- До какой температуры нужно нагреть металл чтобы он расширился
- Температурный коэффициент линейного расширения твердых веществ
- Температурный коэффициент обьемного расширения жидкостей
- Инженеру про алюминий
- Коррозионная стойкость алюминия
- Температурное расширение алюминия
- Модуль упругости алюминия
- Жесткость алюминиевых профилей
- Нагрев алюминия
- Сварка алюминиевых сплавов
- Свойства металлов — скрытая теплота плавления, теплопроводность, электросопротивление, термический коэффициент линейного расширения
- Теплопроводность
- Электросопротивление
- Термический коэффициент линейного расширения
- Справка по коэффициенту теплового расширения. Виды коэффициентов теплового расширения. Справочные данные по коэффициенту теплового расширения
- Виды коэффициентов теплового расширения
- Зависимость объёма тел от температуры
- Линейное расширение твёрдых тел
- Объёмное расширение твёрдых тел
- Учёт теплового расширения в технике
- Единицы измерения
- Перевод единиц измерения коэффициента теплового расширения
- Калькулятор коэффициента линейного теплового расширения. Перевод единиц измерения коэффициента линейного теплового расширения (1/°С, 1/K и т.д.)
- Введите коэффициент линейного теплового расширения (al)
- Результат перевода единиц измерения коэффициента линейного теплового расширения (al)
- Результаты работы калькулятора коэффициента линейного теплового расширения при переводе в другие единицы измерения коэффициента линейного теплового расширения:
- Примеры результатов работы калькулятора коэффициента линейного теплового расширения:
- Линейное расширение металла
- Температурный коэффициент линейного расширения твердых веществ
- Температурный коэффициент обьемного расширения жидкостей
- Теплопроводность алюминиевых сплавов
- Тепловое расширение трубопроводов
- Существует 3 основных метода компенсации перемещений трубопровода:
- Расчеты
- Рассмотрим пример:
- Свойства сплавов алюминия с кремнием, медью, магнием и цинком
- Теплофизические свойства алюминиевых сплавов системы Al-Cu-Mn
- Теплопроводность сплава алюминия с литием
- Теплофизические свойства алюминиевых сплавов системы Al-Mg-Si
- Плотность, теплопроводность, теплоемкость алюминиевых сплавов Амц, Амг1, Амг2, Д1, Д16
- Теплопроводность алюминиевых сплавов в зависимости от температуры
- Теплопроводность высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др
- Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей (Таблица)
- Температурный коэффициент линейного расширения твердых веществ
- Температурный коэффициент обьемного расширения жидкостей
- Линейное тепловое удлинение материалов
- Как определить температурное линейное расширение
- Какие материалы чаще всего подвергаются расширению
Коэффициент теплового расширения в зависимости от температуры нагрева стали рассчитывался по дилатометрическим кривым.
Из приведенных в таблице ниже данных видно, что в зоне температур упругой области металла (400…500 °С), опасной для образования внутренних тепловых напряжений в инструменте, минимальным тепловым расширением обладает сталь 30СХВФ, а стали 40ХНМ и Д в большей мере, чем другие исследованные стали, при нагревах склонны к изменению размеров. Сталь 16ХВФН при нагреве умеренно изменяется в объеме и по коэффициенту теплового расширения при всех температурах испытания близка к стали 30ХГСА и 20СХВФ
Таблица – Коэффициент теплового расширения (α·10–6) различных марок стали
Марка стали | Температура, °С | |||||
100 | 200 | 300 | 400 | 500 | 600 | |
40ХНМ | 12,2 | 13,5 | 14,62 | 15,40 | 16,15 | 16,9 |
4ХНТ | 12,5 | 13,6 | 14,45 | 15,0 | 15,4 | 15,9 |
Д | 13,13 | 14,4 | 15,10 | 15,91 | 16,2 | 16,44 |
30ХГСА | 12,3 | 13,7 | 14,62 | 15,1 | 15,6 | 16,0 |
16ХВФН | 12,6 | 13,8 | 14,3 | 15,10 | 15,5 | 15,80 |
20ХВФ | 12,68 | 13,85 | 14,4 | 15,2 | 15,7 | 16,2 |
30СХВФ | 19,2 | 13,28 | 14,26 | 14,87 | 15,28 | 15,58 |
- На рисунке ниже приведены значения коэффициентов теплопроводности стали 30СХВФ и Д.
- Рисунок – Влияние температуры на изменение коэффициента теплопроводности X сталей Д, и 30СХВФ (после отжига).
Как видно, теплопроводность стали 30СХВФ с повышением температуры интенсивно возрастает, что значительно снижает градиент температур по сечению дорна в процессе его нагрева. При охлаждении инструмента, изготовленного из этой стали, условия его работы ухудшаются, ибо теплопроводность стали при низких температурах понижается.
Сталь Д, как это видно на рисунке выше, при температурах 400…580 °С обладает малой теплопроводностью, а при низких температурах она по сравнению со сталью 30СХВФ является более теплопроводной.
Таким образом, ввиду различия физических свойств сталей Д и 30СХВФ, при одних и тех же условиях работы состояние инструмента при нагревах и охлаждениях различное. Менее благоприятными термическими условиями инструмента для стали Д является нагрев, а для стали 30СХВФ — охлаждение.
До какой температуры нужно нагреть металл чтобы он расширился
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).
