Электролиты с тяжелыми металлами

Электролиты – растворы, имеющие в своем составе заряженные частицы, которые принимают участие в переносе зарядов между электродом и катодом. Могут быть сильными и слабыми.

Процесс распада молекул на ионы называется электролитической диссоциацией. Неэлектролиты – водные растворы, в которые вещество перешло в виде молекул с сохранением первоначальной структуры.

Все молекулы вещества в таких растворах окружены гидратными оболочками (молекулами воды) и не могут переносить электрический заряд.

Растворение кристалла поваренной соли

Как протекает электролитическая диссоциация

Вещества-электролиты устроены за счет ионных или ковалентных полярных связей.

Во время растворения происходит химическое воздействие вещества с молекулами воды, в результате чего оно распадается на электроны. Молекулы воды – активные диполи с двумя полюсами: положительным и отрицательным. Атомы водорода располагаются под углом 104,5°, за счет этого молекула воды приобретает угловую форму.

Вещества, имеющие ионную кристаллическую решетку, намного легче диссоциируют, они уже состоят из активных ионов, а диполи воды во время растворения только ориентируют их. Между диполями воды и ионами электролита возникают усилия взаимного притяжения, связи кристаллической решетки ослабевают и ионы покидают кристалл.

Последовательность процессов при диссоциации растворов с ионной связью

На первом этапе молекулы вещества ориентируются около диполей воды, далее происходит гидратация, а на завершающем этапе диссоциация.

Похожим образом диссоциируют электролиты, у которых молекулы строятся за счет ковалентных связей. Разница только в том, что диполи воды превращают ковалентные связи в ионные. При этом наблюдается такая последовательность процессов:

Электролитическая диссоциация полярной молекулы хлороводорода на гидратированные ионы

В растворах происходит хаотическое движение гидратированных ионов, они могут сталкиваться между собой и опять образовывать отдельные связи. Такой процесс называется ассоциацией.

Классификация электролитов

Все электролиты кроме ионов содержат молекулярные структуры, неспособные переносить разряд. Процентное содержание этих элементов оказывает прямое влияние на возможность проводить ток, параметр обозначается α и определяется по формуле:

Для вычисления берется отношение количества частиц, распавшихся на ионы к общему числу растворенных частиц.

Степень распада определяется опытным путем, если она равняется нулю, то диссоциация полностью отсутствует, если равняется единице, то все вещества в электролите распались на ионы.

С учетом химического состава электролиты имеют неодинаковую степень диссоциации, параметр зависит от природы и концентрации раствора, чем ниже концентрация, тем выше диссоциация. Согласно данным определениям все электролиты делятся на две группы.

  1. Слабые электролиты. Имеют очень незначительную степень диссоциации, химические элементы почти не распадаются на ионы. К таким электролитам относится большинство неорганических и некоторые органические кислоты. Слабые электролиты расщепляются на ионы обратимо, процессы диссоциации и ассоциации по интенсивности могут сравниваться, раствор очень плохо проводит электрический ток.

Способность к диссоциации зависит от нескольких факторов, слабые электролиты во многом определяются химическими и физическими особенностями вещества. Важное значение имеет химический состав растворителя.

  1. Сильные электролиты. Эти растворы в водных растворах интенсивно диссоциируют на ионы, сильные электролиты могут иметь степень диссоциации равную единице. К ним относятся почти весь перечень солей и многие кислоты неорганического происхождения. Сильные электролиты диссоциируют необратимо:

От каких факторов зависит степень диссоциации

  1. Природа растворителя. Степень диссоциации веществ увеличивается прямо пропорционально полярности. Чем больше полярность, тем выше активность имеют сильные электролиты.
  2. Температура во время подготовки раствора. Повышение температуры растворителя увеличивает активность ионов и их количество. Правда, при этом есть вероятность одновременного повышения ассимиляции. Процесс растворения веществ в растворителе должен непрерывно контролироваться, при обнаружении отклонений от заданных параметров немедленно вносятся корректировки.
  3. Концентрация химических веществ. Чем выше концентрация, тем больше вероятность, что после растворения образуются слабые электролиты.

График зависимости константы диссоциации от концентрации

Главные положения теории электролитической диссоциацииСогласно существующей теории, электролитическая диссоциация позволяет растворам проводить электрический ток. В зависимости от этой способности они делятся на электролиты и неэлектролиты.

Процесс распада веществ на ионы называется диссоциацией, положительно заряженные двигаются к катоду и называются катионами, негативно заряженные двигаются к аноду и называются анионами.

Состав электролитов оказывает влияние на способность к диссоциации, технические нормы позволяют определять эту зависимость количественно.

С учетом получаемых после диссоциации ионов изменяется свойство электролитов. Вне зависимости от химического характера образуемых после диссоциации ионов, электролиты подразделяются на три большие классы:

1.Кислоты. В результате распада образуются анионы кислотного остатка и катионы водорода. Кислоты многоосновные могут преобразовываться по первой степени:

2. Основания. Электролиты, дисоциирующие на анионы гидроксогрупп и катионы металла.

