Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
Количество теплоты — энергия, которую получает или теряет тело при теплопередаче.
Обнаружено новое непонятное слово — теплопередача. Минуточку, давайте закончим с количеством теплоты.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
|
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
Теплопередача — процесс передачи теплоты (обмена энергией).
Здесь все совсем несложно, видов всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Если мы греемся у камина, то получаем тепло конвекцией или излучением?????
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
|
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
|
Также ее можно рассчитать через теплоемкость вещества:
|
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
|
Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
Газы | C, Дж/(кг·К) |
Азот N2 | 1051 |
Аммиак NH3 | 2244 |
Аргон Ar | 523 |
Ацетилен C2H2 | 1683 |
Водород H2 | 14270 |
Воздух | 1005 |
Гелий He | 5296 |
Кислород O2 | 913 |
Криптон Kr | 251 |
Ксенон Xe | 159 |
Метан CH4 | 2483 |
Неон Ne | 1038 |
Оксид азота N2O | 913 |
Оксид азота NO | 976 |
Оксид серы SO2 | 625 |
Оксид углерода CO | 1043 |
Пропан C3H8 | 1863 |
Сероводород H2S | 1026 |
Углекислый газ CO2 | 837 |
Хлор Cl | 520 |
Этан C2H6 | 1729 |
Этилен C2H4 | 1528 |
Металлы и сплавы | C, Дж/(кг·К) |
Алюминий Al | 897 |
Бронза алюминиевая | 420 |
Бронза оловянистая | 380 |
Вольфрам W | 134 |
Дюралюминий | 880 |
Железо Fe | 452 |
Золото Au | 129 |
Константан | 410 |
Латунь | 378 |
Манганин | 420 |
Медь Cu | 383 |
Никель Ni | 443 |
Нихром | 460 |
Олово Sn | 228 |
Платина Pt | 133 |
Ртуть Hg | 139 |
Свинец Pb | 128 |
Серебро Ag | 235 |
Сталь стержневая арматурная | 482 |
Сталь углеродистая | 468 |
Сталь хромистая | 460 |
Титан Ti | 520 |
Уран U | 116 |
Цинк Zn | 385 |
Чугун белый | 540 |
Чугун серый | 470 |
Жидкости | Cp, Дж/(кг·К) |
Азотная кислота (100%-ная) NH3 | 1720 |
Бензин | 2090 |
Вода | 4182 |
Вода морская | 3936 |
Водный раствор хлорида натрия (25%-ный) | 3300 |
Глицерин | 2430 |
Керосин | 2085…2220 |
Масло подсолнечное рафинированное | 1775 |
Молоко | 3906 |
Нефть | 2100 |
Парафин жидкий (при 50С) | 3000 |
Серная кислота (100%-ная) H2SO4 | 1380 |
Скипидар | 1800 |
Спирт метиловый (метанол) | 2470 |
Спирт этиловый (этанол) | 2470 |
Топливо дизельное (солярка) | 2010 |
- Задача
- Какое твердое вещество массой 2 кг можно нагреть на 10 ˚C, сообщив ему количество теплоты, равное 7560 Дж?
- Решение:
- Используем формулу для нахождения удельной теплоемкости вещества:
- c= Q/m(tконечная — tначальная)
- Подставим значения из условия задачи:
- c= 7560/2*10 = 7560/20 = 378 Дж/кг*˚C
- Смотрим в таблицу удельных теплоемкостей для металлов и находим нужное значение.
Металлы и сплавы | C, Дж/(кг·К) |
Алюминий Al | 897 |
Бронза алюминиевая | 420 |
Бронза оловянистая | 380 |
Вольфрам W | 134 |
Дюралюминий | 880 |
Железо Fe | 452 |
Золото Au | 129 |
Константан | 410 |
Латунь | 378 |
Манганин | 420 |
Медь Cu | 383 |
Никель Ni | 443 |
Нихром | 460 |
Олово Sn | 228 |
Платина Pt | 133 |
Ртуть Hg | 139 |
Свинец Pb | 128 |
Серебро Ag | 235 |
Сталь стержневая арматурная | 482 |
Сталь углеродистая | 468 |
Сталь хромистая | 460 |
Титан Ti | 520 |
Уран U | 116 |
Цинк Zn | 385 |
Чугун белый | 540 |
Чугун серый | 470 |
Ответ: латунь
Удельная теплоёмкость — урок. Физика, 8 класс
Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.
