Пластические свойства металла относятся

16.06.2022 VT-METALL Пластические свойства металла относятся

Из этого материала вы узнаете:

  • Что такое пластичность металлов
  • Зависимость пластичности металлов от химического состава
  • Влияние температуры на пластичность металлов
  • Влияние скорости деформации на пластичность металлов
  • Как напряженное состояние влияет на пластичность металлов
  • Примеры металлов, обладающих высокой пластичностью

Пластичность металлов проявляется под воздействием высокой температуры. При этом материал деформируется или растягивается под воздействием силы, но не разрушается. Это свойство активно применяется при изготовлении разнообразных деталей. 

Высокая пластичность металла характеризуется постепенным разрушением с предварительным образованием изгиба, при низкой – материал ломается внезапно. О том, какими показателями пластичности обладают разные металлы и как это свойство используется в промышленности, расскажем далее.

Что такое пластичность металлов

Рассмотрим для начала определение пластичности металлов. Пластичностью называют способность металлов меняться под воздействием внешних факторов с сохранением изменений после окончания этого влияния. Специалисты называют это свойство обратной упругостью металлов. Высокая пластичность позволяет легко обрабатывать материалы (штамповать, ковать и пр.).

Существует прямая зависимость пластичности от температуры, до которой нагревают материал. Пластичность металлов увеличивается при нагревании, а при уменьшении температуры мягкость снижается. Если вы имеете дело с металлами, показывающими высокую пластичность в условиях комнатной температуры, то существует возможность их разрушения в случае охлаждения ниже нуля градусов по Цельсию.

VT-metall предлагает услуги:

Порошковая покраска металла

Для большинства металлов характерна пластичность. У одних она высокая – это так называемые пластичные материалы, а у других низкая – это хрупкие. При этом последние не показывают какой-либо деформации при разрушении или перед ним. Хрупким может быть, например, стекло – один из самых часто встречающихся материалов. Или чугун (особенно белый) – это уже металл, причем широкого использования.

При необходимости обработки (изменении формы) пластичность металла будет очень важным свойством. Как на практике можно использовать пластичность металлов? Кузова автомобилей, например, изготавливают из материалов с достаточной пластичностью для того, чтобы была возможность придать им необходимую форму.

Характеристика пластичности металлов прочно связана с соотношением направления, куда была приложена сила, и направления, в котором происходила прокатка материала. Катаные металлы имеют свойство направленности из-за удлинения структурных кристаллов/зерен вдоль прокатки. Соответственно, пластичность будет выше в том же направлении. Это характерно и для листовой стали.

Пластические свойства металла относятся

В поперечном же направлении прочность материала снижается, иногда до 30 %. Пластичность в том же направлении может упасть на 50 %. А по толщине материала эти свойства падают еще больше.

Некоторые виды стали показывают очень низкую пластичность в поперечном направлении. Итак, мы имеем три направления. Им присваиваются следующие обозначения.

Продольное (направление прокатки) обозначается X, поперечное – Y, по толщине – Z.

При проведении аттестации сварщиков, к примеру, при проверке навыка загиба листа стали, частенько можно увидеть излом основного металла. Он возникает из-за того, что ось шва идет параллельно с направлением прокатки металла. Несмотря на хорошие характеристики материала в направлении X, возникновение нагрузки в направлении Y или Z способно разрушить металл.

Проверка пластичности происходит с помощью теста на растяжение. Его производят в тот момент, когда испытывают металл на предел его прочности. Выражается данное свойство, как относительные удлинение и сужение сечения материала.

Существует несколько факторов, влияющих на пластичность металлов. Подробнее остановимся на каждом из них.

Зависимость пластичности металлов от химического состава

Высокую пластичность металлов обеспечивает их чистота. Мягкость чистых металлов выше, чем у сплавов. Примером может служить медь, у которой это свойство выше, чем у бронзы (сплав с оловом).

Пластичность больше выражена у сплавов, которые создают твердые растворы, нежели у тех, что образуют смеси (механические) и химические соединения.

Чем больше разница в пределах текучести и прочности, тем более прочными являются металлы.