3. Соли. Электролиты диссоциируют на анионы кислотного остатка и катионы металлов. Процесс происходит в одну ступень.

Химические свойства электролитов описываются при помощи химических уравнений и определяются свойствами образованных ионов. Для удаления вредных химических соединений, выделяемых в воздух во время диссоциации, используются химически нейтральные пластиковые воздуховоды.

Перспективы развития теории диссоциацииНа современном этапе развития теории ученые предпринимают попытки описать динамические и термодинамические свойства электролитов учитывая концепцию ионно-молекулярной структуры.

Классическая теория считается примитивной, в ней ионы представляются как заряженные жесткие сферы. Главный недостаток традиционной теории – невозможность объяснить локальное снижение диэлектрической проницательности в первом приближении.

Ряд растворителей поддается описанию физических свойств ступенчатой зависимостью, но протонные водные растворители имеют намного сложнее процессы релаксации.

Непримитивные модели, рассматривающие ионы в одинаковом масштабе, делятся на две группы:

  1. Первая. Жидкие фазы рассматриваются как максимально разупорядочные кристаллы, размеры не более пяти молекулярных диаметров.
  2. Вторая. Жидкости описываются как сильно неидеальные газы. Молекулы растворителя являются точными или обыкновенными диполями.

Зависимость диэлектрической проницаемости от расстояния между ионами

Неравновесные явления в растворах электролитов

Неравновесный распад объясняется несколькими физическими процессами.

  1. Миграцией и диффузией ионов. Обуславливается сравнительно большим количеством ионных перескоков за единицу времени в сравнении с иными направлениями.

Контакт двух растворов с различными показателями концентрации

  1. Эквивалентной и удельной электропроводностью. Электропроводность обеспечивается миграцией ионов, замеры выполняются таким способом, чтобы исключалось влияние градиента химического потенциала.

Принципиальная схема моста переменного тока во время измерения электропроводности

  1. Числом переноса. Определяется суммой электрической проворности аниона и катиона. Доля тока называется электрическим числом переноса.

Схема определения числа переноса

Перемещение ионов в среде электрического поля по статистике является усредненным процессом, ионы делают беспорядочные перескоки, а элегическое поле оказывает только определенное влияние, точно рассчитать силу и вероятность влияния невозможно. В связи с этим, аналогия диссоциации с обыкновенным поступательным движением твердых тел весьма приближенная, но она позволяет принимать правильные качественные выводы.

Если вас интересует стоимость изготовления продукции, отправьте нам техническое задание на почту info@plast‑product.ru или позвоните по телефону 8 800 555‑17‑56

Электролиты: понятие и свойства

  • Электролиты — растворы, содержащие большую концентрацию ионов, обеспечивающих прохождение электрического тока. Как правило, это водные растворы солей, кислот и щелочей.

    Это интересно

    В организме человека и животных электролиты играют важную роль: к примеру, электролиты крови с ионами железа транспортируют кислород в ткани; электролиты с ионами калия и натрия регулируют водно-солевой баланс организма, работу кишечника и сердца.

    Свойства

    Чистая вода, безводные соли, кислоты, щелочи ток не проводят. В растворах же вещества распадаются на ионы и проводят ток. Именно поэтому электролиты называют проводниками второго порядка (в отличие от металлов). Электролитами могут быть также расплавы и некоторые кристаллы, в частности диоксид циркония и иодид серебра.Главное свойство электролитов — способность к электролитической диссоциации, то есть к распаду молекул при взаимодействии с молекулами воды (или других растворителей) на заряженные ионы.По типу ионов, образующихся в растворе, различают электролит щелочной (электропроводимость обусловлена ионами металлов и ОН-), солевой и кислотный (с ионами Н+ и остатками основания кислоты).Для количественной характеристики способности электролита к диссоциации введен параметр «степень диссоциации». Эта величина отражает процент молекул, подвергшихся распаду. Она зависит от:• самого вещества;• растворителя;• концентрации вещества;• температуры.

Электролиты делят на сильные и слабые. Чем лучше реагент растворяется (распадается на ионы), тем сильнее электролит, тем лучше он проводит ток.  К сильным электролитам относятся щелочи, сильные кислоты и растворимые соли.

Для электролитов, использующихся в аккумуляторах, очень важен такой параметр, как плотность. От нее зависят условия эксплуатации аккумулятора, его емкость и срок службы. Определяют плотность с помощью ареометров.

Меры предосторожности при работе с электролитами

Самые популярные электролиты, это раствор концентрированной серной кислоты и щелочи — чаще всего гидроксиды калия, натрия, лития. Все они вызывают химические ожоги кожи и слизистых, очень опасные ожоги глаз.

