- Определение и значение
- Температура плавления латуни
- Какие факторы влияют на показатель?
- Обобщения закона Фурье
- Какие показатели считаются нормой?
- Для стали
- Для меди, никеля, алюминия и их сплавов
- Способы получения
- Магниетермический процесс
- Гидридно-кальциевый метод
- Электролизный метод
- Йодидный метод
- Можно ли повысить показатель?
- Конвекция
- Методы изучения и измерения
- Теплопроводность
- Теплопроводность металлов
- Что такое теплопроводность и для чего нужна
- Понятие термического сопротивления и коэффициента теплопроводности
- От чего зависит показатель теплопроводности
- Методы измерения
- Теплопроводность стали, меди, алюминия, никеля и их сплавов
- Применение
- У какого металла самая высокая теплопроводность
- Закон теплопроводности Фурье
- Связь с электропроводностью
- Коэффициент теплопроводности газов
- Теплопроводность в сильно разреженных газах
- Обобщения закона Фурье
- Коэффициенты теплопроводности различных веществ
- Примечания
- См. также
- Ссылки
У каждого металла есть ряд параметров, характеризующие его как материал. Их нужно учитывать при изготовления различных предметов, заготовок, повышения эксплуатационных характеристик. Один из главных параметров — теплопроводность металлов. Этот показатель учитывают производители при изготовлении термодатчиков, радиаторов, холодильных установок.
Металлообрабатывающий завод
Определение и значение
Теплопроводность — способность материалов переносить энергию тепла от разогретых поверхностей к холодным участкам. Теплопроводящими могут быть жидкости, газы, твердые вещества. Это способность тела проводить тепловую энергию через себя, передавать ее другим предметам.
Коэффициент теплопроводности — величина, равняющаяся количеству теплоты, которая переносится через определенную площадь поверхности за 1 секунду.
Впервые этот параметр был установлен в 1863 году. Ученые доказали, что передача теплоты осуществляется за счет движения свободных электронов. В металлических заготовках их больше, чем в предметах из другим материалов.
Температура плавления латуни
Температура плавления латуни рассмотренных марок изменяется в интервале от 865 до 1055 °С. Наиболее легкоплавкой является марганцовистая латунь ЛМц58-2 с температурой плавления 865°С. Также к легкоплавким латуням можно отнести: Л59, Л62, ЛАН59-3-2, ЛКС65-1,5-3 и другие.
Наибольшую температуру плавления имеет латунь Л96 (1055°С). Среди тугоплавких латуней по данным таблицы можно также выделить: латунь Л90, ЛА85-0,5, томпак оловянистый ЛТО90-1.
Температура плавления латуни
Латунь | t, °С | Латунь | t, °С |
Л59 | 885 | ЛМц55-3-1 | 930 |
Л62 | 898 | ЛМц58-2 латунь марганцовистая | 865 |
Л63 | 900 | ЛМцА57-3-1 | 920 |
Л66 | 905 | ЛМцЖ52-4-1 | 940 |
Л68 латунь деформированная | 909 | ЛМцОС58-2-2-2 | 900 |
Л70 | 915 | ЛМцС58-2-2 | 900 |
Л75 | 980 | ЛН56-3 | 890 |
Л80 полутомпак | 965 | ЛН65-5 | 960 |
Л85 | 990 | ЛО59-1 | 885 |
Л90 | 1025 | ЛО60-1 | 885 |
Л96 томпак волоченый | 1055 | ЛО62-1 оловянистая | 885 |
ЛА67-2,5 | 995 | ЛО65-1-2 | 920 |
ЛА77-2 | 930 | ЛО70-1 оловянистая | 890 |
ЛА85-0,5 | 1020 | ЛО74-3 | 885 |
ЛАЖ60-1-1 | 904 | ЛО90-1 | 995 |
ЛАЖМц66-6-3-2 | 899 | ЛС59-1 | 900 |
ЛАН59-3-2 латунь алюминиево-никелевая | 892 | ЛС59-1В латунь свинцовистая | 900 |
ЛАНКМц75-2-2,5-0,5-0,5 | 940 | ЛС60-1 | 900 |
ЛЖМц59-1-1 | 885 | ЛС63-3 | 885 |
ЛК80-3 | 900 | ЛС64-2 | 910 |
ЛКС65-1,5-3 | 870 | ЛС74-3 | 965 |
ЛКС80-3-3 | 900 | ЛТО90-1 томпак оловянистый | 1015 |
Какие факторы влияют на показатель?