Металл, сплав | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алюминий | 2,4 |
Бронза | 13-21 |
Вольфрам (в интервале температур от 0 до 200 °С) | 4,5 |
Дуралюмин (при t = 20 °С) | 23 |
Золото | 14 |
Железо | 12 |
Инвар* | 1,5 |
Иридий | 6,5 |
Константан | 42339 |
Латунь | 17-19 |
Манганин | 18 |
Медь | 17 |
Нейзильбер | 18 |
Никель | 14 |
Нихром (от 20 до 100 °С) | 14 |
Олово | 26 |
Платина | 9,1 |
Платинит** (при t = 20 °С) | 41920 |
Платина-иридий*** (от 20 до 100 °С) | 8,8 |
Свинец | 29 |
Серебро | 20 |
Сталь углеродистая | 43009 |
Цинк | 32 |
Чугун (от 20 до 100 °С). | 41952 |
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра. |
Температурный коэффициент линейного расширения твердых веществ
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).
Вещество | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алмаз | 1,2 |
Бетон (при t = 20 °С) | 41913 |
Гранит (при t = 20 °С) | 8 |
Графит | 7,9 |
Древесина (при t = = 20 °С): | |
— вдоль волокон | 5,5-5,5 |
— поперек волокон | 34-60 |
Кварц плавленый (при * = 40 °С) | 0,4 |
Кирпич (при t = 20 °С) | 41885 |
Лед (в интервале температур от —20 до 0 °С) | 51 |
Парафин (от 16 до 48 °С) | 70* |
Дуб (от 2 до 34 °С): | |
— вдоль волокон | 4,9 |
— поперек волокон | 54,4 |
Сосна (от 2 до 34 °С): | |
— вдоль волокон | 5,4 |
— поперек волокон | 34 |
Стекло лабораторное | 41885 |
Стекло оконное (от 20 до 200 °С) | 10 |
Фарфор | 2,5-4,0 |
Шифер (при t = 20 °С) | 10 |
* коэффициент объемного расширения парафина. |
Температурный коэффициент обьемного расширения жидкостей
В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).
Жидкость | Коэффициента обьемного расширения β, 10-6°С-1 |
Бензин | 1240 |
Вода | 200 |
Вода (в интервале от 10 до 20 °С) | 150 |
Вода (от 20 до 40 °С) | 302 |
Воздух жидкий (от -259 до -253 °С) | 12600 |
Глицерин | 505 |
Керосин | 960 |
Кислород (от -205 до -184 °С) | 3850 |
Нефть | 900 |
Раствор соли (6%) | 300 |
Ртуть | 181 |
Серная кислота | 570 |
Скипидар | 940 |
Спирт | 1080 |
Эфир | 1600 |
Хлор (в интервале температур от -101 до -34,1 °С) | 1410 |
Примечание. Связь между коэффициентами объемного (β) и линейного (а) расширений определяется следующим соотношением: β = 3а |
Источник: https://infotables.ru/fizika/202-temperaturnyj-koeffitsient-linejnogo-rasshireniya-metallov-tverdykh-veshchestv-zhidkostej-tablitsa
Инженеру про алюминий
Наиболее привлекательным для инженеров физическим свойством алюминия является его плотность 2,7 г/см3, что составляет всего лишь треть от плотности сталей.
Коррозионная стойкость алюминия
- Вторым по важности свойством является его хорошая коррозионная стойкость, хотя алюминий с точки зрения химии и не слишком благородный металл.
- Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой.
- Поэтому технический алюминий и большинство его сплавов без легирования медью показывают очень хорошее сопротивление коррозии в жидкостях с рН в кислотном интервале от 5 до 8, которому соответствуют и большинство атмосферных условий окружающей среды.
Температурное расширение алюминия
Линейное температурное расширение алюминия и его сплавов составляет 24·10-6 на 1 градус Цельсия – в два раза больше чем у сталей.
Это необходимо учитывать во многих конструкциях, в которых необходимо обеспечивать свободное температурное расширение элементов.
При ограничении температурного расширение (или сжатия) в алюминиевом элементе из-за более низкого модуля упругости возникают напряжения, величина которых составляет 2/3 от напряжений, которые возникли бы в аналогичном стальном элементе.
При какой температуре жарить рыбу на сковороде
Модуль упругости алюминия
Модуль упругости алюминия – 70000 МПа, только треть от модуля упругости сталей. Это влечет за собой существенные последствия для геометрии конструкции, так как прогибы балок, несущая способность колонн, т.е. их боковое выпучивание или местное выпучивание прямо зависят от модуля упругости.
Жесткость алюминиевых профилей
Во многих строительных конструкциях критическим параметром профилей является их жесткость.
Если стальной профиль заменять на алюминиевый с сохранением его жесткости, то утолщать в три раза все стенки не совсем экономично, так как алюминий легче стали как раз в те же три раза.
Однако облегчение конструкций за счет применения алюминия – это естественное стремление, как по физическим, так и по экономическим причинам.
При проектировании балок есть практичное и проверенное правило: увеличивайте все размеры кроме ширины в 1,4 раза и получите поперечное сечение с моментом инерции почти в три раза больше. Тогда для профиля с той же жесткостью (Е · I) сэкономите около 50 % веса. При этом в некоторой степени компенсируется потеря жесткости в отношении бокового выпучивания.
С учетом того, что часто стандартные стальные профили являются весьма не оптимальными, можно сэкономить и больше чем 50 % веса. Это хорошо видно из рисунка 1. Если нет ограничений по высоте, и боковое выпучивание не является конструкционным параметром, то можно сэкономить до 60 % веса.
Если жесткость элемента не важна, а прочность стали близка к прочности алюминиевого сплава, то экономия может быть и до 70 %, но это уже окончательный предел возможной экономии веса.
Эти рассуждения приводят ко второму важному моменту. Если момент инерции профиля увеличивается в три раза при увеличении высоты профиля только в 1,4 раза, то момент сопротивления сечения увеличится соответственно в 3:1,4=2,1 раза.
Поэтому напряжения в алюминиевой балке по сравнению со стальной будут в два с лишним раза меньше.
Теперь понятно, почему конструктору не надо сразу «хвататься» за высокопрочные алюминиевые сплавы, и почему менее легированные алюминиевые сплавы 6060 и 6063 (АД31) настолько популярны.