Пример:
Для нагревания (1) кг воды на (1 )°C требуется количество теплоты, равное (4200) Дж. А если нагревать (1) кг цинка на (1) °C, то потребуется всего (400) Дж.
Удельная теплоёмкость вещества — физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой (1) кг для того, чтобы его температура изменилась на (1~°C).([c]=1frac{Дж}{кг cdot °C}).
Пример:
По таблице удельной теплоёмкости твёрдых веществ находим, что удельная теплоёмкость алюминия составляет (c(Al)=920 frac{Дж}{кг cdot °C}). Поэтому при охлаждении (1) килограмма алюминия на (1) градус Цельсия ((°C)) выделяется (920) джоулей энергии. Столько же необходимо для нагревания (1) килограмма на алюминия на (1) градус Цельсия ((°C)).
Ниже представлены значения удельной теплоёмкости для некоторых веществ.
Твёрдые вещества
Вещество | (c),Дж/(кг·°С) |
Алюминий | (920) |
Бетон | (880) |
Дерево | (2700) |
Железо,сталь | (460) |
Золото | (130) |
Кирпич | (750) |
Латунь | (380) |
Лёд | (2100) |
Медь | (380) |
Нафталин | (1300) |
Олово | (230) |
Парафин | (3200) |
Песок | (970) |
Платина | (130) |
Свинец | (120) |
Серебро | (240) |
Стекло | (840) |
Цемент | (800) |
Цинк | (400) |
Чугун | (550) |
Сера | (710) |
Жидкости
Вещество | (c),Дж/(кг·°C) |
Вода | (4200) |
Глицерин | (2400) |
Железо | (830) |
Керосин | (2140) |
Маслоподсолнечное | (1700) |
Маслотрансформаторное | (2000) |
Ртуть | (120) |
Спиртэтиловый | (2400) |
Эфирсерный | (2300) |
Газы (при постоянном давлении и температуре (20) °С)
Вещество | (c),Дж/(кг·°C) |
Азот | (1000) |
Аммиак | (2100) |
Водород | (14300) |
Водянойпар | (2200) |
Воздух | (1000) |
Гелий | (5200) |
Кислород | (920) |
Углекислыйгаз | (830) |
Удельная теплоемкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоемкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоемкости газов от температуры необходимо учитывать, поскольку она очень существенна.
Обрати внимание!
Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.
Пример:
Вода в жидком состоянии имеет удельную теплоёмкость, равную (4200) Дж/(кг·°С), в твёрдом состоянии (лёд) — (2100) Дж/(кг·°С), в газообразном состоянии (водяной пар) — (2200) Дж/(кг·°С).
Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от (0) °С до (37) °С и снова растёт при дальнейшем нагревании (рис. 1).
Рис. 1. График удельной теплоемкости воды
В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Данное явление оказывает на климат данного региона. Летом здесь нет изнуряющей жары, а зимой — лютых морозов.
Высокая удельная теплоёмкость воды нашла широкое применение в различных областях: от медицинских грелок до систем отопления и охлаждения.
Не задумывались ли вы, почему воду используют при тушении пожаров? Из-за большой теплоемкости. При соприкосновении с горящим предметом вода забирает у него большое количество теплоты. Оно значительно больше, чем при использовании такого же количества любой другой жидкости.
Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.
Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.
Источники:
Рис. 1. Epop — собственная работа, Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=10750129.
Удельная теплоемкость металлов при различных температурах
Представлена таблица значений массовой удельной теплоемкости металлов при различных температурах и постоянном давлении. Теплоемкость металлов в таблице указана при отрицательных и положительных температурах (от -253 до 3422°С). Определить удельную теплоемкость металла можно как величину, численно равную количеству теплоты, которое необходимо подвести к единице массы металла для увеличения его температуры на один градус.