Чтобы понять, как повысить или понизить показатель разных видов металла, нужно знать какие факторы влияют на этот параметр:
- размеры изделия, площадь поверхности;
- форму заготовки;
- химический состав;
- пористость материала;
- вид материала;
- изменение температуры воздействия.
Также внимание нужно уделить строению кристаллической решетки.
Металлические листы ( Instagram / metall61_armatura_dostavka)
Обобщения закона Фурье
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело.
Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п.
Инерционность в уравнения переноса первым ввел Максвелл, а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:
τ∂q∂t=−(q+ϰ∇T).{displaystyle tau {frac {partial mathbf {q} }{partial t}}=-left(mathbf {q} +varkappa ,nabla Tright).}
Если время релаксации τ{displaystyle tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.
Какие показатели считаются нормой?
Коэффициент учитывается в различных сферах производства. Этот параметр нужно учитывать при изготовлении:
- утюгов;
- нагревательных приборов;
- холодильных камер;
- подшипников скольжения;
- оборудования для нагревания воды;
- отопительных приборов.
Изучая свойства различных материалов, специалисты составили таблицы с показателями теплопроводности для каждого из них. Их можно найти в специализированных справочниках.
Для стали
Справочники объединяют в себе расчетные данные для разных материалов:
- стали, которая используется при изготовлении режущего инструмента;
- сплавов для производства пружин;
- стали, насыщенной легирующими добавками;
- сплавов, стойких в образованию ржавчины;
- материалов, устойчивых к высокой температуре.
Сталь | Теплоемкость Дж (кг*°C) |
Сталь 45 | 469 |
Сталь 40 Х | 620 |
9Х2МФ | 500 |
60Х2СМФ | 660 |
Х12МФ | 580 |
40Х13 | 452 |
15ХМ | 486 |
Данные в таблицы собирались для стали, которая подвергалась термической обработке при температуре от -263°C до +1200°C.
Термообработка ( Instagram / energomashvologda)
Для меди, никеля, алюминия и их сплавов
Показатель для металлов и сплавов будет отличаться для цветных и черных металлов. У железа и цветных металлов разная структура, температура плавления, строение кристаллической решетки.
Швеллер — классификация и область применения
В таблицах можно найти информацию о химическом составе меди, никеля, алюминия. Особенности:
- самая высокая теплопроводность у никеля, магния, меди и сплавов на их основе.
- самая низкая теплопроводность у инвара, нихрома, алюминия, олова.
Способы получения
Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%).
Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.
Магниетермический процесс
Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде.
Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот.
Губчатый титан переплавляют для получения качественного металла.
Гидридно-кальциевый метод
Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре.
Образуется оксид кальция, который проходит отмывку слабыми кислотами. Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах.
Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.
Читать также: Ремонт станции водоснабжения своими руками
Электролизный метод
Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.
Йодидный метод
Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.
Можно ли повысить показатель?
Ученые провели эксперимент по увеличение параметра с использованием графена. Они наносили слой графена на медные поверхности. Для этого применялась технология осаждения графеновых частиц из газа.
Показатель теплопроводности медной заготовки увеличился, поскольку зерна в структуре стали больше. Благодаря этому повысилась проходимость свободных электронов. При нагревании меди без графенового напыления размер зерен не был увеличен.
Также внимание нужно уделить влиянию концентрации углерода на показатель. У стали с высоким содержанием углерода он выше. Благодаря этому из высокоуглеродистой стали изготавливаются трубы, запорная арматура.
Графен ( Instagram / kalabs_lab)
Конвекция
Конвекция
— это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.Пример явления конвекции : небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом.
Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух.
В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.Различают два вида конвекции:
- естественная (или свободная)
Читать также: Ручной пресс для выпрессовки подшипников
Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.
Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д. Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.Конвекция в твердых телах происходить не может.