Нагрев алюминия
Как и у других металлов прочность алюминия с повышением температуры снижается.
До некоторых температур это явление обратимо, то есть после охлаждения материал возвращается к тем же свойствам, что и до нагрева.
До температуры около 80 °С падением прочности можно пренебречь для всех сплавов и состояний. Выше 80 °С некоторые конструкторские ситуации могут потребовать учета эффекта ползучести.
Термически упрочненные сплавы начинают терять прочность при температурах выше 110 °С, причем степень этого явления зависит от длительности нагрева. Сплавы, не упрочняемые термической обработкой, в нагартованных состояниях начинают терять прочность при температурах выше 150 °С и также в зависимости от длительности нагрева.
После нагрева термически не упрочняемых сплавов в отожженном состоянии «О» необратимой потери прочности не происходит.
Считается, что короткий нагрев термически упрочненных алюминиевых профилей до температуры 180-200 °C в течение 10-15 минут, который происходит при «оплавлении» порошковых красок, не приводит к серьезной потере прочности.
Сварка алюминиевых сплавов
Намного серьезней является потеря прочности алюминиевых сплавов при сварке. Здесь температура поднимается настолько высоко из-за локального плавления, что падение прочности вблизи сварного шва надо обязательно принимать во внимание. Термически не упрочняемые сплавы теряют всю свою прочность, полученную при нагартовке, и возвращаются к отожженному состоянию «О».
Термически упрочняемые алюминиевые сплавы в состоянии Т6 теряют приблизительно 40 % их прочности (рисунок 2) за исключением сплава 7020, который теряет только 20 %. Все эти сплавы не доходят до состояния полного отжига, поскольку неизбежен определенный эффект закалки при охлаждении шва.
- Требования к прочностным характеристикам материала в зоне сварного шва устанавливают и контролируют по результатам испытаний образцов.
- Рисунок 2
- Источник: R. Gitter Selection of structural alloys, Brussels 2008
- Источник: https://aluminium-guide.ru/xarakteristiki-alyuminievyx-splavov/
Свойства металлов — скрытая теплота плавления, теплопроводность, электросопротивление, термический коэффициент линейного расширения
Чтобы расплавить твердое вещество, т.е. перевести его в жидкое состояние, требуется не только нагреть его до температуры плавления, но еще затратить дополнительную тепловую энергию, которая не повышает температуры расплавляемого тела, а идет на разрушение кристаллической структуры.
Пока твердое вещество не перейдет все целиком в жидкое состояние, температура не будет повышаться выше температуры плавления, несмотря на приток тепла и на очень высокую температуру источника тепловой энергии. Повышенная мощность источника тепла может лишь ускорить расплавление, но температура плавящегося вещества будет оставаться постоянной, пока не произойдет его полное расплавление.
Количество тепла, идущего на превращение 1 кг твердого вещества при температуре, называется скрытой теплотой плавления и выражается в больших калориях (см. табл. 1).
Теплопроводность
Свойство металла проводить тепло называется теплопроводностью. Теплопроводность характеризуется коэффициентом теплопроводности, показывающим, сколько калорий тепла может пройти в единицу времени сквозь 1 см² вещества при разности температур на двух противоположных гранях кубика в 1° (см. табл. 1), и обозначается буквой λ.
Теплопроводность алюминия в пять раз больше теплопроводности чугуна, и поэтому алюминиевые сплавы часто заменяют чугун при изготовлении поршней двигателей внутреннего сгорания. Кроме того, поршень из алюминиевого сплава, будучи легче чугунного примерно в три раза, облегчает вес конструкции.
Металлы с большой теплопроводностью в то же время являются лучшими проводниками электричества.
Электросопротивление
За единицу электрического сопротивления принято сопротивление ртутного столба длиной 106,3 см. с поперечным сечением 1 см² при 01°С. Эта единица называется омом (обозначается Ω). Чем больше длина проводника и чем меньше поперечное сечение проводника из разных металлов имеют различное сопротивление, что характеризуется удельным сопротивлением.
Удельное сопротивление показывает, какое сопротивление имеет проводник из данного металла длинной 1м и сечением 1мм² (см. табл. 1).Для всех металлов характерно повышение электросопротивления с повышением температуры в отличие от неметаллических материалов, электросопротивление которых при нагревании уменьшается.
Медь и алюминий, обладая самым малым электросопротивлением из всех металлов (за исключением серебра), являются основными металлами электропроводов.
Металлами и сплавами с высоким сопротивлением пользуются, когда хотят электрическую энергию превратить в тепловую. Количество теплоты, выделяемое в проводнике током определенной силы, прямо пропорционально сопротивлению проводника.
Сплавам для элементов обычных нагревательных приборов (электропечей, плит, чайников, утюгов, электропаяльников) служат нихром и др. Для нити в лампах накаливания применяют вольфрам, который, не плавясь, выдерживает температуру более 2000°. Однако такую нить можно нагревать лишь в вакууме. Кислород воздуха ее окисляет.
Термический коэффициент линейного расширения
Приращение длины предмета на единицу длины при нагревании его на 1° называется термическим коэффициентом линейного расширения α.
Так как коэффициент α очень мал, то в таблицах его значение обычно дается с коэффициентом 10 –6, т.е в миллионных долях первоначальной длины, измеренной при 0°.
Свойство металлов расширяться при нагревании и сжиматься при охлаждении необходимо учитывать при изготовлении металлических сооружений и деталей машин.
Какую температуру начинают сбивать детям
Коэффициент линейного расширения может считаться почти постоянным при небольших изменениях температуры. При сильном нагревании он может значительно изменять свою величину.
Имеются сплавы, обладающие особенно малой величиной α.