Именно поэтому все работы с такими электролитами нужно производить в отдельном, хорошо вентилируемом помещении, используя средства защиты: одежду, маски, очки, резиновые перчатки.

• Рядом с помещением, где проводятся работы с электролитами, должна храниться аптечка с набором нейтрализующих средств и кран с водой. • Кислотные ожоги нейтрализуются раствором соды (1 ч.л. на 1 ст. воды).• Ожоги щелочью нейтрализуют раствором борной кислоты (1 ч.л. на 1 ст.

воды).• Для промывания глаз нейтрализующие растворы должны быть в два раза слабее.• Поврежденные участки кожи сначала промывают нейтрализатором, а потом мылом и водой.

• Если электролит пролили, его собирают опилками, потом промывают нейтрализатором и вытирают насухо.

При работе с электролитом следует выполнять все требования техники безопасности. Например, кислоту наливают в воду (а не наоборот!) не вручную, а с помощью приспособлений. Куски твердой щелочи в воду опускают не руками, а щипцами или ложками. Нельзя работать в одном помещении с аккумуляторами на разнотипных электролитах, и хранить их вместе тоже запрещается.

Некоторые работы требуют «кипения» электролита. При этом выделяется водород — горючий и взрывоопасный газ. В таких помещениях должна использоваться взрывобезопасная электропроводка и электроприборы, запрещается курение и любые работы с открытым огнем.

Хранят электролиты в пластиковых емкостях. Для работы подходит стеклянная, керамическая, фарфоровая посуда и инструменты.

В следующей статье расскажем подробнее о видах и применении электролита.

Разъедает ли электролит металл

Аккумуляторный электролит приготовляют из аккумуляторной кислоты путем ее разведения дистиллированной водой в стеклянной, керамической или эбонитовой посуде, которая не разъедается серной кислотой. Абсолютно недопустимо применение стальной, медной или цинковой посуды.

Кислоту следует осторожно вливать тонкой струей в воду, а не наоборот.

Дело в том, что при смешении серной кислоты с водой происходит интенсивное выделение тепла, а серная кислота тяжелее, чем вода; при заливке кислоты в воду она, смешиваясь с водой и образуя тяжелый раствор, опускается на дно сосуда и постепенно смешивается со всей массой жидкости, образуя равномерный раствор. [1]

Аккумуляторный электролит разбавляют до плотности 1 12 кг / л при температуре 15 С, причем удельный вес контролируют по ареометру. Разбавленный точно до этого удельного веса электролит после охлаждения до 25 — 30 С уже может быть употреблен для заливки свинцовых аккумуляторов. [2]

Аккумуляторный электролит приготовляют из аккумуляторной кислоты путем ее разведения дестиллированпой водой в стеклянной, керамической или эбонитовой посуде, которая не разъедается серной кислотой. Абсолютно недопустимо применение стальной, медной или цинковой посуды.

Кислоту следует осторожно вливать тонкой струей в воду, а не наоборот.

Дело в том, что при смешении серной кислоты с водой происходит интенсивное выделение тепла, а серная кислота тяжелее, чем вода; при залкв ке кислоты в-воду она, смешиваясь с водой и образуя тяжелый раствор, опускается на дно сосуда и постепенно смешивается со всей массой жидкости, образуя равномерный раствор.

Если же наливать воду в серную кислоту, что ни при каких обстоятельствах недопустимо, горячая смесь будет в первые моменты находиться на поверхности жидкости, не будет достаточно отдавать тепло всей массе холодной жидкости и вследствие этого будет вскипать и разбрызгиваться, что может вызвать тяжелые ожоги работающих. [3]

Аккумуляторный электролит разбавляют до плотности 1 12 кг ] л при температуре 15 С, причем удельный вес контролируют по ареометру. Разбавленный точно до этого удельного веса электролит после охлаждения до 25 — 30 С уже может быть употреблен для заливки свинцовых аккумуляторов. [4]

  Установка автозапуска своими руками видео

Растворы серной кислоты, в том числе и аккумуляторный электролит , вызывают тяжелую и быструю коррозию металлов. При полной смене электролита приходится удалять кубометры этого раствора.

Если его просто слить в заводскую или городскую канализацию, то это может вызвать повреждение системы канализации и нарушение ее работы. Поэтому перед полной сменой электролита необходимо с помощью химиков разработать порядок нейтрализации удаляемого электролита.

При удалении малых количеств электролита его перед сливом в канализацию нейтрализуют раствором кальцинированной соды. [5]

При хранении, транспортировании и разведении серной кислоты и вообще при работе с кислотным аккумуляторным электролитом и со свинцовыми аккумуляторами необходимо соблюдать исключительную осторожность, так как серная кислота является весьма едким и ядовитым веществом.

При попадании на кожу человека она может вызвать весьма тяжелые ожоги. Кислота может также разъедать одежду — особенно сильно она разрушает целлюлозные материалы ( хлопчатобумажные ткани, а также бумагу, картон и пр.