Пластические свойства металла относятся

Пластичность металлов обусловлена в том числе компонентами сплавов:

  1. Высокое содержание углерода приводит к уменьшению пластичности. Если в материале более полутора процентов углерода, то сталь плохо поддается ковке.
  2. Пластичность стали падает с появлением в ее составе кремния. Именно поэтому холодная штамповка и глубокая вытяжка используются для обработки малоуглеродистой стали с небольшим количеством кремния. Это такие марки, как 08кп или 10кп. 
  3. Благодаря ванадию и никелю пластичность легированной стали повышается, а из-за присутствия вольфрама, хрома падает.
  4. Хрупкой сталь делает соединение серы и железа, в результате которого появляется сульфид железа в виде эвтектики. Он размещается на границах зерен и плавится в процессе нагрева до +1 000 С, разрушая связи зерен. Данный процесс получил название красноломкости.
  5. Для нейтрализации негативного воздействия серы используется марганец, который создает тугоплавкое соединение.
  6. Фосфор двояко воздействует на сталь. С одной стороны в металле возрастают пределы текучести/прочности, с другой – появляется хладноломкость из-за снижения пластичности/вязкости металла при низкой температуре.

Крупнозернистая структура литого металла создает более низкую пластичность, а в деформированном мелкозернистом она выше. Пластичность падает из-за присутствия в материале макро- и микротрещин, пор, пузырьков.

Влияние температуры на пластичность металлов

Пластичность металлов во многом зависит от температуры. Но не все так однозначно. Высокие значения повышают пластичность мало- и среднеуглеродистой стали. А, например, высокоуглеродистые более пластичны при низких значениях. При этом для шарикоподшипниковых температура вообще не влияет на пластичность.

Пластические свойства металла относятся

Существуют также сплавы, у которых пластичность повышается в определенных температурных интервалах. От +800–1 000 °С для технического железа – это температура понижения пластичности металла. А при достижении градуса плавления металла происходит увеличение хрупкости, поскольку возрастает вероятность пережога/перегрева.

У углеродистой стали существует зона синеломкости. Это температура от +100 °С до +300 °С, когда прочность материала увеличивается, а пластичность падает. Объясняется это тем, что малые части карбидов выпадают по направлению плоскости скольжения во время деформации металла. Также уменьшение пластичности происходит при фазовых превращениях.

При излишнем росте зерен в структуре металла пластичность резко уменьшается. Специалисты называют этот процесс перегревом, который исправляется отжигом. Другой процесс – пережог.

Это когда на границах зерен появляются оксиды, а также происходит плавление межзеренных прослоек при приближении температуры материала к показателю его плавления. Все это ведет к возникновению трещин и утрате пластичности.

Такой процесс невозможно исправить. Материал отдается на переплавку.

Влияние скорости деформации на пластичность металлов

Скорость деформации представляет собой изменение ее степени за определенный промежуток времени. При возрастании скорости происходит падение пластичности. Это особенно заметно в случае с высоколегированной сталью, сплавами меди и магния.

Объясняется это наличием двух разнонаправленных процессов при работе с нагретым материалом. С одной стороны, при деформации происходит его упрочение. С другой – ослабление прочности из-за рекристаллизации. Если мы имеем высокие скорости деформации, то упрочнение происходит быстрее, чем разупрочнение.

Но при еще большей скорости деформации (например, штамповке взрывом), пластичность снова начинает расти. Происходит это по причине увеличения температуры вследствие выработки теплоты при деформации. Она не может столь быстро рассеяться и приводит к возрастанию пластичности.

Как напряженное состояние влияет на пластичность металлов

Напряженное состояние определяется схемой расположения главных напряжений, которые действуют в малых объемах деформируемого металла.

Пластические свойства металла относятся

Главными напряжениями считаются нормальные, которые действуют на трех площадках, перпендикулярных друг другу, где напряжения по касательной взаимно уничтожаются (0). Существует 9 таких схем. Две из них линейные, три – плоские, четыре – объемные. Обработка давлением приводит к появлению двух объемных схем:

  • Трехосное сжатие – когда напряжения распространяются по трем осям. Присутствует при таких видах обработки металла, как прокатка, свободная ковка, прессовка, объемное штампование.
  • Напряженное состояние – когда две оси имеют напряжение сжатия, а одна – растяжения. Появляется при листовой штамповке (не всегда), а также при волочении.
Читайте также:  Токарные резцы по металлу для отверстий

Пластичность металла хорошо видна на схемах главных напряжений. Повышение роли напряжения сжатия приводит к увеличению пластичности в ходе обработки материала. Следовательно, пластичность при волочении ниже, чем при прессовании. Сжимая инструментом заготовку с боков при обработке давлением, можно увеличить напряжение сжатия металла.