Какова удельная теплоемкость металла? При средних и высоких температурах абсолютные значения и температурные зависимости удельной теплоемкости металлов различаются достаточно сильно.
Так, при комнатных температурах наибольшей удельной теплоемкостью отличается литий — она равна 3390 Дж/(кг·град) при температуре 20°С.
Также к металлам с высокой теплоемкостью при средних (до 350°С) температурах можно отнести такие металлы, как магний, алюминий, бериллий, натрий, плутоний.
Наименьшим значением теплоемкости обладают металлы с высокой атомной массой, например торий и уран. Удельная теплоемкость этих металлов равна, соответственно 113 и 116 Дж/(кг·град).
Несмотря на столь большой диапазон изменения этой величины, имеют место некоторые схожие значения, наиболее хорошо прослеживающиеся для металлов одной подгруппы, что является следствием периодической системы Менделеева.
Следует отметить, что при низких отрицательных температурах металлы также имеют широкий диапазон значений теплоемкости.
Например, при температуре -173°С по данным таблицы минимальной теплоемкостью обладает вольфрам. Теплоемкость вольфрама при этой температуре равна всего 87 Дж/(кг·град).
Металлом с самой высокой теплоемкостью при отрицательных температурах является все тот же литий, имеющий низкую атомную массу.
Алюминий Al | -173…27…127…327…527…661…727…1127…1327 | 483…904…951…1037…1154…1177…1177…1177…1177 |
Барий Ba | -173…27…127…327…527…729…927…1327 | 177…206…249…290…316…300…292…278 |
Бериллий Be | -173…27…127…327…527…727…927…1127…1287…1327 | 203…1833…2179…2559…2825…3060…3281…3497…3329…3329 |
Ванадий V | 27…127…327…527…727…927…1127…1527…1947 | 484…503…531…557…585…617…655…744…895 |
Висмут Bi | 27…127…272…327…527…727 | 122…127…146…141…135…131 |
Вольфрам W | -173…27…127…327…727…1127…1527…2127…2527…3127…3422 | 87…132…136…141…148…157…166…189…208…245…245 |
Гадолиний Gd | 27…127…327…527…727…1127…1312 | 236…179…185…196…207…235…179 |
Галлий Ga | -173…27…30…127…327…527…727 | 266…384…410…394…382…378…376 |
Гафний Hf | 27…127…327…527…727…927…1127…1527…2127…2233 | 144…147…156…165…169…183…192…211…202…247 |
Гольмий Ho | 27…127…327…527…727…927…1127…1327…1470…1527 | 165…169…172…176…193…218…251…292…266…266 |
Диспрозий Dy | 27…127…327…527…727…927…1127…1327…1409…1527 | 173…172…174…188…210…230…274…296…307…307 |
Европий Eu | 27…127…327…527…727…826…1127 | 179…184…200…217…250…251…251 |
Железо Fe | -173…27…127…327…527…727…1127…1327…1537 | 216…450…490…572…678…990…639…670…830 |
Золото Au | 27…127…327…527…727…927…1105…1127 | 129…131…135…140…145…155…170…166 |
Индий In | -223…-173…27…127…157…327…527…727 | 162…203…235…250…256…245…240…237 |
Иридий Ir | 27…127…327…527…727…927…1127…1327…2127…2450 | 130…133…138…144…153…161…168…176…206…218 |
Иттербий Yb | 27…127…427…527…727…820…927 | 155…159…175…178…208…219…219 |
Иттрий Y | 27…127…327…527…727…1127…1327…1522 | 298…305…321…338…355…389…406…477 |
Кадмий Cd | 27…127…321…327…527 | 231…242…265…265…265 |
Калий K | -173…-53…0…20…63…100…300…500…700 | 631…690…730…760…846…817…775…766…775 |