Недопустимо заливать пролитую серную кислоту водой, так как при этом ( выделяется тепло и кислота может разбрызгиваться. [6]

При хранении, транспортировании и разведении серной кислоты и вообще при работе с кислотным аккумуляторным электролитом и со свинцовыми аккумуляторами необходимо соблюдать исключительную осторожность, так как серная кислота является весьма едким и ядовитым веществом.

Кислота может также разъедать одежду — особенно сильно она разрушает целлюлозные материалы ( хлопчатобумажные ткани, а также бумагу, картон и пр. Недопустимо заливать пролитую серную кислоту водой, так как при этом выделяется тепло и кислота может разбрызгиваться.

[7]

Участок для подзарядки аккумуляторных батарей оснащают высокоэффективным преобразовательным оборудованием и системами вентиляции, а также оборудованием для приготовления необходимого для работы аккумуляторного электролита . [8]

Белый кристаллический порошок, сильная щелочь, хорошо растворимая в воде. Литий едкий предназначен в качестве облагораживающего добавления в аккумуляторный электролит для увеличения зарядной емкости аккумулятора и удлинения срока его службы. Литий едкий аккумуляторный упаковывают в железные барабаны или мешки из пластиката. [9]

  Объем масла в коробке ока

Интересным оказался прибор, использующий пьезоэлектрический эффект — специалисты фирмы VDO считают его весьма перспективным [2] и надеются применить для контроля уровня охлаждающей и омывающей жидкостей, масла, бензина и даже таких агрессивных жидкостей, как тормозная смесь и аккумуляторный электролит . Подробностей конструкции фирма, как обычно, не освещает, однако догадаться, как датчик действует, можно. [10]

При разрушении стеклянных сосудов, течи деревянных баков, неаккуратной замене пластин и откачке шлама электролит разливается по полу аккумуляторного помещения. Ходить по лужам электролита в кожаной обуви нельзя — кожа кислотой разрушается. В аккумуляторном хозяйстве должен быть запас сухих древесных опилок. Разлитый электролит засыпается опилками.

После того как электролит впитается, опилки собирают и удаляют из аккумуляторного помещения. Пол, где был разлит электролит, и стеллажи, если они были загрязнены электролитом, нейтрализуют раствором кальцинированной соды, промывают водой и досуха вытирают тряпкой. Растворы серной кислоты, в том числе и аккумуляторный электролит , вызывают тяжелую и быструю коррозию металлов.

При полной смене электролита приходится удалять кубометры этого раствора. Если просто слить его в заводскую или городскую канализацию, то это может вызвать повреждение системы канализации и нарушение ее работы. Поэтому перед полной сменой электролита необходимо с помощью химиков разработать порядок нейтрализации удаляемого электролита.

При удалении малых количеств электролита его перед сливом в канализацию нейтрализуют раствором кальцинированной соды. [11]

Искры нет не потому что кислота что-то окислила — она не окисляет в большинстве случаев, а растворяет.. .Электролит очень неплохо за счет указанного H3O+ переносит ток.. .

Раз получилось так что все залито — произошло просто напросто короткое замыкание.

Если на воздухе — то вместе с кислородом кислота может скушать любое железное изделие.. . Медные провода тоже (кислород помогает) . Хранить его можешь в любой полиэтиленовой емкости. Желательно герметичной.

Неплохой защитой от проливов являются обычные кусочки поролона. Чтоб не замыкало — оботри весь аккумулятор сначала ненужной тряпкой — сразу в утиль кстати.. .

А потом остатки промой мыльной водой или с добавкой обычного фэйри.. .

Растворы электролитов

При растворении в воде некоторые вещества имеют способность проводить электрический ток.

Те соединения, водные растворы которых способны проводить электрический ток называются электролитами.

Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания).

Вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) являются слабыми электролитами.

Многие органические соединения (углеводы, спирты), растворенные  воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами.

Приведем некоторые закономерности, руководствуясь которыми можно определить относятся вещества к сильным или слабым электролитам:

  1. Кислоты. К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO3, H2SO4, HClO4. Все они являются сильными электролитами. Почти все остальные кислоты, в том числе и органические являются слабыми электролитами.
  2. Основания. Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be) относятся к сильным электролитам. Слабый электролит – NH3.
  3. Соли. Большинство распространенных солей – ионных соединений — сильные электролиты. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и принципу Вант-Гоффа.

Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Сущность теории электролитической диссоциации

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Степень диссоциации электролита зависит от:

  • природы самого электролита
  • природы растворителя
  • концентрации электролита
  • температуры.
  • Степень диссоциации
  • Степень диссоциации α, показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N:
  • α = n/N
  • Степень диссоциации равна 0 α = 0 означает, что диссоциация отсутствует.
  • При полной диссоциации электролита степень диссоциации равна 1 α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на:

  • средней силы ( 0,3 > α > 0,7),
  1. Константа диссоциации
  2. Более точно процесс диссоциации электролита характеризует константа диссоциации, не зависящая от концентрации раствора. Если представить процесс диссоциации электролита в общем виде:
  3. Aa Bb ↔ aA— + bB+
  4. K = [A—]a·[B+]b/[Aa Bb]
  5. Для слабых электролитов концентрация каждого иона равна произведению степени диссоциации α на общую концентрацию электролита С.
  6. Таким образом, выражение для константы диссоциации можно преобразовать:
  7. K = α2C/(1-α)
  8. Для разбавленных растворов (1-α) =1, тогда
  9. K = α2C
  10. Отсюда нетрудно найти степень диссоциации
  11. α = (K/C)1/2

Ионно–молекулярные уравнения

Как составить полное и сокращенное ионные уравнения

Рассмотрим несколько примеров реакций, для которых составим молекулярное, полное и сокращенное ионное уравнения.

1) Пример нейтрализации сильной кислоты сильным основанием

1. Процесс представлен в виде молекулярного уравнения.

HCl + NaOH = NaCl + HOH

2. Представим процесс в виде полного ионного уравнения. Т.е. запишем в ионном виде все соединения — электролиты, которые в растворе полностью ионизированы.

  • H+ + Cl— +Na+ + OH— = Na+ + Cl— + HOH
  • 3. После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:
  • H+ + OH— = HOH
  • Мы видим, что процесс нейтрализации сводится к соединению H+ и OH— и образованию воды.

При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

2) Пример реакции осаждения

Смешаем водные растворы AgNO3 и HI:

Молекулярное уравнение AgNO3 + HI →AgI↓ + HNO3
Полное ионное уравнение Ag+ + NO3— + H+ + I— →AgI↓ + H+ + NO3—
Сокращенное ионное уравнение Ag+ + I— →AgI↓

Процесс осаждения сводится к взаимодействию только Ag+ и I— и образованию нерастворимого в воде AgI.

Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей растворимости кислот, солей и оснований в воде. В приведенной таблице также указан цвет образуемого осадка, сила кислот и оснований и способность анионов к гидролизу.

Пример образования летучего соединения

Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

Молекулярное уравнение Na2SO3 + 2HI → 2NaI + SO2↑ + H2O
Полное ионное уравнение 2Na+ + SO32- + 2H+ + 2I— → 2Na+ + 2I— + SO2↑ + H2O
Сокращенное ионное уравнение SO32- + 2H+ → SO2↑ + H2O

Отсутствие взаимодействия между растворами веществ

При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

Молекулярное уравнение CaCl2 + 2NaI  = 2NaCl +CaI2
Полное ионное уравнение Ca2+ + Cl— + 2Na+ + I—  = 2Na+ + Cl— + Ca2++ 2I—
Сокращенное ионное уравнение отсутствует

Условия протекания реакции (химического превращения)

Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

  • Образование неэлектролита. В качестве неэлектролита может выступать вода.
  • Образование осадка.
  • Выделение газа.
  • Образование слабого электролита, например уксусной кислоты.
  • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
  • Образование или разрыв одной или нескольких ковалентных связей.

Больше примеров приведено в разделе Задачи к разделу растворы электролитов

Также для тренировки, рекомендуем пройти тест Задания 14. Электролиты и неэлектролиты. Катионы и анионы

Консультации

Здравствуйте!
Столкнулись с необходимостью хромирования трущихся пар, в таких случаях рекомендуется пористое хромирование. Расскажите, пожалуйста, чем отличается этот процесс, и каким образом его лучше осуществить?
Спасибо.

Пористое хромирование отличается от обычного износостойкого хромирования тем, что на поверхности хромового покрытия искусственным образом образуются дефекты в виде пор, трещин или каналов.

Хром – достаточно гладкое покрытие, оно обладает достаточно плохой смачиваемостью смазочными материалами. Вследствие этого при работе трущихся пар может происходить нарушение сплошности смазочной пленки.

Это приводит к износу в результате локального перегрева или порчи хромового покрытия. 

Чтобы этого не происходило, необходимо, чтобы на детали всегда был запас смазочных материалов, например, в порах или каналах. На практике гладкие хромовые покрытия проявляют пониженную стойкость к истиранию по сравнению с пористым хромом. Пористый хром рекомендуется для поршневых колец, цилиндров и гильз блоков двигателей внутреннего сгорания и подобных изделий.

Смазочные материалы, попадающие в каналы, углубления и поры пористого хромирования, создают запас дополнительный смазки, что препятствует нарушению её сплошности.

Таким образом, предотвращается возникновение неблагоприятного полусухого или граничного трения.

Смазка, содержащаяся в порах, постоянно подпитывает пленку на поверхности детали, что приводит к значительному улучшению антифрикционных свойств, особенно при повышенной температуре.