В элементарно малом объеме деформация определяется схемой главных ее частей. Основными считаются те, что происходят по трем перпендикулярным осям, где касательное напряжение равно нулю. В ходе обработки давлением появляются три схемы главных деформаций:

  1. По двум осям происходят главные деформации сжатия, а по одной идет тот же процесс растяжения. Схема хорошо заметна при волочении, прессовании.
  2. По одной оси идет главная деформация сжатия, по двум видны процессы растяжения. Так происходит при прокатке (в калибрах, узкой полосы…), объемной штамповке или ковке.
  3. Первая ось – это главная деформация сжатия, вторая – главная деформация растяжения, на третьей ничего не происходит. Схема работает при штамповке листов, прокатке широких полос.

Информацию о зернах и волокнах металла, а также характере их формирования можно определить из схемы главных деформаций. При обработке давлением свойства материала (физические, механические), а также текстуру определяет максимальная главная деформация.

Примеры металлов, обладающих высокой пластичностью

 Пластичность металлов объясняется в том числе чистотой металлов, но не только. Самыми высокими показателями обладают платина (серебряного цвета), золото (желтого) и медь (розово-оранжевого). Чуть более низкую пластичность имеют:

  • сталь – зависит от различных добавок и углеродистого состава;
  • латунь и прочие сплавы;
  • свинец – достаточно высокая пластичность проявляется в диапазонах температуры.

Пластические свойства металла относятся

Пластичность металла можно определить, только применяя ранее приобретенные знания или проводя эксперименты. Она зависит от того, каким образом различные добавки работают с металлическим стеклом, а также от степени чистоты металла.

Важную роль играют и иные переменные. Например, количество электронов, а также молекулярных орбиталей, которые принимают участие в связях материала. Кроме того, расположение кристалла, размер зерен.

Не существует стандартных правил. Для каждого металла нужно найти связи между различными переменными (электронными, микроскопическими), проанализировать их, используя многомерный анализ. Все это приводит к тому, что даже похожие по свойствам и характеристикам материалы могут не быть одинаково пластичными.

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Пластические свойства металла относятся

Механические свойства металлов и сплавов

К основным механическим
свойствам металлов относятся прочность, вязкость, пластичность, твердость, выносливость, ползучесть, износостойкость. Они являются главными характеристиками металла или сплава.

Рассмотрим некоторые термины, применяемые при характеристике механических свойств. Изменения размеров и формы, происходящие в твердом теле под действием внешних сил, называются деформациями, а процесс, их вызывающий,— деформированием. Деформации, исчезающие при разгрузке, называются упругими, а не исчезающие после снятия нагрузки — остаточными или пластическими.

Напряжением  называется величина внутренних сил, возникающих в твердом теле под влиянием внешних сил.

Под прочностью материала понимают его способность сопротивляться деформации или разрушению под действием статических или динамических нагрузок. О прочности судят по характеристикам механических свойств, которые получают при механических испытаниях.

К статическим испытаниям на прочность относятся растяжение, сжатие, изгиб, кручение, вдавливание. К динамическим относятся испытания на ударную вязкость, выносливость и износостойкость.

Эластичностью называется способность материалов упруго деформироваться, а пластичностью — способность пластически деформироваться без разрушения.

Вязкость — это свойство материала, которое определяет его способность к поглощению механической энергии при постепенном увеличении пластической деформации вплоть до разрушения материала. Материалы должны быть одновременно прочными и пластичными.

  • Твердость — это способность материала сопротивляться проникновению в него других тел.
  • Выносливость — это способность материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок.
  • Износостойкость — это способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
  • Ползучесть — это способность материала медленно и непрерывно пластически деформироваться (ползти) при постоянном напряжении (особенно при высоких температурах).