Например сплав «инвар» (65% Fe и 35% Ni) имеет в пределах от –10 до +90° термический коэффициент линейного расширения α, близкий к нулю; однако при повышении температуры выше 100° он быстро растет.
При застывании отлитых деталей, если тонкие части охлаждаются и сжимаются быстрее, чем толстые, могут получаться трещины там, где возникают вредные внутренние напряжения. Конструктор во избежание трещин должен умело подбирать размеры сечений в отливке.Тепловое расширение имеет большое значение и для сварных конструкций, в которых тоже возникают внутренние напряжения.
Особенно тщательно необходимо учитывать линейное расширение металлов при производстве измерительных и прецизионных (точных) приборов, при изготовлении калибров и деталей машин, работающих при повышенной температуре.
Рубрики: Свойства металлов, применение
Источник: https://www.paxildefects.net/svoiystva-metallov/fiziko-mehanicheskie-svoiystva-metallov-2.html
Справка по коэффициенту теплового расширения. Виды коэффициентов теплового расширения. Справочные данные по коэффициенту теплового расширения
Коэффициент теплового расширения широко применяется в инженерных расчетах.
Для обозначения коэффициента теплового расширения обычно используют греческие буквы: β (для объемного расширения) и α (для линейного расширения). На сайте в расчетах применяется обозначение — bv и al соответственно.
Коэффициент теплового расширения зависит от температуры.
Виды коэффициентов теплового расширения
- коэффициент объёмного теплового расширения;
- коэффициент линейного теплового расширения.
Зависимость объёма тел от температуры
Частицы твёрдого тела занимают друг относительно друга определённые положения, но не остаются в покое, а совершают колебания. При нагревании тела увеличивается средняя скорость движения частиц. Средние расстояния между частицами при этом увеличиваются, поэтому увеличиваются линейные размеры тела, а следовательно, увеличивается и объём тела.
При охлаждении линейные размеры тела сокращаются, и объём его уменьшается.
Вибропрессование в производстве тротуарной плитки
При нагревании, как известно, тела расширяются, а при охлаждении сжимаются. Качественная сторона этих явлений была уже рассмотрена в начальном курсе физики.
Наша задача теперь — ознакомиться с количественными законами этих явлений.
Линейное расширение твёрдых тел
Твёрдое тело при данной температуре имеет определённую форму и определённые линейные размеры. Увеличение линейных размеров тела при нагревании называется тепловым линейным расширением.
Измерения показывают, что одно и то же тело расширяется при различных температурах по-разному: при высоких температурах обычно сильнее, чем при низких. Но это различие в расширении столь невелико, что при сравнительно небольших изменениях температуры им можно пренебречь и считать, что изменение размеров тела пропорционально изменению температуры.
- В начальном курсе физики было установлено, что различные вещества по-разному расширяются при нагревании: одни сильнее, другие слабее; железо, например, расширяется сильнее стекла и слабее меди.
- Чтобы количественно характеризовать это важное тепловое свойство тел, введена особая величина, называемая коэффициентом линейного расширения.
- Пусть твёрдое тело при температуре 0°С имеет длину а при температуре t° его длина становится Значит, при изменении температуры на t° длина тела увеличивается на Предполагая, что увеличение длины при нагревании на каждый градус идёт равномерно, находим, что при нагревании на 1°С вся длина тела увеличилась на каждая единица длины на
- (1)
Величина (греч. «бэта»), характеризующая тепловое расширение тела, называется коэффициентом линейного расширения.
Формула (1) показывает, что при t = 1°С и = 1 ед. длины величина равна т. е. коэффициент линейного расширения численно равен удлинению, которое получает при нагревании на 1°С стержень, имевший при 0°С длину, равную единице длины.
- Из формулы (1) следует, что наименованием коэффициента является
- Формулу (1) можно записать в следующем виде:
- Отсюда легко определить длину тела при любой температуре, если известны его начальная длина и коэффициент линейного расширения.
- Ниже в таблице приведены коэффициенты линейного расширения некоторых веществ, определённые на опыте.
Объёмное расширение твёрдых тел
При тепловом расширении твёрдого тела с увеличением линейных размеров тела увеличивается и его объём.
Аналогично коэффициенту линейного расширения для характеристики объёмного расширения можно ввести коэффициент объёмного расширения.
Опыт показывает, что так же, как и в случае линейного расширения, можно без большой ошибки принять, что приращение объёма тела пропорционально повышению температуры.
Обозначив объём тела при 0°С через V0 , объём при температуре t0 через Vt а коэффициент объёмного расширения через найдём:
(2)
При V0 = 1 ед. объёма и t = 1°С величина а равна Vt— V0, т. е. коэффициент объёмного расширения численно равен приросту объёма тела при нагревании на 1°С, если при 0°С объём был равен единице объёма.
По формуле (2), зная объём тела при температуре 0°С, можно вычислить объём его при любой температуре t°:
Установим соотношение между коэффициентами объёмного и линейного расширения.
Допустим, что имеем кубик, ребро которого при 0° С равно 1 см. При нагревании на 1°С ребро станет равным см, а объём кубика увеличится на см3.
- Можно написать следующее равенство:
- Но
- В этой формуле величины и настолько малы, что ими можно пренебречь и написать:
- Коэффициент объёмного расширения твёрдого тела равен утроенному коэффициенту линейного расширения.
Учёт теплового расширения в технике
Из таблицы на странице 124 видно, что коэффициенты расширения твёрдых тел очень малы. Однако самые незначительные, изменения размеров тел при изменении температуры вызывают появление огромных сил.
Опыт показывает, что даже для небольшою удлинения твёрдого тела требуются огромные внешние силы. Так, например, чтобы увеличить длину стального стержня сечением в 1 см2 приблизительно на 0,0005 его первоначальной длины, необходимо приложить силу в 1000 кГ.
Но такой же величины расширение этого стержня получается при нагревании его на 50°С.
