитный пускатель состоит из следующих основополагающих элементов:

  • внешнего защитного кожуха;
  • основного инструмента управления;
  • специального контактора;
  • тепловогореле.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Конструктивные особенности реверсивного магнитного пускателя простые, но достаточно эффективные и надежные. Все агрегаты усовершенствованы и модифицированы настолько, что их компактность и функциональность переоценить просто нельзя.

Они легкие и удобные в применении, особенно те виды оборудования, которые оснащены специальными тепловыми реле, отвечающими за аварийное отключение.

С такой защитой работа выполняется бесперебойно и без отклонения от норм, так как просто не может произойти обрыва фаз, и следовательно, аварийная ситуация и долгий простой оборудования практически исключаются.

Имеющаяся в устройстве катушка отвечает за необходимую коммутацию всех силовых контактов и провоцирует замыкание силовой цепи, а когда выполняется отключение питания, то происходит, соответственно, размыкание созданной цепи.

Существующая схема подключения реверсивного пускателя включает и блокировочные контакты, которые служат для управления силовыми элементами цепи, не исключая контроль.

Причем все имеющиеся в схеме контакты могут находиться в двух состояниях: нормально-разомкнутом и нормально-замкнутом.

Что такое реверсивный магнитный пускатель и в чем его преимущества?

Пришло время более детально обсудить технические особенностии узнать, что же это такое реверсивный пускатель трехфазный. Как уже становится ясно, существует два вида магнитных пускателей. Первый – прямой или нереверсивный. Второй – реверсивный, о котором дальше пойдет в речь в статье.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Обычно стандартные реверсивные пускатели оснащаются двумя магнитными пускателями, собранными в одном корпусе и соединенными между собой.

Если присмотреться к схеме, то можно рассмотреть место крепления и соединения на общем основании двух этих магнитных элементов.

Ну а теперь о главной особенности реверсивного пускателя – может работать только один из элементов, то если либо первый, либо второй. Такая переменность необходима, чтобы исключить межфазное замыкание.

По принятому режиму работы, да и по схеме реверсивного магнитного пускателя запуск происходит через замкнутые блокировочные контакты, которые обеспечивают попеременное, то есть неодновременное включение реверсивных и нереверсивных режимов.

При этом реализуется главенствующая задача реверсивного пускателя – смена направлений вращения того или иного электрического двигателя, иными словами: все взаимосвязано, если изменился порядок чередования фаз, то, соответственно, выполняются преобразования имеющегося у оборудования ротора, меняется направление вращения.

Где и когда используются реверсивные магнитные пускатели?

Сфера применения реверсивных магнитных пускателей расширена. Например, при помощи бесконтактного реверсивного пускателя не обходится работа асинхронных двигателей, которые применяются в различных станках и мощных насосах.

Нередки случаи, что выполняется подключение реверсивного пускателя для расширенных систем вентиляции, для надежности запорной арматуры. Всегда ценится специалистами «беспроблемное оборудование», управлять которым несложно, а эксплуатация длительная и надежная.

К современным бонусам относят дистанционное управление – это достаточно выгодная опция, которая может быть обеспечена применением магнитного пускателя.

Многие виды надежных электрических замков используют специальные пускатели для управления, а также выполняется внедрение такого незаменимого электромеханического элемента в систему отопления, работу лифтов.

Чем отличается схема магнитного реверсивного пускателя: правила комплектации

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном.

И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя.

Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. — За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается.

Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач.

Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп».

Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины. Все, агрегат готов к реверсу.

Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен. С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку.

Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования.

Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

Источник: https://provotok.ru/chto-takoe-reversivnyj-puskatel-principy-raboty-i-strukturnye-osobennosti

Реверсивный магнитный пускатель — особенности подключения и принцип работы

В современном мире всё более популярным становится использование разнообразного дополнительного оборудования обеспечивающего дистанционное управление самыми разными аппаратами.

Среди них весьма востребован реверсивный магнитный пускатель, который осуществляет удаленное управление трехфазными асинхронными электродвигателями, при этом есть возможность произвести как их пуск, так и торможение.

Кроме того при помощи реверсивного магнитного пускателя доступно управление любым потребителем питания (освещением, охлаждением, обогревом и т.д.).

Конструктивно реверсивный магнитный пускатель состоит из следующих элементов:

1. Контактор. 2. Тепловое реле. 3. Кожух.

4. Инструменты управления.

Принцип работы реверсивного магнитного пускателя

Подключение реверсивного магнитного пускателя и его работа происходит следующим образом. После осуществления команды «пуск» на панели управления устройства электрическая цепь замыкается, вследствие чего ток подаётся на катушку.

В это время механическая блокирующая система срабатывает, подобным образом блокируются незадействованные контакты. Так как контакты кнопки тоже оказываются заблокированными, подобное действие позволяет не удерживать кнопку, а спокойно отпустить её.

Вторая кнопка реверсивного магнитного пускателя, параллельно с запуском устройства, размыкает цепь, таким образом, её активация не даст никакого результата.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Для осуществления реверса необходимо активировать кнопку «стоп», нажатие которой обесточит обе катушки реверсивного магнитного пускателя, тем самым остановив функциональные операции оборудования. При таком действии все блокирующие устройства займут изначальное положение.

Подобная последовательность позволяет активировать реверсивный магнитный пускатель вновь, без каких либо дополнительных действий. При выборе команды «пуск» произойдут вышеописанные действия, однако при этом будет использована вторая катушка, а первая окажется заблокированной.

Наиболее совершенный и безопасный реверсивный магнитный пускатель оснащен дополнительными блокировочными системными механизмами.

Размещаются данные приспособления для блокирования рабочего момента, как правило, внутри кожуха (непосредственно под панелью управления) и предназначены для того чтобы не допустить срабатывания сразу обеих катушек.

Согласно схеме реверсивного магнитного пускателя, если он снабжен электрической блокирующей системой, то использование механических блокировок вовсе необязательно.

Пускатель реверсивный: отличия от обычного, схема устройства, принцип действия

Осуществление реверса происходит через полную остановку двигателя.

Другими словами, при срабатывании реверсивного магнитного пускателя двигатель замедляется, после чего следует полная остановка, а затем осуществляется вращение в другую сторону.

Однако при этом необходимо совпадение мощностей двигателя и реверсивного магнитного пускателя. Только при осуществлении данного процесса, реверс будет осуществлён правильно.

Если же остановка и реверс двигателя производится противовключением, то мощность оборудования должна быть значительно ниже максимально допустимой мощности реверсивного магнитного пускателя.

Наиболее часто двигатель уступает по мощности пускателю в 1,5-2 раза.

Во многом разница мощностей зависит от качества контактов магнитного пускателя, а точнее их износостойкости при работе в данных условиях.

Данный режим должен проходить без применения механических систем блокировки. Однако безопасность работы реверсивного магнитного пускателя в обязательном порядке должна обеспечиваться применением электрических систем блокировки. В целом же реверсивные магнитные пускатели являются технологичным и безопасным методом удалённого управления асинхронными электродвигателями.

Ссылка на promplace.ru обязательна

Источник: https://promplace.ru/reversivnij-magnitnij-puskatel-osobennosti-podklyucheniya-i-printcip-raboti-978.htm

Понравилась статья? Поделиться с друзьями:
Станок