Поведение некоторых металлов (например, отожженной стали) при испытании на растяжение показано на рис. 3. При увеличении нагрузки в металле сначала развиваются процессы упругой деформации, удлинение образца при этом незначительно.

Затем наблюдается пластическое течение металла без повышения напряжения, этот период называется текучестью. Напряжение, при котором продолжается деформация образца без заметного увеличения нагрузки, называют пределом текучести. При дальнейшем повышении нагрузки происходит развитие в металле процессов наклепа (упрочнения под нагрузкой).

Наибольшее напряжение, предшествующее разрушению образца, называют пределом прочности при растяжении.

Пластические свойства металла относятся

Рис. 3. Диаграмма деформации при испытании металлов на растяжение.

Напряженное состояние — это состояние тела, находящегося под действием уравновешенных сил, при установившемся упругом равновесии всех его частиц. Остаточные напряжения — это напряжения, остающиеся в теле, после прекращения действия внешних сил, или возникающие при быстром нагревании и охлаждении, если линейное расширение или усадка слоев металла и частей тела происходит неравномерно.

Внутренние напряжения образуются при быстром охлаждении или нагревании в температурных зонах перехода от пластического к упругому состоянию металла. Эти температуры для стали соответствую 400—600°. Если образующиеся внутренние напряжения превышают предел прочности, то в деталях образуются трещины, если они превышают предел упругости, то происходит коробление детали.

Предел прочности при растяжении в кг/мм2 определяется на разрывной машине как отношение нагрузки Р в кГ, необходимой для разрушения стандартного образца (рис. 4, а), к площади поперечного сечения образца в мм2.

   Пластические свойства металла относятся  Пластические свойства металла относятся

Рис. 4. Методы испытания прочности материалов: а — на растяжение; б — на изгиб; в — на ударную вязкость; г — на твёрдость

Предел прочности при изгибе в кГ/мм2 определяется разрушением образца, который устанавливаете» на двух опорах (рис. 4, б), нагруженного по середине сосредоточенной нагрузкой Р.

Для установления пластичности материала определяют относительное удлинение δ при растяжении или прогиб ƒ при изгибе.

Относительное удлиненней δ в % определяется на образцах, испытуемых на растяжение. На образец наносят деления (рис. 4, а) и измеряют между ними расстояние до испытания (l0) и после разрушения (l) и определяют удлинение

δ = l-lo / lo · 100%

Прогиб при изгибе в мм определяется при помощи прогибомера машины, указывающего прогиб ƒ, образующийся на образце в момент его разрушения (рис. 4, б).

Ударная вязкость в кГм/см2 определяется на образцах (рис. 4, в), подвергаемых на копре разрушению ударом отведенного в сторону маятника. Для этого работу деформации в кГм делят на площадь поперечного сечения образца в см 2.

Твердость по Бринелю (НВ) определяют на зачищенной поверхности образца, в которую вдавливают стальной шарик (рис. 4, г) диаметром 5 или 10 мм под соответствующей нагрузкой в 750 или 3000 кГ и замеряют диаметр d образовавшейся лунки. Отношение нагрузки в кГ к площади лунки πd2 / 4 в мм2 дает число твердости.

Читайте также:  Оборудование при переработке вторичных металлов

Показатели для механических свойств для основных сплавов приведены в табл. 1.

Пластичность, в чем она состоит, свойства, примеры, эксперименты / химия

тягучесть это технологическое свойство материалов, позволяющее им деформироваться до растяжения; то есть разделение его двух концов без раннего перелома где-то посередине удлиненного участка. По мере удлинения материала его поперечное сечение уменьшается, становясь более тонким.

Поэтому пластичные материалы механически обрабатывают, чтобы придать им нитевидные формы (провода, кабели, иглы и т. Д.). На швейных машинах катушки с витыми нитями представляют собой домашний пример пластичных материалов; в противном случае текстильные волокна никогда бы не приобрели характерных форм.

Пластические свойства металла относятся

Какова цель пластичности в материалах? Способность преодолевать большие расстояния или привлекательные дизайны, будь то для разработки инструментов, украшений, игрушек; или для транспортировки некоторой жидкости, такой как электрический ток.