Кальций Ca | -173…27…127…327…527…727…842…1127 | 500…647…670…758…843…991…774…774 |
Кобальт Co | 27…127…327…527…727…1127…1327…1497…1727 | 421…451…504…551…628…800…650…688…688 |
Лантан La | 27…127…327…527…727…920 | 195…197…200…218…238…236 |
Литий Li | -187…20…100…300…500…800 | 2269…3390…3789…4237…4421…4572 |
Лютеций Lu | 27…127…327…527…727…1127…1327…1650 | 153…153…156…163…173…207…229…274 |
Магний Mg | -173…27…127…327…527…650…727…1127 | 648…1025…1070…1157…1240…1410…1391…1330 |
Марганец Mn | -173…27…127…327…527…727…1127…1246…1327 | 271…478…517…581…622…685…789…838…838 |
Медь Cu | 27…127…327…527…727…927…1085…1327 | 385…398…417…433…451…481…514…514 |
Молибден Mo | 27…127…327…527…727…1127…1327…1527…1727…2127…2623 | 250…262…276…285…294…320…337…357…379…434…418 |
Мышьяк As | -253…-233…-193…-123…-23…127…327…727 | 15…75…175…275…314…339…354…383 |
Натрий Na | -173…-53…-13…20…100…300…500…700 | 977..1180…1200…1221…1385…1280…1270…1275 |
Неодим Nd | 27…127…327…527…727…927…1024…1127 | 190…200…223…253…291…309…338…338 |
Нептуний Np | 127 | 147 |
Никель Ni | -173…-50…20…100…300…500…800…1000…1300…1455 | 423…442…457…470…502…530…565…580…586…735 |
Ниобий Nb | 27…127…327…527…727…1127…1327…1527…1727…2127…2477 | 263…274…285…293…301…322…335…350…366…404…450 |
Олово Sn | -173…27…127…232…327…527…727 | 187…229…244…248…242…236…235 |
Осмий Os | 27…127…327…527…727…1127…1327…1527…1727…1927 | 130…132…136…140…144…152…156…160…164…168 |
Палладий Pd | 27…127…327…527…727…927…1127…1527 | 244…249…256…264…277…291…306…343 |
Платина Pt | 27…127…327…527…727…1127…1527…1772 | 133…136…141…147…152…163…174…178 |
Плутоний Pu | 27…127…327…527…727 | 134…586…1500…2430…3340 |
Празеодим Pr | 27…127…327…527…727…935 | 184…202…224…253…287…305 |
Радий Ra | 950 | 136 |
Рений Re | 27…127…327…527…727…927…1127…1327…1527…1927 | 136…139…145…151…157…163…168…174…180…192 |
Родий Rh | 27…127…327…527…727…1127…1327…1727 | 243…253…273…293…311…342…355…376 |
Ртуть Hg | -223…-173…-73…-39…27…127…227…327 | 99…121…136…141…139…137…136…135 |
Рубидий Rb | -173…-73…20…40…127…327…527…727 | 299…321…356…364…361…356…359…368 |
Рутений Ru | 27…127…327…527…727…1127…1327…1527…1727…1927…2334 | 238…241…251…265…278…306…325…346…367…389…414 |
Самарий Sm | 27…127…327…527…727…1078…1227 | 197…221…272…293…300…313…334 |
Свинец Pb | -223…-173…-73..27…127…227…328…527…727 | 103…117…123…128…133…138…146…143…140 |
Серебро Ag | 27…127…327…527…727…962…1127 | 235…239…250…256…277…310…310 |
Скандий Sc | 27…127…327…527…727…1127…1541…1627 | 568…586…611…647…694…815…978…978 |
Стронций Sr | -173…27…127…327…527…768…1127 | 268…306…314…343…377…411…411 |
Сурьма Sb | -223…-173…27…127…327…527…630…927 | 100…163…209…213…224…234…275…275 |
Таллий Tl | -173…27…127…303…727 | 120…129…134…149…141 |
Тантал Ta | 27…127…327…527…727…1127…1527…2127…2327…2727…3022 | 140…144…150…154…157…160…162…177…187…219…243 |
Тербий Tb | 27…127…327…527…727…1127…1357 | 182…179…189…207…226…272…292 |
Технеций Tc | 27…127…327…527…727…1127…1327…2127…2200 | 210…211…225…256…290…324…318…297…290 |