Способы получения пористого хромового покрытия делятся на:

• механический

Этот способ предполагает нанесение специального «рисунка» на деталь перед процессом хромирования. Углубления наносят накаткой с использованием специального колющего инструмента, создавая особый рельеф поверхности.

Обычно это пирамидальные углубления в шахматном порядке с фиксированной частотой (шаг 1,5-2 мм). Глубина зависит от толщины наносимого хромового покрытия.

Для придания гладкости поверхности после этой процедуры производят хонирование (шлифование) а затем на изделие наносят хром.

• химическийХимический способ аналогичен процессу травления хрома в кислоте. Применение его ограничено тем, что достаточно сложно получить стабильный, предсказуемый результат.

• электрохимический

Электрохимический способ заключается в анодном травлении детали уже с хромовым покрытием (дехромирование). Блестящий хром, как правило, трещиноватое покрытие. Под действием тока происходит увеличение трещин на поверхности, т.к. анодное растворение идёт преимущественно по границам этих трещин.

Таким образом, благодаря развитой сетке трещин, смазка удерживается на поверхности капиллярными силами. Следует помнить, что при этом процессе происходит определённый съем хрома и несколько снижается твердость покрытия. Анодное травление хрома проводится в стандартном электролите хромирования.

Свойства трещин-каналов будут зависеть от количества электричества, температуры и от соотношения хромовый ангидрид-серная кислота.

Более подробно о влиянии состава электролита и режима травления свойства поверхности можно узнать в издании «Электролитическое хромирование» Солодковой Л.Н., Кудрявцева В.Н.

Твердые оксидные электролиты — новые горизонты электрохимии

В 1820 году Ханс Кристиан Эрстед обнаружил магнитное действие электрического тока. Растворы кислот, щелочей и солей образуют электролит — смесь положительных катионов (черные кружки) и отрицательных анионов (белые). Двумерная решетка соединения типа MG2(например, ZrО2)(А).

Модель типичного ионного кристалла — знакомой всем поваренной соли NaCl (А). Схема электрохимического устройства. На основе твердых оксидных электролитов можно создавать разные электрохимические устройства.

Жидкие электролиты — водные растворы, или расплавы, солей, кислот и оснований — известны давно.

Они работают в аккумуляторах и «сухих» батарейках, применяются для получения и очистки металлов, щелочей, органических соединений, для никелирования и анодирования. Свойства жидких электролитов знакомы многим — их изучают даже в школе. Но есть еще один класс подобных веществ — так называемые твердые электролиты.

Знают о них в основном только специалисты-химики, история их изучения коротка, широкое применение только начинается. Твердые электролиты связывают в основном с надеждой создать легкий и емкий аккумулятор для электромобиля. Сегодня аккумулятор массой 50-60 килограммов способен запасти гораздо меньше энергии, чем ее «хранится» в бензобаке.

Источник тока на твердом электролите, над созданием которого работают ведущие компании мира, по удельной энергоемкости обещает сравняться с топливом.

Спектр применения твердых электролитов очень широк. На их основе можно делать «вечные» печи и источники света, анализаторы газов, устройства для получения чистого кислорода, генераторы электричества и многое другое. Будущее твердых электролитов представляется весьма многообещающим, поэтому знать о них следует.

  • Электролиты

В конце прошлого века Вальтер Нернст, известный немецкий исследователь, много сделавший для развития электрохимии, использовал в осветительных лампах спресованную смесь оксидов циркония и кальция. Электрический ток, проходя через стерженек из этой «массы Нернста», нагревал его до белого каления. Так нашел свое первое практическое применение твердый электролит.

Как известно, в металлах электрический ток создают покинувшие свои атомы, то есть свободные, электроны. В электролитах это делают другие заряженные частицы — ионы — целые атомы с недостающими электронами (положительные ионы, катионы) или с лишними (отрицательные ионы, анионы).

Если в жидкий электролит погрузить два электрода и приложить напряжение, то в электролите возникнет ток, направленное движение ионов: катионы пойдут к отрицательному («-«) электроду, к катоду; анионы — к положительному («+»), к аноду.

Возможен и обратный процесс: если погрузить в жидкий электролит два электрода из определенным образом подобранных металлов, то на одном из них в результате химических реакций появится избыток электронов («-«), а на другом — недостаток («+»).

Между электродами будет действовать электродвижущая сила, и, значит, вся система электроды -электролит превратится в химический генератор электрического тока. Так работал первый химический источник тока — гальванический элемент из медной и цинковой пластин, погруженных в раствор поваренной соли или серной кислоты.

Так работают все нынешние гальванические элементы, батарейки и аккумуляторы.

  1. В принципе то же самое происходит в химических электрогенераторах с твердыми электролитами.
  2. Особенности твердых электролитов

Твердых электролитов известно великое множество — это оксиды, соли, кислоты и даже полимеры. В твердых растворах оксидов металлов разной валентности ток создается отрицательными ионами (анионами) кислорода.