Последнее приложение представляет собой ключевой пример пластичности материалов, особенно металлов. Тонкие медные провода (верхнее изображение) являются хорошими проводниками электричества, и наряду с золотом и платиной доступны во многих электронных устройствах для обеспечения их работы..

Некоторые волокна настолько тонкие (толщиной всего в несколько микрометров), что поэтическая фраза «золотые волосы» приобретает все истинное значение. То же самое касается меди и серебра.

Пластичность не была бы возможным свойством, если бы не было молекулярной или атомной перегруппировки для противодействия падающей растягивающей силе. И если бы его не существовало, человек никогда бы не узнал о кабелях, антеннах, мостах, которые исчезли бы, и мир остался бы в темноте без электрического света (помимо других неисчислимых последствий).

индекс

  • 1 Что такое пластичность??
  • 2 свойства
  • 3 Примеры пластичных металлов
    • 3.1 Размер зерен и кристаллические структуры металлов
    • 3.2 Влияние температуры на пластичность металлов
  • 4 Эксперимент по объяснению пластичности у детей и подростков
    • 4.1 Жевательная резинка и пластилин
    • 4.2 Демонстрация с металлами
  • 5 ссылок

Что такое пластичность?

В отличие от пластичности пластичность заслуживает более эффективной структурной перестройки.

Почему? Потому что, когда поверхность, где натяжение больше, твердое тело имеет больше средств для скольжения своих молекул или атомов, образуя листы или пластины; в то время как когда напряжение сосредоточено во все меньшем поперечном сечении, молекулярное скольжение должно быть более эффективным для противодействия этой силе..

Не все твердые вещества или материалы могут это сделать, и по этой причине они разрушаются при испытаниях на растяжение. Полученные разрывы в среднем горизонтальны, в то время как из пластичных материалов конические или заостренные, признак растяжения.

Пластичные материалы также могут прорваться через точку напряжения. Это может быть увеличено, если температура повышается, так как тепло способствует и облегчает молекулярные слайды (хотя есть несколько исключений). Именно благодаря этим оползням материал может проявлять пластичность и, следовательно, быть пластичным.

Однако пластичность материала включает в себя другие переменные, такие как влажность, тепло, примеси и способ применения силы. Например, свежеплавленное стекло является пластичным, принимая нитевидные формы; но при охлаждении становится хрупким и может сломаться при любом механическом воздействии.

свойства

Пластичные материалы имеют свои собственные свойства, непосредственно связанные с их молекулярным расположением. В этом смысле жесткий металлический стержень и мокрый глиняный стержень могут быть пластичными, даже если их свойства сильно отличаются.

Тем не менее, все они имеют что-то общее: пластичное поведение до распада. В чем разница между пластиком и упругим предметом?

Эластичный объект обратимо деформируется, что происходит первоначально с пластичными материалами; но сила растяжения увеличивается, деформация становится необратимой, и объект становится пластичным.

С этого момента проволока или нить принимают определенную форму. После непрерывного растяжения его поперечное сечение становится настолько малым, а растягивающее напряжение слишком высоким, так что его молекулярные скольжения больше не могут противодействовать растяжению и в конечном итоге разрушаются..

Если пластичность материала чрезвычайно высока, как в случае с золотом, с помощью одного грамма можно получить провода длиной до 66 км, толщиной 1 мкм..

Чем длиннее проволока, полученная из массы, тем меньше ее поперечное сечение (если у вас нет тонны золота, чтобы построить проволоку значительной толщины)..

Примеры пластичных металлов

Металлы относятся к пластичным материалам с неисчислимым количеством применений. Триада состоит из металлов: золота, меди и платины. Один золотой, другой розовато-оранжевый, а последний серебряный. В дополнение к этим металлам есть и другие с более низкой пластичностью:

  • -железо
  • -цинк
  • -Латунь (и другие металлические сплавы)
  • -золото
  • -алюминий
  • -самарий
  • -магний
  • -ванадий
  • -Сталь (хотя на ее пластичность может повлиять, в зависимости от ее углеродного состава и других добавок)
  • -Серебро
  • -олово
  • -Свинец (но в определенных небольших температурных диапазонах)

Без предварительных экспериментальных знаний трудно определить, какие металлы действительно пластичны. Его пластичность зависит от степени чистоты и от того, как добавки взаимодействуют с металлическим стеклом.