Ясно поэтому, что, расширяясь при нагревании (или сжимаясь при охлаждении) на 50°С, стержень будет оказывать давление около 1000 на те тела, которые будут препятствовать его расширению (сжатию).
Огромные силы, возникающие при расширении и сжатии твёрдых тел, учитываются в технике.
Так, например, один из концов моста не закрепляют неподвижно, а устанавливают на катках; железнодорожные рельсы не укладывают вплотную, а оставляют между ними просвет; паропроводы подвешивают на крюках, а между отдельными трубами устанавливают компенсаторы, изгибающиеся при удлинении труб паропровода. По этой же причине котёл паровоза закрепляется только на одном конце, другой же его конец может свободно перемещаться.
Огромное значение имеет расширение от нагревания при точных измерениях. В самом деле, если масштабная линейка или калибр, которыми проверяются размеры изготовленной части машины, значительно изменяют свою величину, то необходимой точности при измерении не получится.
Для избежания грубых ошибок при измерении или контроле изготовленные изделия заблаговременно приносят в помещение, где производятся измерения, чтобы они успели принять температуру калибров. Самые калибры и измерительные инструменты делают из материала с очень малым коэффициентом расширения.
Таким материалом, например, является особая железо-никелевая сталь — инвар, с коэффициентом расширения 0,0000015.
Рис. 132а. Схема устройства металлического термометра.
Как показывает таблица на странице 124, платина и стекло имеют одинаковый коэффициент расширения; поэтому можно вплавлять платину в стекло, причём после охлаждения не происходит ни ослабления связи обоих веществ, ни растрескивания стекла.
В электрических лампочках в стекло вплавляется железо-никелевая проволока, имеющая такой же коэффициент расширения, как и стекло. Заслуживает внимания очень малый коэффициент расширения у кварцевого стекла.
Такое стекло выдерживает, не лопаясь и не растрескиваясь, неравномерное нагревание или охлаждение. Так, например, в раскалённую докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.
Указанная особенность кварцевого стекла является следствием малости его коэффициента теплового расширения.
Единицы измерения
Перевод единиц измерения коэффициента теплового расширения
Калькулятор коэффициента линейного теплового расширения. Перевод единиц измерения коэффициента линейного теплового расширения (1/°С, 1/K и т.д.)
Введите коэффициент линейного теплового расширения (al)
Результат перевода единиц измерения коэффициента линейного теплового расширения (al)
Результаты работы калькулятора коэффициента линейного теплового расширения при переводе в другие единицы измерения коэффициента линейного теплового расширения:
Примеры результатов работы калькулятора коэффициента линейного теплового расширения:
- / 1 1/K = 1 1/гр.цельсия //
- 29 1/гр.цельсия = 29 1/K
- 29 1/гр.цельсия = 29 1/K
- 1 1/K = 1 1/гр.цельсия
- 50 1/K = 50 1/гр.цельсия
// // // //
14.6 1/гр.цельсия = 14.6 1/K
/
Линейное расширение металла
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).
Металл, сплав | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алюминий | 2,4 |
Бронза | 13-21 |
Вольфрам (в интервале температур от 0 до 200 °С) | 4,5 |
Дуралюмин (при t = 20 °С) | 23 |
Золото | 14 |
Железо | 12 |
Инвар* | 1,5 |
Иридий | 6,5 |
Константан | 42339 |
Латунь | 17-19 |
Манганин | 18 |
Медь | 17 |
Нейзильбер | 18 |
Никель | 14 |
Нихром (от 20 до 100 °С) | 14 |
Олово | 26 |
Платина | 9,1 |
Платинит** (при t = 20 °С) | 41920 |
Платина-иридий*** (от 20 до 100 °С) | 8,8 |
Свинец | 29 |
Серебро | 20 |
Сталь углеродистая | 43009 |
Цинк | 32 |
Чугун (от 20 до 100 °С). | 41952 |
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов.** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп.*** Из этого сплава изготовлены прототипы килограмма и метра. |
Температурный коэффициент линейного расширения твердых веществ
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).
Вещество | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алмаз | 1,2 |
Бетон (при t = 20 °С) | 41913 |
Гранит (при t = 20 °С) | 8 |
Графит | 7,9 |
Древесина (при t = = 20 °С): | |
— вдоль волокон | 5,5-5,5 |
— поперек волокон | 34-60 |
Кварц плавленый (при * = 40 °С) | 0,4 |
Кирпич (при t = 20 °С) | 41885 |
Лед (в интервале температур от —20 до 0 °С) | 51 |
Парафин (от 16 до 48 °С) | 70* |
Дуб (от 2 до 34 °С): | |
— вдоль волокон | 4,9 |
— поперек волокон | 54,4 |
Сосна (от 2 до 34 °С): | |
— вдоль волокон | 5,4 |
— поперек волокон | 34 |
Стекло лабораторное | 41885 |
Стекло оконное (от 20 до 200 °С) | 10 |
Фарфор | 2,5-4,0 |
Шифер (при t = 20 °С) | 10 |
* коэффициент объемного расширения парафина. |
Температурный коэффициент обьемного расширения жидкостей
В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).
Жидкость | Коэффициента обьемного расширения β, 10-6°С-1 |
Бензин | 1240 |
Вода | 200 |
Вода (в интервале от 10 до 20 °С) | 150 |
Вода (от 20 до 40 °С) | 302 |
Воздух жидкий (от -259 до -253 °С) | 12600 |
Глицерин | 505 |
Керосин | 960 |
Кислород (от -205 до -184 °С) | 3850 |
Нефть | 900 |
Раствор соли (6%) | 300 |
Ртуть | 181 |
Серная кислота | 570 |
Скипидар | 940 |
Спирт | 1080 |
Эфир | 1600 |
Хлор (в интервале температур от -101 до -34,1 °С) | 1410 |
Примечание. Связь между коэффициентами объемного (β) и линейного (а) расширений определяется следующим соотношением: β = 3а |
Теплопроводность алюминиевых сплавов
Представлена сводная таблица теплопроводности алюминиевых сплавов. В ней приведены значения теплопроводности распространенных алюминиевых сплавов (сплавы алюминия с кремнием, медью, магнием и цинком, литейные сплавы, дюралюминий) при различной температуре в диапазоне от 4 до 700К.