Титан Ti | 27…127…327…527…727…1127…1327…1527…1671…1727 | 531…556…605…637…647…664…729…800…989…989 |
Торий Th | -173…27…127…327…527…727…1127…1327…1750…1927 | 98…113…117…124…132…140…155…163…198…198 |
Тулий Tm | 27…127…327…527…727…1127…1327…1545 | 159…161…163…175…186…204…213…244 |
Уран U | -173…27…127…327…527…727…842…1127 1135…1327…1927 | 93…116…125…146…175…178…161…161…201…203…209 |
Хром Cr | 25…127…327…527…727…1127…1327…1527…1727…1907 | 453…482…517…558…614…764…849…936…1020…962 |
Цезий Cs | -173…27…29…127…327…527…727 | 194…244…246…241…226…219…225 |
Церий Ce | 27…127…327…527…727…804…927 | 292…202…228…246…268…269…269 |
Цинк Zn | 27…127…327…420…527…727 | 389…403…436…480…480…480 |
Цирконий Zr | 27…127…327…527…727…1127…1327…1527…1727…1860 | 279…295…321…345…367…325…341…360…381…467 |
Эрбий Er | 27…127…327…527…727…1127…1327…1505 | 168…169…174…181…192…220…238…231 |
Зависимость удельной теплоемкости металлов от температуры различна. Наиболее сильную зависимость теплоемкости от температуры имеют плутоний и бериллий.
Для многих металлов увеличение температуры приводит к постоянному росту их теплоемкости. У других металлов теплоемкость при нагревании увеличивается, а при достижении температуры плавления снижается или остается практически постоянной.
Удельная теплоемкость металлов в жидком (расплавленном) состоянии практически не меняется.
Металлы в таблице расположены в алфавитном порядке, величина теплоемкости соответствует указанным температурам, допускается интерполяция значений. Например, удельную теплоемкость алюминия при температуре 90°С можно определить по таблице следующим образом: 904+(951-904)/(127-27)*90=946,3 Дж/(кг·град).
Источники:
Большая Рнциклопедия Нефти Рё Газа
Cтраница 1
Удельная теплоемкость металла равна ( в С�) 60 074.4 18 0 31 дж / г-град. [1]
Удельная теплоемкость металла определяется из уравнения теплового баланса калориметра.
Металл массой т нагревается до температуры t2; помещенный в воду с температурой / 1 ( он охлаждается до температуры t3, нагревая до этой температуры воду. [2]
Определение удельной теплоемкости металла не требует высокой точности, так как правило Дюлонга и Пти очень приближенно.
Поэтому в эксперименте в качестве калориметра можно воспользоваться двумя-тремя стаканами, свободно вставленными друг в друга.
Чтобы стаканы не соприкасались, их нужно отделить друг от друга корковыми пробками, поролоном, пенопластом или слоями бумаги. [3]
Значения удельных теплоемкостей металла cl и воды с2 находят из справочных таблиц. [4]
РЎСЂ — удельная теплоемкость металла; Ts-абсолютная температура плавления; G-модуль СЃРґРІРёРіР°; Р• — модуль упругости; Рђ — механический эквивалент теплоты; Y — удельный вес; Р — постоянный коэффициент, равный 8 5 РєР“ / РјРјРі. [5]
Для определения удельной теплоемкости металла необходимо иметь калориметр и прибор для нагревания металла.
Внутренний стакан должен быть емкостью 100 РјР», средний — 300 — 400 РјР» Рё наружный — 500 РјР».