Другие переменные, такие как размер кристаллических зерен и расположение кристалла, также рассматриваются. Кроме того, количество электронов и молекулярных орбиталей, участвующих в связи металла, то есть в «море электронов», также играет важную роль.

Взаимодействия между всеми этими микроскопическими и электронными переменными делают пластичность концепцией, которую необходимо глубоко проанализировать с помощью многомерного анализа; и вы найдете отсутствие стандартного правила для всех металлов.

Именно по этой причине два металла, хотя и с очень похожими характеристиками, могут быть или не быть пластичными.

Размер зерен и кристаллические структуры металлов

Зерна представляют собой кристаллические участки, которые не имеют заметных неровностей (зазоров) в своих трехмерных решетках. В идеале они должны быть полностью симметричными, а их структура должна быть четко определена..

Каждое зерно для одного и того же металла имеет одинаковую кристаллическую структуру; то есть металл с компактной гексагональной структурой, ГПУ, имеет зерна с кристаллами с системой ГПУ. Они расположены таким образом, что перед силой тяги или растяжения они скользят друг над другом, как если бы они были плоскостями, состоящими из мрамора..

Обычно, когда плоскости, состоящие из мелких зерен, скользят, они должны преодолевать большую силу трения; в то время как если они большие, они могут двигаться более свободно. Фактически, некоторые исследователи стремятся изменить пластичность некоторых сплавов посредством контролируемого роста их кристаллических зерен..

С другой стороны, что касается кристаллической структуры, то обычно металлы с кристаллической системой ГЦК (гранец по центру, или кубические по центру лица) являются наиболее пластичными. Между тем, металлы с ОЦК кристаллической структурой (кубическое тело, кубические с центром на гранях) или ГПУ, как правило, менее пластичны.

Например, и медь, и железо кристаллизуются с помощью ГЦК-компоновки и являются более пластичными, чем цинк и кобальт, оба с ГЦП-компоновками.

Влияние температуры на пластичность металлов

Высокая температура может уменьшить или увеличить пластичность материалов, и исключения также относятся к металлам. Однако, как правило, при размягчении металлов, тем больше возможностей превратить их в нити, не разрывая их..

Это связано с тем, что повышение температуры вызывает колебание металлических атомов, что приводит к объединению зерен; то есть несколько мелких зерен соединяются, образуя крупное зерно.

С более крупными зернами пластичность увеличивается, и молекулярные слайды сталкиваются с меньшим количеством физических препятствий.

Эксперимент по объяснению пластичности у детей и подростков

Пластические свойства металла относятся

Пластичность становится чрезвычайно сложной концепцией, если начать анализировать под микроскопом. Итак, как вы объясните это детям и подросткам? Таким образом, что это кажется настолько простым, насколько это возможно, на ваших любопытных глазах.

Жевательная резинка и пластилин

До сих пор мы говорили о металлах и расплавленном стекле, но есть и другие невероятно пластичные материалы: жевательная резинка и пластилин..

Читайте также:  История сплавов драгоценных металлов

Чтобы продемонстрировать пластичность жевательной резинки, достаточно схватить две массы и начать их растягивать; один слева, а другой справа. Результатом будет мост подвески жевательной резинки, который не сможет вернуться к своей первоначальной форме, если не будет разминать руками.

Тем не менее, наступит момент, когда мост в конечном итоге сломается (и пол будет испачкан жвачкой).

На изображении выше показано, как ребенок, нажимающий на контейнер с отверстиями, заставляет пластилин появляться, как если бы это были волосы. Сухое игровое тесто менее пластично, чем маслянистое; следовательно, эксперимент может состоять просто в создании двух дождевых червей: один с сухим пластилином, а другой увлажненный маслом.

Ребенок заметит, что маслянистый червь легче вылепить и набрать длину за счет своей толщины; Пока червь высыхает, он может несколько раз сломаться.