По данным таблицы видно, что теплопроводность алюминиевых сплавов в основном увеличивается с ростом температуры. Наибольшей теплопроводностью при комнатной температуре обладает такой сплав, как АД1 — его теплопроводность при этой температуре равна 210 Вт/(м·град). Более низкая теплопроводность свойственна в основном литейным алюминиевым сплавам, например АК4, АЛ1, АЛ8 и другим.
Покраска хромом из баллончика: важные нюансы
Температура в таблице в градусах Кельвина ! Таблица теплопроводности сплавов алюминия
Алюминиевый сплав | Температура, K | Теплопроводность алюминиевого сплава, Вт/(м·град) |
АВ | 298…373…473…573 | 176…180…184…189 |
АД1 нагартованный | 4…10…20…40…80…150…300 | 50…130…260…400…250…220…210 |
АД31 закаленный, состаренный | 4…10…20…40…80…200…300…600 | 35…87…170…270…230…200…190…190 |
АД33 | 300…373…473…573 | 140…151…163…172 |
АД35 | 298…373…473…573 | 170…174…178…182 |
АК4 | 300…500…600…700 | 145…160…170…170 |
АК6 закаленный, состаренный | 20…77…223…293…373…473…573…673 | 35…90…192…176…180…184…184…189 |
АК8 закаленный, состаренный | 20…40…80…150…300…573…673 | 50…72…100…125…160…180…180 |
АЛ1 | 300…400…600 | 130…140…150 |
АЛ2 | 20…77…293 | 10…18…160 |
АЛ4 | 300…473…673 | 150…160…155 |
АЛ5 | 300…473…573 | 160…170…180 |
АЛ8 | 300…473…673 | 92…100…110 |
АМг1 | 298…373…473…573…673 | 184…188…192…188…188 |
АМг2 | 4…10…20…40…80…150…300…373…473…573…673 | 4,6…12…25…49…77…100…155…159…163…164…167 |
АМг3 | 20…77…90…203…293 | 41…86…89…123…132 |
АМг5 отожженный | 10…20…40…80…150…300…473…673 | 10…20…40…66…92…130…130…150 |
АМг6 | 20…77…173…293 | 13…43…75…92 |
АМц нагартованный | 4…10…20…40…80…150…300…473…573…673 | 11…28…58…110…140…150…180…180…184…188 |
В93 | 300…473…673 | 160…170…160 |
В95 | 300…473…673 | 155…160…160 |
ВАД1 | 20…80…300 | 30…61…160 |
ВАЛ1 | 300…473…673 | 130…150…160 |
ВАЛ5 | 300…573…673 | 150…160…160 |
ВД17 | 300…673 | 130…170 |
Д1 | 298…373…473…573…673 | 117…130…150…172…176 |
Д16 закаленный, состаренный | 10…20…40…80…150…300…373…473…573 | 9…19…37…61…90…120…130…146…163 |
Д20 закаленный, состаренный | 20…40…80…150…300…373…473…573…673 | 27…38…61…85…140…142…147…155…160 |
Д21 | 298…373…473…573 | 130…138…151…168 |
Тепловое расширение трубопроводов
Под действием изменения температур изменяется размер промышленных и коммунальных изделий. Это касается труб, конструкций, оборудования и сооружений. Далее будет рассмотрен вопрос компенсации сжатия и теплового расширения.
При проектировании трубопровода должны учитываться любые перемещения, которые могут возникнуть из-за внешнего воздействия на него, в т.ч. его расширения из-за температурных перепадов. Трубы могут представлять реальную опасность для деталей трубопровода и другого оборудования, т.к. испытывают напряжение при изменениях температуры рабочей среды.
Существует 3 основных метода компенсации перемещений трубопровода:
- Применяется эффект самокомпенсации
- Устанавливается компенсатор
- Устанавливаются металлорукава
Тот или иной способ компенсации выбирается в зависимости от наличия или отсутствия других коммуникаций, ландшафтных особенностей местности, типа системы трубопроводов и т.д.
Рассмотрим способ компенсации расширения прямолинейных участков трубопровода посредством осевых сильфонных компенсаторов.
Расчеты
На первом этапе решения вопроса компенсации температурного перемещения трубопровода вычисляют точное изменение длины системы трубопровода. Расчеты ведутся в соответствии с условиями безопасности, которые предъявляются к трубопроводу.
- При расчете теплового расширения трубопровода применяется следующая формула:
- ∆L = а х L x ∆t
- В качестве коэффициента температурного расширения используется значение а, которое выражается в мм/(моС).
За длину трубопровода принимается значение L, выражаемое в м. Обычно измеряется длина между неподвижными опорами.
Показатель ∆t обозначает разницу значений между максимальным значением температуры рабочей среды и минимальным, выражается в оС.
Расчет доступен каждому и даже не профессионал может легко сделать его.
Для того чтобы узнать коэффициент температурного расширения необходимо обратиться к таблице линейного расширения труб. Коэффициенты различаются в зависимости от используемого для производства труб материала.