Большинство этих твердых растворов — ионные кристаллы: в узлах кристаллической решетки находятся не нейтральные атомы, а заряженные ионы. Они образуют две подрешетки — катионную и анионную. Ионы совершают колебательные движения, но перемещаться по кристаллу, как в жидкости, не могут. Как же тогда в твердых электролитах возникает ток — движение заряженных частиц?

Ситуация меняется, если основное вещество «разбавить» другим похожим соединением, в котором анионов меньше, а катионов — столько же. Тогда катионная решетка этого твердого раствора остается прежней, а в анионной появляются свободные места — вакансии.

Пустые места в отрицательно заряженной решетке можно рассматривать как положительные заряды. Под действием внешнего напряжения в них начнут переходить анионы с достаточно большой энергией, а вакансии «побегут» в противоположном направлении — к катоду.

Возникнет электрический ток, обусловленный движением ионов только одного сорта. Это одна из особенностей твердых электролитов.

Ионная проводимость тем выше, чем больше в кристалле вакансий. Однако с ростом их количества уменьшается подвижность анионов, причем довольно быстро, поэтому проводимость сначала достигает максимума, а потом начинает падать. Для твердых оксидных электролитов на основе ZrO2, например, максимум электропроводности соответствует концентрации катионов 10-15%.

  • Свойства твердых оксидных электролитов

Анионы с достаточной кинетической энергией есть всегда, но при комнатной температуре их очень мало, и твердые оксидные электролиты ведут себя как хороший изолятор.

По мере нагрева подвижность анионов увеличивается очень быстро, и при 150оС проводимость электролитов становится уже вполне ощутимой.

Но основная их рабочая температура лежит между 700 и 1000оС, в связи с чем они и называются высокотемпературными электролитами.

Твердые электролиты всегда находятся в атмосфере определенных газов, состав которой меняет их свойства. Чтобы понять, в чем тут дело, вспомним, что такое динамическое равновесие.

В жидкости, например, всегда есть «быстрые» молекулы, которые с ее поверхности переходят в пар. Но и из пара молекулы возвращаются в жидкость — между ними происходит непрерывный обмен молекулами.

Пар находится в равновесии с жидкостью, и, чтобы подчеркнуть, что оно сопряжено с движением на молекулярном уровне, его называют динамическим.

Характер обмена между твердым телом и газом сложнее. Ион кислорода в поверхностном слое превращается в нейтральный атом. Два атома соединяются в молекулу кислорода, которая отрывается от поверхности и переходит в газ.

Возвращение кислорода из газа в твердое тело происходит в обратном порядке. Обе эти реакции идут одновременно: между электролитом и газом, содержащим определенное количество кислорода, существует динамическое равновесие.

Оно нарушается, когда концентрация кислорода в газе меняется.

  1. Немного истории

Итак, твердый электролит в виде смеси оксидов циркония и кальция проводит ток только при высоких температурах. Поэтому лампы Нернста включали, предварительно сильно прогрев их стержень. И появление в 1905 году лампы «немедленного действия» с вольфрамовой нитью предопределило ее абсолютный успех.

Однако известно, что кое-где и сегодня можно встретить странный электрический фонарь, который нужно поджигать спичкой. Это, судя по всему, лампы Нернста, дожившие до наших дней: твердые растворы на основе диоксида циркония — исключительно стойкие вещества, они могут работать на воздухе десятилетиями, не окисляясь.

Кстати, вполне современные печи с такими нагревателями были разработаны в свердловском Восточном институте огнеупоров в начале 80-х годов.

Главное предназначение твердых оксидных электролитов виделось в создании топливных элементов — химических источников тока, в которых энергия газа непосредственно превращается в электрическую. Топливные элементы — близкие родственники гальванических элементов.

Но те служат, пока в их электролите и электродах есть активные вещества, а топливные элементы могут работать сколь угодно долго, пока к ним подводится горючее.

Систематические исследования твердых оксидных электролитов начались в Германии в начале 50-х годов, а с конца 50-х развернулись в СССР, США и Канаде.

В нашей стране эти работы с самого начала вел Институт химии Уральского филиала АН СССР (Свердловск, ныне Екатеринбург), и школа высокотемпературной электрохимии твердых электролитов, созданная на Урале, стала уникальной по широте охвата проблемы и глубине ее изучения.

Устройства с твердыми оксидными электролитами

Конструкций, в основе которых лежат твердые оксидные электролиты, запатентовано очень много, но принцип их действия одинаков и довольно прост. Это пробирка с парой электродов на стенке, снаружи и внутри. Она помещена в нагреватель; внутрь пробирки и в пространство, ее окружающее, можно подводить газ. Посмотрим, какие функции могут выполнять такие устройства.

  • Потенциометрические датчики состава газа

. Наверное, они наиболее просты. Мы уже знаем, что электроды в разных газах приобретают разные потенциалы. Если, скажем, внутри пробирки находится чистый кислород, а снаружи — газ с неизвестной его концентрацией, то по разности потенциалов электродов можно эту концентрацию определить.