Пластилин также представляет собой идеальный материал, чтобы объяснить разницу между податливостью (лодка, ворота) и пластичностью (волосы, дождевые черви, змеи, саламандры и т. Д.).

Демонстрация с металлами

Хотя подростки не будут манипулировать чем-либо, возможность стать свидетелем образования медных проводов в первом ряду может стать для них привлекательным и интересным опытом. Демонстрация пластичности будет еще более полной, если мы перейдем к другим металлам и, таким образом, сможем сравнить их пластичность..

Далее все провода должны подвергаться постоянному растяжению до их точки разрыва. При этом подросток будет визуально подтверждать, как пластичность влияет на сопротивление проволоки разрыву..

ссылки

  1. Энциклопедия примеров (2017). Пластичные материалы. Получено от: ejemplos.co
  2. Хельменстин, Анна Мари, доктор философии (22 июня 2018 г.) Точное определение и примеры. Получено с: мысли
  3. Chemstorm. (2 марта 2018 г.) Определение пластической химии. Получено с: chemstorm.com
  4. Белл Т. (18 августа 2018 г.). Объясненная пластичность: растягивающее напряжение и металлы. Баланс. Получено с: thebalance.com
  5. Доктор Маркс Р. (2016). Пластичность в металлах Кафедра машиностроения, Университет Санта-Клары. [PDF]. Получено от: scu.edu
  6. Рейд Д. (2018). Пластичность: определение и примеры. Исследование. Получено с: study.com
  7. Кларк Дж. (Октябрь 2012). Металлические конструкции. Получено от: chemguide.co.uk
  8. Chemicool. (2018). Факты о золоте. Получено с: chemicool.com
  9. Материалы сегодня. (18 ноября 2015 г.) Сильные металлы все еще могут быть пластичными. Elsevier. Получено с: materialstoday.com

Большая Энциклопедия Нефти и Газа

  • Cтраница 1
  • Пластические свойства металла характеризуются относительным удлинением Рё относительным сужением.  [1]
  • Пластические свойства металлов характеризуются относительным удлинением, S [ ( 1Рљ — 1) / 1С† ] 100 % Рё СЃ Сѓ Р¶ Рµ РЅ Рё-Рµ Рј, С† / [ ( Рђ — Aic) / A0 ] 100 %, РіРґРµ 1, 1Рљ Рё РђРї, РђРє — соответственно длина Рё площадь поперечного сечения образца РґРѕ Рё после разрушения.  [2]

Пластические свойства металлов Рё сплавов: — ударная вязкость, относительное удлинение Рё сужение — изменяются неоднозначно. Металлы СЃ гранецентрированной кубической решеткой ( медь, никель, алюминий Рё РґСЂ.) сохраняют высокие пластические свойства РїСЂРё РЅРёР·РєРёС… температурах, тогда как металлы-СЃ объемно-центрированной кубической Рё гексагональной решеткой становятся С…СЂСѓРїРєРёРјРё.  [3]

Пластические свойства металла шва Рё Р·РѕРЅС‹ влияния улучшают путем прокатки или продольной деформации. Дополнительное улучшение свойств сварных соединений достигается путем термообработки.  [4]

Обычно пластические свойства металлов Рё сплавов СЃ ростом температуры повышаются, Р° СЃ ростом скорости деформации — — снижаются.

Однако в ряде экспериментальных исследований отмечаются отклонения от этого закона при испытаниях самых различных материалов.

 [5]

Пластические свойства металлов зависят РѕС‚ типа РёС… кристаллической структуры, которая определяет количество плотноупакованных направлений Рё плоскостей, пригодных для скольжения. Поэтому РѕРґРЅРё металлы более, Р° РґСЂСѓРіРёРµ менее пластичны.  [6]

Пластические свойства металла труб Рё способность его выдерживать различную деформацию проверяют технологическими испытаниями: сплющиванием, раздачей, бортованием Рё загибом РІ холодном или РІ горячем состоянии.  [8]

Однако пластические свойства металла недостаточно полно определяются такими показателями, как удлинение при разрыве и сужение шейки разрываемого образца.

Большое значение имеет также характер разрушения.