Методы изучения и измерения
Прежде чем начинать изучение и измерение показателя теплопроводности нужно выбрать материал, узнать технологию его какой технологии получения. Например, металлические заготовки одинакового размера, формы, изготовленные литьем или порошковой металлургии будут отличаться основными параметрами. То же самое касается сырых металлов в сравнении с тем, которые прошли термическую обработку.
Чтобы получить точные данные, нужно выбирать заготовки прошедшие одинаковые этапы обработки. Они должны быть одного размера, формы, похожи по химическому составу.
Специалисты выделяют ряд актуальных методик измерения коэффициента теплопроводности, применяемыми предприятиями:
- TCT (Методика разогретой проволоки).
- HFM (Методика теплового потока).
- GHP (Технология раскаленной охранной зоны).
- Релакционно-динамический способ. С его помощью проводятся массовые измерения технических характеристик. При измерении нужно выбирать заготовки с одинаковой отражающей способностью поверхностей.
При изготовлении различных предметов, деталей, оборудования из металла, специалисты учитывают отдельные технические характеристики. Например, при производстве теплообменников, радиаторов, систем охлаждения, нагрева воды, главный параметр — коэффициент теплопроводности. На него влияет химическое строение материала, кристаллическая решетка, пористость, форма, размеры заготовки.
Теплопроводность
Теплопроводность
— явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.Наибольшей теплопроводностью обладают металлы — она у них в сотни раз больше, чем у воды.
- Исключением являются ртуть и свинец
- дерево обладает плохой теплопроводностью
- стекло имеет плохую теплопроводность
, но и здесь теплопроводность в десятки раз больше, чем у воды. При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Нагревание кастрюли на электрической плитке происходит через теплопроводность. Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом. Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, . Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и . Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем. Значит,
металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь
.
Теплопроводность у различных веществ различна.Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела.
Это связано с тем, что между волокнами этих веществ содержится воздух.
Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).
Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может. Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.( 2 оценки, среднее 4.5 из 5 )
Теплопроводность металлов
Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс.
Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции.
Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.
Что такое теплопроводность и для чего нужна
Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача.
В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики.
Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.
Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве.
Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов.
Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Таблица 1
Металл | Коэффициент теплопроводности металлов при температура, °С | ||||
— 100 | 0 | 100 | 300 | 700 | |
Алюминий | 2,45 | 2,38 | 2,30 | 2,26 | 0,9 |
Бериллий | 4,1 | 2,3 | 1,7 | 1,25 | 0,9 |
Ванадий | — | — | 0,31 | 0,34 | — |
Висмут | 0,11 | 0,08 | 0,07 | 0,11 | 0,15 |
Вольфрам | 2,05 | 1,90 | 1,65 | 1,45 | 1,2 |
Гафний | — | — | 0,22 | 0,21 | — |
Железо | 0,94 | 0,76 | 0,69 | 0,55 | 0,34 |
Золото | 3,3 | 3,1 | 3,1 | — | — |
Индий | — | 0,25 | — | — | — |
Иридий | 1,51 | 1,48 | 1,43 | — | — |
Кадмий | 0,96 | 0,92 | 0,90 | 0,95 | 0,44 (400°) |
Калий | — | 0,99 | — | 0,42 | 0,34 |
Кальций | — | 0,98 | — | — | — |
Кобальт | — | 0,69 | — | — | — |
Литий | — | 0,71 | 0,73 | — | — |
Магний | 1,6 | 1,5 | 1,5 | 1,45 | — |
Медь | 4,05 | 3,85 | 3,82 | 3,76 | 3,50 |
Молибден | 1,4 | 1,43 | — | — | 1,04 (1000°) |
Натрий | 1,35 | 1,35 | 0,85 | 0,76 | 0,60 |
Никель | 0,97 | 0,91 | 0,83 | 0,64 | 0,66 |
Ниобий | 0,49 | 0,49 | 0,51 | 0,56 | — |
Олово | 0,74 | 0,64 | 0,60 | 0,33 | — |
Палладий | 0,69 | 0,67 | 0,74 | — | — |
Платина | 0,68 | 0,69 | 0,72 | 0,76 | 0,84 |
Рений | — | 0,71 | — | — | — |
Родий | 1,54 | 1,52 | 1,47 | — | — |
Ртуть | 0,33 | 0,09 | 0.1 | 0,115 | — |
Свинец | 0,37 | 0,35 | 0,335 | 0,315 | 0,19 |
Серебро | 4,22 | 4,18 | 4,17 | 3,62 | — |
Сурьма | 0,23 | 0,18 | 0,17 | 0,17 | 0,21 |
Таллий | 0,41 | 0,43 | 0,49 | 0,25 (400 0) | |
Тантал | 0,54 | 0,54 | — | — | — |
Титан | — | — | 0,16 | 0,15 | — |
Торий | — | 0,41 | 0,39 | 0,40 | 0,45 |
Уран | — | 0,24 | 0,26 | 0,31 | 0,40 |
Хром | — | 0,86 | 0,85 | 0,80 | 0,63 |
Цинк | 1,14 | 1,13 | 1,09 | 1,00 | 0,56 |
Цирконий | — | 0,21 | 0,20 | 0,19 | — |
От чего зависит показатель теплопроводности
Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:
- вида металла;
- химического состава;
- пористости;
- размеров.
Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.
Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.
Методы измерения
Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.
Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями.
Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину.
Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.
Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Таблица 2
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град.
Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры.
Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град.
Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град.
А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий.
Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения.
Примером использования свойств металлических изделий является:
- кухонная посуда с различными свойствами;
- оборудование для пайки труб;
- утюги;
- подшипники качения и скольжения;
- сантехническое оборудование для подогрева воды;
- приборы отопления.
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия.
В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации.
Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
У какого металла самая высокая теплопроводность
- Новые статьи
- В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).
- Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.
Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).
Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).
Примечание: В таблице теплопроводности также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).
Источник: Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.
Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.
Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.
Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности.
Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К).
В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).
Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому.
Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества.
Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
где q→ >> — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ — коэффициент теплопроводности (удельная теплопроводность), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T) (T)> (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.
Связь с электропроводностью
Связь коэффициента теплопроводности ϰ с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:
Коэффициент теплопроводности газов
В газах коэффициент теплопроводности может быть найден по приближённой формуле
где ρ — плотность газа, cv > — удельная теплоёмкость при постоянном объёме, λ — средняя длина свободного пробега молекул газа, v¯ >> — средняя тепловая скорость. Эта же формула может быть записана как
где i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5 , для одноатомного i=3 ), k — постоянная Больцмана, μ — молярная масса, T — абсолютная температура, d — эффективный (газокинетический) диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).
Теплопроводность в сильно разреженных газах
Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда.
Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом.
При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P >rho c_ l >propto P>, где l — размер сосуда, P — давление.
Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло.
Тем не менее, энергия в вакууме передаётся с помощью излучения.
Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.
Обобщения закона Фурье
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело.
Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п.
Инерционность в уравнения переноса первым ввел Максвелл, а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:
Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.
Коэффициенты теплопроводности различных веществ
Графен | 4840 ± 440 — 5300 ± 480 |
Алмаз | 1001—2600 |
Графит | 278,4—2435 |
Арсенид бора | 200—2000 |
Карбид кремния | 490 |
Серебро | 430 |
Медь | 401 |
Оксид бериллия | 370 |
Золото | 320 |
Алюминий | 202—236 |
Нитрид алюминия | 200 |
Нитрид бора | 180 |
Кремний | 150 |
Латунь | 97—111 |
Хром | 107 |
Железо | 92 |
Платина | 70 |
Олово | 67 |
Оксид цинка | 54 |
Сталь нелегированная | 47—58 |
Свинец | 35,3 |
Сталь нержавеющая (аустенитная) | 15 |
Кварц | 8 |
Термопасты высокого качества | 5—6 |
Гранит | 2,4 |
Бетон сплошной | 1,75 |
Бетон на гравии или щебне из природного камня | 1,51 |
Базальт | 1,3 |
Стекло | 1—1,15 |
Термопаста КПТ-8 | 0,7 |
Бетон на песке | 0,7 |
Вода при нормальных условиях | 0,6 |
Кирпич строительный | 0,2—0,7 |
Силиконовое масло | 0,16 |
Пенобетон | 0,05—0,3 |
Газобетон | 0,1—0,3 |
Древесина | 0,15 |
Нефтяные масла | 0,12 |
Свежий снег | 0,10—0,15 |
Пенополистирол (горючесть Г1) | 0,038—0,052 |
Экструдированный пенополистирол (горючесть Г3 и Г4) | 0,029—0,032 |
Стекловата | 0,032—0,041 |
Каменная вата | 0,034—0,039 |
Воздух (300 K, 100 кПа) | 0,022 |
Аэрогель | 0,017 |
Аргон (273—320 K, 100 кПа) | 0,017 |
Аргон (240—273 K, 100 кПа) | 0,015 |
Вакуум (абсолютный) | 0 (строго) |
Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.