Материал трубопровода | Коэффициент линейного расширения, мм/м °С |
Чугун | 0,0104 |
Сталь нержавеющая | 0,011 |
Сталь черная и оцинкованная | 0,0115 |
Медь | 0,017 |
Латунь | 0,017 |
Алюминий | 0,023 |
Металлопластик | 0,026 |
Поливинилхлорид (PVC) | 0,08 |
Полибутилен (PB) | 0,13 |
Полипропилен (PP-R 80 PN10 и PN20) | 0,15 |
Полипропилен (PP-R 80 PN25 алюминий) | 0,03 |
Полипропилен (PP-R 80 PN20 стекловолокно) | 0,035 |
Сшитый полиэтилен (PEX) | 0,024 |
Способы компенсации зависят от стойкости того или иного материала температурному расширению. Например, трубопровод из полимерных материалов более подвержен температурному расширению, чем выполненный из стали. Поэтому способ компенсации полимерных труб будет отличаться от способа компенсации стальных.
ИОННО-ПЛАЗМЕННОЕ АЗОТИРОВАНИЕ (ИПА)
Коэффициенты линейного расширения, приведенные в таблице, являются усредненными и поэтому их нельзя использовать при расчете для трубопроводов, изготовленных из других материалов. Допускается различие коэффициентов на 5%, т.к. результат зависит от метода расчета и условий, при которых проводились исследования.
Рассмотрим пример:
Исходные данные: диаметр прямолинейного участка трубопровода 219 мм. Он произведен из черной углеродистой стали, ее длина 100м. tmin = -20оС и tmax = 140оС.
Расчет выглядит следующим образом: ∆t = 140 — (-20) = 160оС. Далее вычисляем изменение длины трубопровода, расчет следующий: ∆L = 0,0115 х 160 х 100 = 184мм.
Результат показывает, что длина трубопровода может меняться при данных значениях на 184мм. Чтобы обеспечить бесперебойную работу трубопровода, необходим осевой сильфонный компенсатор, условный диаметр которого равен 200мм, а компенсирующая способность — 200 мм (КСО 200-16-200).
Если значение теплового расширения трубопровода (∆L) будет больше, чем имеющиеся компенсирующие способности компенсаторов, то длину трубопровода уменьшают пропорционально компенсирующей способности и подбирают соответствующий сильфонный компенсатор.
Свойства сплавов алюминия с кремнием, медью, магнием и цинком
В таблице представлены состав и следующие теплофизические свойства алюминиевых сплавов:
- плотность сплавов, кг/м3;
- коэффициент теплопроводности, Вт/(м·°С);
- коэффициент линейного теплового расширения, 1/град;
- коррозионная устойчивость в воде и на воздухе;
- температура изменения прочности.
Плотность, теплопроводность и коэффициент линейного теплового расширения сплавов представлены в зависимости от температуры в интервале от 500 до 660°С. Плотность алюминиевых сплавов с кремнием и цинком наиболее высока. Из легких сплавов можно отметить сплавы, содержащие магний.
Следует отметить, что наибольшей коррозионной устойчивостью в воде и на воздухе обладают алюминиевые сплавы с высоким содержанием меди — они устойчивы к коррозии до температуры 200…250°С. Такие сплавы также обладают высокими прочностными характеристиками.
Теплофизические свойства алюминиевых сплавов системы Al-Cu-Mn
В таблице представлены теплофизические свойства алюминиевых сплавов, содержащих медь и марганец. рассмотрены такие сплавы, как сплав 01205, 1201, Д21, Д20. Свойства сплавов представлены в зависимости от температуры в диапазоне от 25 до 400°С. Из рассмотренных сплавов наиболее теплопроводным является сплав Д20, с теплопроводностью 138 Вт/(м·град) при температуре 25°С.
Даны следующие теплофизические свойства сплавов:
- коэффициент теплопроводности, Вт/(м·град);
- удельная (массовая) теплоемкость, кДж/(кг·град);
- коэффициент линейного теплового расширения, 1/град.
Теплопроводность сплава алюминия с литием
Даны значения коэффициента теплопроводности сплава алюминия с литием при комнатной температуре. Теплопроводность указана в зависимости от содержания лития в сплаве по массе (от 0 до 11%). Необходимо отметить, что увеличение процентного содержания лития приводит к уменьшению теплопроводности сплава.
Теплофизические свойства алюминиевых сплавов системы Al-Mg-Si
В таблице представлены следующие теплофизические свойства сплавов алюминия с магнием и кремнием:
Строительные леса своими руками: чертежи и фото
- плотность, кг/м3;
- коэффициент теплопроводности, Вт/(м·°С);
- удельная теплоемкость, кДж/(кг·°С).
Свойства представлены в зависимости от температуры в интервале от 25 до 400°С. Даны свойства следующих сплавов: АД31, АД33, АД35, АВ.
Следует отметить, что удельная теплоемкость сплавов увеличивается при нагревании.
Плотность, теплопроводность, теплоемкость алюминиевых сплавов Амц, Амг1, Амг2, Д1, Д16
Представлены значения плотности (при температуре 293К), коэффициента теплопроводности, Вт/(м·°С), и удельной (массовой) теплоемкости, кДж/(кг·°С) некоторых алюминиевых сплавов в зависимости от температуры (свойства даны при температурах 25, 100 , 200, 300, 400 °С).
В таблице указана плотность, теплопроводность, теплоемкость следующих сплавов алюминия: Амц, Амг1, Амг2, Д1, Д16. Следует отметить, что плотность алюминиевых сплавов примерно одинаковая, но немного выделяется такой сплав алюминия, как Д-1 — его плотность равна 2800 кг/м3.
Теплопроводность алюминиевых сплавов в зависимости от температуры
В таблице представлены состав алюминиевых сплавов и коэффициент их теплопроводности в диапазоне температуры от 173 (-100°С) до 773К (500°С). По данным таблицы видно, что чем больше содержится алюминия в сплаве, тем выше его теплопроводность. При нагревании алюминиевых сплавов, их теплопроводность, как правило, увеличивается.