Если РїСЂРё испытании РЅР° разрыв РІ РѕРґРЅРѕРј РёР· образцов обнаружен РІСЏР·РєРёР№ излом, Р° РІ РґСЂСѓРіРѕРј — С…СЂСѓРїРєРёР№ ( РїСЂРё той же величине деформации), то можно утверждать, что пластическое состояние этих образцов различное Рё РїСЂРё некоторых определенных условиях эта разница скажется. Губкин для оценки пластического состояния предложил пользоваться комбинированным показателем который учитывал Р±С‹ одновременно Рё степень деформации Рё РІРёРґ разрушения. Такой комбинированный показатель называется деформируемостью.  [9]

Восстанавливаются пластические свойства металла термической обработкой его путем отжига РїСЂРё температуре 600 — 700Р­ РЎ РІ специальных печах. После термической обработки металл очищают путем травления или специальной обработки песком или РґСЂРѕР±СЊСЋ.  [10]

Пластические свойства металла относятся Кривая атомных объемов элементов.  [11]

На прочность и пластические свойства металлов влияют температура и давление. При нагревании прочность металла обычно понижается, пластичность увеличивается.

Так, цинк при нагревании до 150 С становится ковким. Повышение давления оказывает такое же влияние, как и температура.

Сталь, например, РїСЂРё давлении РІ несколько тысяч атмосфер становится такой же пластичной, как Рё свинец.  [12]

РџСЂРё горячей деформации пластические свойства металла выше, Р° сопротивление деформации ниже, чем РїСЂРё холодной деформации, поэтому горячая деформация сопровождается меньшими энергетическими затратами, чем холодная. Вследствие этого холодную деформацию применяют только РІ том случае, если горячая деформация неприменима.  [13]

  1. Этим методом определяют пластические свойства металла.  [14]
  2. РџСЂРё горячей деформации пластические свойства металла выше, Р° сопротивление деформации ниже, чем РїСЂРё холодной деформации, поэтому горячая деформация СЃ точки зрения энергетических затрат РЅР° деформирование более выгодна, чем холодная.  [15]
  3. Страницы:      1    2    3    4

Пластичность металлов

Пластичность — это свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих сил. Отсутствие или малое значение пластичности называется хрупкостью.

Пластичность зависит от условий деформирования (скорости нагружения, температуры, давления и т. д.). Пластичность металлических и других конструкционных материалов широко используется в технике, например при обработке металлов давлением.

Пластичность характеризуют относительное удлинение 5 и относительное сужение ц/ (его называют поперечным сужением).

Удлинение — это характеристика пластичности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. На практике обычно определяют относительное удлинение после разрыва — отношение в процентах приращения расчетной длины образца (/к — /0) после разрыва к первоначальной длине образца /0.

Рис. 1.12. Образование шейки на образце при растяжении

Относительное сужение — это характеристика пластичности материала по относительному уменьшению площади поперечного сечения растягиваемого образца. Относительное сужение после разрыва ц/ — отношение разности начальной площади и минимальной площади поперечного сечения образца после разрыва к начальной площади поперечного сечения образца.

При равномерном удлинении (без образования шейки на образце) относительное сужение однозначно связано с удлинением. После возникновения шейки (рис. 1.

12), что наблюдается у многих металлов, увеличение относительного сужения, измеряемое в зоне шейки, превышает увеличение относительного удлинения и тем больше, чем сильнее развита шейка.

Различают относительное сужение равномерное (до появления шейки), сосредоточенное (в процессе развития шейки до полного разрушения), полное (от начала нагружения до полного разрушения).

Практическое применение имеет последняя характеристика, которая легко определяется на образцах круглого сечения и приближенно — для прямоугольных сечений.

Полное относительное сужение во многих случаях более точная характеристика пластичности, чем относительное удлинение.

Часто недостаточная пластичность является следствием низкого значения сопротивления разрушению, т. е. преждевременного разрушения. Например, сопротивление разрушению поперек волокна у стали ниже, чем вдоль, потому что образцы, вырезанные поперек волокон, показывают при испытании меньшую пластичность, чем вырезанные вдоль волокон.

С повышением температуры пластичность возрастает.

Ссылка на основную публикацию
Adblock
detector