Примечания
См. также
- Теплопередача
- Конвекция
- Равновесный градиент температуры
- Тепловое излучение
- Закон Ньютона — Рихмана
- Уравнение диффузии
- Теплоизоляция
Ссылки
- Теплопроводность воды и водяного пара
- Коэффициенты теплопроводности элементов
- Таблица теплопроводности веществ и материалов
Самый теплопроводный металл: общие характеристики
Именно серебро лидирует в этом негласном конкурсе, имея теплопроводность в 408 Ватт на метр помноженный на Кельвин, опережая по этому показателю такие элементы с высоким коэффициентом удельной теплопроводности, как медь (384 Вт/(м*К), золото (312 Вт/(м*К) и алюминий (203 Вт/(м*К).
Будучи обладателем пальмы первенства, самый теплопроводный металл имеет наиболее широкое применение в различных сферах производства, причем, список того, где можно использовать серебро, можно продолжать до чуть ли не до бесконечности.
Примечательно, что благодаря своим уникальным качествам, наиболее теплопроводный металл в мире использовался с самых давних времен, ведь согласно сохранившихся исторических очерков, еще воины древнего Египта широко использовали серебро для максимального ускорения процесса заживления ран и увечий, полученных в жестоких боях.
Так, изготавливая тоненькие пластинки из чистого серебра и прикладывая их к ранам различны типов, они с удивлением отмечали целебные свойства, которыми обладал этот благородный металл.
Нельзя не уделить внимание той огромной роли серебра, которую оно играло для православия, ведь в большинстве русских церквей все сосуды и атрибутику старались изготавливать именно из него и ни для кого не секрет, что посеребренная вода, именуемая святой, способна сохранятся годами в закрытых емкостях, не меняя при этом свой цвет и запах. А все потому, что серебро способно выступать, как своеобразное средство для дезинфекции, применимое не только для воды. Однако, на этом полезные свойства данного металла отнюдь не заканчиваются, ведь помимо высокой теплопроводности, он обладает отличной электропроводностью, а также совершенно не подвержен процессам окисления даже при длительном контакте с влажной средой. Благодаря своим многочисленным уникальным свойствам, серебро широко используется для изготовления мелких комплектующих для различного рода электроприборов, и именно поэтому техника с деталями из этого благородного металла пользуется таким большим спросом.
Рассуждая на тему о сферах применения серебра, невозможно упустить из внимания тот вклад, который продолжает вносить этот металл в ювелирное искусство, ведь оно пользуется не меньшей популярностью, чем золото.
Причем, помимо всевозможных колец, сережек и браслетов, серебро используется для изготовления изысканных столовых приборов и различного рода декоративных элементов, в том числе интерьерных. И речь идет не только о красоте, но и о функциональности.
В качестве примера можно привести зеркала, которые вместо традиционного алюминия покрывают тончайшим слоем серебра, чтобы улучшить их отражающую способность.
Кроме того, серебро прекрасно подходит для изготовления целого ряда вспомогательных инструментов и довольно сложно придумать лучший материал, с помощью которого можно будет выполнять чеканку монет и орденов. При этом использовать его можно не только в чистом виде, но и во всевозможных сплавах и соединениях.
Так, определенные химические соединения, в которых принимает непосредственное участие аргентум, активно используются для изготовления зарядных батарей аккумуляторов, которые славятся своей способностью при относительно малом внутреннем сопротивлении генерировать большой ток.