Теплопроводность высокопрочных сплавов алюминия В93, сплав 1933, В95, сплав 1973, В96 и др
В таблице приведены значения теплопроводности в размерности Вт/(м·град) в зависимости от температуры (интервал от 25 до 400°С) следующих алюминиевых сплавов: В93, В93пч, сплав 1933, В95, В95пч, В95оч, сплав 1973, В96Ц, В96Ц-3. Наиболее теплопроводными, по данным таблицы, являются сплавы В93, В93пч, сплав 1933, имеющие значение теплопроводности 163 Вт/(м·град) при температуре 25°С.
Источники: 1. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с. 2. Чиркин В.С. Теплофизические свойства материалов ядерной техники. 3. В.М. Белецкий, Г.А. Кривов.
Алюминиевые сплавы (состав, свойства, технология, применение). Справочник. Под общей ред. академика РАН И.Н. Фридляндера — К.: «Коминтех», 2005. — 365 с. 4. Богданов С.Н., Бурцев С.И., Иванов О.П., Куприянова А.В. Холодильная теника. Кондиционирование воздуха. Свойства веществ: Справ./ Под ред. С.Н. Богданова. 4-е изд.
, перераб. и доп. — СПб.: СПбГАХПТ, 1999.- 320 с.
Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей (Таблица)
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ металлов и сплавов в интервале от 0 до 100 °С (если не указана иная температура).
Металл, сплав | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алюминий | 2,4 |
Бронза | 13-21 |
Вольфрам (в интервале температур от 0 до 200 °С) | 4,5 |
Дуралюмин (при t = 20 °С) | 23 |
Золото | 14 |
Железо | 12 |
Инвар* | 1,5 |
Иридий | 6,5 |
Константан | 42339 |
Латунь | 17-19 |
Манганин | 18 |
Медь | 17 |
Нейзильбер | 18 |
Никель | 14 |
Нихром (от 20 до 100 °С) | 14 |
Олово | 26 |
Платина | 9,1 |
Платинит** (при t = 20 °С) | 41920 |
Платина-иридий*** (от 20 до 100 °С) | 8,8 |
Свинец | 29 |
Серебро | 20 |
Сталь углеродистая | 43009 |
Цинк | 32 |
Чугун (от 20 до 100 °С). | 41952 |
* Этот сплав имеет весьма малый температурный коэффициент линейного расширения. Используется для изготовления деталей точных измерительных приборов. ** Проводниковый материал, коэффициент линейного расширения которого такой же, как и у стекла; применяется при изготовлении электрических ламп. *** Из этого сплава изготовлены прототипы килограмма и метра. |
Температурный коэффициент линейного расширения твердых веществ
В таблице приведены средние значения температурного коэффициента линейного расширения ɑ твердых веществ в интервале от 0 до 100 °С (если не указана иная температура).
Вещество | Коэффициента линейного расширения ɑ, 10-6°С-1 |
Алмаз | 1,2 |
Бетон (при t = 20 °С) | 41913 |
Гранит (при t = 20 °С) | 8 |
Графит | 7,9 |
Древесина (при t = = 20 °С): | |
— вдоль волокон | 5,5-5,5 |
— поперек волокон | 34-60 |
Кварц плавленый (при * = 40 °С) | 0,4 |
Кирпич (при t = 20 °С) | 41885 |
Лед (в интервале температур от —20 до 0 °С) | 51 |
Парафин (от 16 до 48 °С) | 70* |
Дуб (от 2 до 34 °С): | |
— вдоль волокон | 4,9 |
— поперек волокон | 54,4 |
Сосна (от 2 до 34 °С): | |
— вдоль волокон | 5,4 |
— поперек волокон | 34 |
Стекло лабораторное | 41885 |
Стекло оконное (от 20 до 200 °С) | 10 |
Фарфор | 2,5-4,0 |
Шифер (при t = 20 °С) | 10 |
* коэффициент объемного расширения парафина. |
Температурный коэффициент обьемного расширения жидкостей
В таблице приведены средние значения температурного коэффициента обьемного расширения β жидкостей при температуре 20 °С (если не указана иная).
Жидкость | Коэффициента обьемного расширения β, 10-6°С-1 |
Бензин | 1240 |
Вода | 200 |
Вода (в интервале от 10 до 20 °С) | 150 |
Вода (от 20 до 40 °С) | 302 |
Воздух жидкий (от -259 до -253 °С) | 12600 |
Глицерин | 505 |
Керосин | 960 |
Кислород (от -205 до -184 °С) | 3850 |
Нефть | 900 |
Раствор соли (6%) | 300 |
Ртуть | 181 |
Серная кислота | 570 |
Скипидар | 940 |
Спирт | 1080 |
Эфир | 1600 |
Хлор (в интервале температур от -101 до -34,1 °С) | 1410 |
Примечание. Связь между коэффициентами объемного (β) и линейного (а) расширений определяется следующим соотношением: β = 3а |
Линейное тепловое удлинение материалов
Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются.
Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура.
Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.
К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.
Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.
Как определить температурное линейное расширение
Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:
- коэффициент линейного теплового расширения;
- удлинение по осям Х, Y и Z;
- величину, на которую удлиняется материал при заданной температуре.
Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте.
Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте.
Система реагирует на изменения и самостоятельно выполняет подсчет.
Какие материалы чаще всего подвергаются расширению
Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:
- клинкерный и стеновой кирпич;
- дерево;
- штукатурка;
- базальт;
- стеновой кирпич.
Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали.
Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления.
Изменение длины трубопровода при перепадах температуры определяется по формуле
dL = a • l • (tmax – tc), мм, где:
- а – КТЛР материала, из которого изготовлена труба или другое изделие;
- tmax – наибольшая температура, которой достигает теплоноситель;
- tс — температура окружающей среды на момент установки конструкции;
- l — длина трубопровода.
Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.