В маленький стакан наливается вода, остальные необходимы для создания воздушной теплоизоляционной прослойки. [6]
- Однако экспериментальные исследования показали, что значения удельной теплоемкости металла значительно меньше. [7]
- Как, не имея под руками таблиц удельных теплоемкостей, приблизительно оценить удельную теплоемкость металла. [8]
- Найти атомный вес металла, его валентность и формулу хлорида, если известно, что удельная теплоемкость металла 0 057 кал / г-град, а хлорид содержит 61 2 %: металла и 38 8 % хлора. [9]
- РЎ помощью рассмотренного РїСЂРёР±РѕСЂР° измерялись коэффициенты теплопроводности полупроводниковых Рё теплоизоляционных материалов РїСЂРё температурах РѕС‚ — 80 РґРѕ 400 РЎ Рё удельные теплоемкости металлов Рё полупроводников РїСЂРё температурах РѕС‚ 20 РґРѕ 500 РЎ. [10]
- Если металл неизвестен, Вам следует провести дополнительное исследование ( как указывалось выше) РїРѕ определению валентности металла, воспользовавшись периодической — системой элементов или значением удельной теплоемкости металла. [11]
РђРќ — площадь поверхности нагрева; MG — расход газа; те — количество газа РІ элементе; MD — расход рабочего тела; то — содержание рабочего тела РІ трубах элемента; тя — вес металла труб поверхности нагрева; СЃ & — удельная теплоемкость газа; СЃРґ — удельная теплоемкость металла труб; iD — энтальпия; рабочего тела; UD — внутренняя энергия рабочего тела; Фй — температура газа; Фп — температура рабочего тела; 6 — температура стенки труб; pD — давление рабочего тела; Q — тепловой поток РѕС‚ газа Рє трубе; QD — тепловой поток РѕС‚ трубы Рє рабочему телу; UD — коэффициент теплопередачи РѕС‚ трубы Рє рабочему телу; k Рё &5 — постоянные. Параметры СЃ индексом С‚ представляют СЃРѕР±РѕР№ средние значения, подсчитанные для элемента. [12]
Теплопроводность металла больше, чем стекла нля пластмассы, поэтому температура в металлическом сосуде выравнивается быстрее.
Удельная теплоемкость металла меньше, чем стекла или пластмассы, что позволяет уменьшить водяной эквивалент калориметра и повысить точность измерений. [13]
РџСЂРё взаимодействии СЃ кислотой 0 61 Рі металла вытесняют 560 РјР» РІРѕРґРѕСЂРѕРґР° РїСЂРё нормальных условиях. Удельная теплоемкость металла равна 0 26 кал / Рі — град. [14]
Оксид металла содержит 15 44 % кислорода. Удельная теплоемкость металла 0 074 кал / г-грод. [15]
Страницы: 1 2 3
Удельная теплоемкость | 8 класс | Физика
Содержание
Вам уже известно, что количество теплоты зависит от массы вещества, разности температур и рода вещества. Количество теплоты ($Q$) в СИ измеряется в джоулях ($Дж$).
Возьмем два тела одинаковой массы и температуры, но из разных веществ. Логично, что для их нагрева на $1 degree C$ потребуется разное количество теплоты. В этом случае у нас разный род веществ, из которых состоят тела. Здесь мы вводим новое понятие — удельная теплоемкость вещества.
На данном уроке мы рассмотрим это новое для нас определение, узнаем его физическое значение, познакомимся с удельной теплоемкостью различных веществ.
Удельная теплоемкость вещества
Удельная теплоемкость вещества — это физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой $1 space кг$ для того, чтобы его температура изменилась на $1 degree C$
- Рассмотрим на примерах, как удельная теплоемкость характеризует вещество.
- Возьмем $1 space кг$ воды и нагреем его на $1 degree C$ (рисунок 1).
Рисунок 1. Определение удельной теплоемкости воды.
Для этого нам понадобится $4200 space Дж$. Именно это количество теплоты и будет определять удельную теплоемкость воды.
А теперь нагреем на $1 degree C$ кусок свинца массой $1 space кг$ (рисунок 2).
Рисунок 2. Определение удельной теплоемкости свинца.
В этот раз нам потребуется затратить $140 space Дж$. Это значение ожидаемо отличается от количества теплоты, затраченное на нагревание воды. Тем не менее, это количество теплоты так же будет характеризовать удельную теплоемкость свинца.