Потенциометрические датчики позволяют определять состав и более сложных газовых смесей, содержащих углекислый и угарный газы, водород и водяной пар.

Если стерженек из твердого электролита с электродами на торцах нагрет неравномерно, он начнет терять кислород и между электродами возникнет разность потенциалов. По ее величине можно определить, например, состав выхлопных газов автомобильного двигателя.

На Западе, где требования к чистоте выхлопных газов очень строги, такие датчики выпускаются миллионами. У нас же на такие «пустяки» пока не обращают внимания.

  1. Кислородные датчики пока единственные устройства с твердыми оксидными электролитами, нашедшие практическое применение.
  2. Кислородные насосы

. Пусть во внешнее пространство пробирки подается воздух или газ, содержащий кислород. Если внешний электрод стал анодом, а внутренний — катодом, то из газа в пробирку пойдет чистый кислород. Подобные устройства — кислородные насосы — могут найти применение там, где потребление кислорода невелико или требуется его высокая чистота.

В медицине, например, используется и чистый кислород, и воздух с пониженным содержанием кислорода — так называемая «гипоксическая смесь», или «горный воздух». Электрохимические насосы наряду с мембранными оксигенаторами (см. «Наука и жизнь» № 2, 1999 г.

) позволят решить массу проблем, особенно в медицинских учреждениях, удаленных от промышленных центров.

В атмосфере с пониженным содержанием кислорода значительно дольше хранятся продукты питания, и устройства с кислородными насосами могут стать экономичней привычных холодильников.

  • Электролизеры.
  • Теплоэлектрогенераторы

Теперь к внешнему электроду — катоду — подводят водяной пар или углекислый газ. На катоде будет происходить разложение пара или углекислого газа, а на аноде в обоих случаях выделяется кислород. Уникальная способность этого высокотемпературного электролизера одновременно разлагать водяной пар и углекислый газ позволяет создать систему жизнеобеспечения, скажем, на космических объектах. . Человек сделал первый шаг к независимости от природы, научившись сохранять огонь, поистине универсальный источник энергии. Костер давал тепло и свет, на нем готовили пищу, он расходовал ровно столько топлива, сколько было необходимо. Костер тысячелетиями оставался главной энергетической установкой человека, и неудивительно, что мы испытываем какую-то ностальгию по очагу с горящими дровами.

Еще в конце прошлого века свет давали свечи и керосиновые лампы, а тепло — печи. Лишь немногим более ста лет назад на человека начало работать электричество, которое могло давать свет, тепло, механическую работу. Одно время казалось, что достаточно подвести к жилищу только электрическую энергию, а уж там преобразовывать ее во что угодно.

Но сказала свое слово экономика: кпд электростанции менее 40%, потери при передаче и обратном превращении электричества в другие виды энергии тоже значительны. Ясно, что там, где нужно только тепло, его целесообразно получать прямо из топлива.

И не случайно сегодня обсуждается простая идея: вернуть «очаг» в дом в виде электрохимического генератора с топливным элементом, преобразующим энергию топлива в электричество и тепло.

  1. Топливные элементы

. Пусть к внешним стенкам пробирки подается водород, а внутрь ее — кислород. Между электродами возникнет напряжение около вольта, по соединяющей их цепи потечет ток, и на электродах пойдут реакции, обратные тем, что проходят в электролизере. Внешний электрод станет анодом, внутренний — катодом, а устройство превратится в источник тока — твердооксидный топливный элемент.

Одно и то же устройство может служить и топливным элементом, и электролизером, позволяя аккумулировать электрическую энергию. В период низкого ее потребления невостребованная мощность электростанций используется для получения водорода. В пике потребления электролизер начинает работать как топливный элемент, производя электричество из водорода.

Топливом в элементе может быть и угарный газ. В него нетрудно превратить уголь, нефть, различные газы и спирты (которые, например, в Бразилии используют как горючее для автомобилей).

Элемент послужит основой электрохимического генератора, способного существенно изменить концепцию снабжения жилища энергией.

Наиболее прост в техническом отношении генератор на природном газе — метане или пропане.

Как показывают исследования, его электрический кпд достигает 70%. Остальные 30% энергии топлива выделяются в виде тепла, которое можно использовать в паровых турбинах. Кпд такой комбинированной установки способно превысить 80% — столь высокой эффективности нет ни у одного генератора.

Восемь лет назад в Институте высокотемпературной электрохимии Уральского отделения РАН был изготовлен демонстрационный генератор на метане мощностью один киловатт. Но до практической реализации дело никак не дойдет.

Опытно-конструкторские работы, которые уже начинались, до конца так и не доведены. Задача очень сложна, ее необходимо решать в рамках национальной программы, попытки разработать которую оказались пока безуспешными.

Понравилась статья? Поделиться с друзьями:
Станок