{«questions»:[{«content»:»Удельная теплоемкость определяет количество теплоты, которое необходимо для нагрева тела[[choice-1]]»,»widgets»:{«choice-1»:{«type»:»choice»,»options»:[«массой $1 \space кг$ на $1 \degree C$»,»массой $1 \space кг$ в течение $1 \space мин$»,»на $1 \degree C$ в течение $1 \space с$»],»answer»:[0]}},»hints»:[]}]}
Единица измерения удельной теплоемкости
Удельная теплоемкость обозначается буквой $c$.
Измеряется удельная теплоемкость вещества в $frac{Дж}{кг cdot degree C}$.
Рассмотрим эту единицу измерения на примере графита. Его удельная теплоемкость равна $750 frac{Дж}{кг cdot degree C}$. Что это означает?
Из этого значения мы можем сказать, что:
- Для нагревания куска графита массой $1 space кг$ на $1 degree C$ нам необходимо затратить количество теплоты, равное $750 space Дж$
- При охлаждении куска графиты массой $1 space кг$ на $1 degree C$ будет выделяться количество теплоты, равное $750 space Дж$
- При изменении температуры куска графита массой $1 space кг$ на $1 degree C$ он будет или поглощать, или выделять количество теплоты, равное $750 space Дж$
Табличные значения удельной теплоемкости
Существуют уже известные значения удельной теплоемкости различных веществ. Они представлены таблице 1.
Вещество | $c, frac{Дж}{кг cdot degree C}$ | Вещество | $c, frac{Дж}{кг cdot degree C}$ |
Золото | 130 | Песок | 820 |
Ртуть | 140 | Стекло | 840 |
Свинец | 140 | Кирпич | 880 |
Олово | 230 | Алюминий | 920 |
Серебро | 250 | Масло подсолнечное | 1700 |
Медь | 400 | Лед | 2100 |
Цинк | 400 | Керосин | 2100 |
Латунь | 400 | Эфир | 2350 |
Железо | 460 | Дерево (дуб) | 2400 |
Сталь | 500 | Спирт | 2500 |
Чугун | 540 | Вода | 4200 |
Графит | 750 | Гелий | 5200 |
Таблица 1. Удельные теплоемкости некоторых веществ.{«questions»:[{«content»:»Чему равна теплоемкость олова? [[input-1]] $\frac{Дж}{кг \cdot \degree C}$.»,»widgets»:{«input-1»:{«type»:»input»,»inline»:1,»answer»:»230″}},»hints»:[]}]}
Вода имеет почти самую большую теплоемкость в таблице — $4200 frac{Дж}{кг cdot degree C}$. Это означает, что вода, находящаяся в морях и океанах, поглощает большое количество теплоты, нагреваясь летом. Зимой воды начинает остывать и отдавать большое количество теплоты.
Поэтому, в местностях, которые расположены в непосредственной близости от воды, летом не бывает очень жарко, а зимой не бывает очень холодно.
По этой же причине воду широко используют в технике (например, охлаждение деталей во время их обработки) и быту (отопительный системы помещений).
Песок имеет небольшую теплоемкость — $820 frac{Дж}{кг cdot degree C}$. Он быстро нагревается и быстро остывает. Поэтому в пустыне днем очень жарко, а ночью температура может опуститься почти ниже $0 degree C$.
Удельная теплоемкость и агрегатные состояния вещества
Давайте взглянем в таблицу 1 и сравним значения удельной теплоемкости льда и воды.
Удельная теплоемкость льда — $ 2100 frac{Дж}{кг cdot degree C}$, а воды — $4200 frac{Дж}{кг cdot degree C}$. Но мы знаем, что одно и то же вещество в разных агрегатных состояниях.
Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна.
{«questions»:[{«content»:»Удельная теплоемкость зависит от[[choice-1]]»,»widgets»:{«choice-1»:{«type»:»choice»,»options»:[«агрегатного состояния вещества»,»массы тела»,»времени нагревания тела»],»answer»:[0]}},»hints»:[]}]}
Например, при $-120 degree C$ ртуть будет находиться в твердом состоянии. Ее удельная теплоемкость будет равна $129 frac{Дж}{кг cdot degree C}$. В жидком же состоянии удельная теплоемкость ртути равна $138 frac{Дж}{кг cdot degree C}$.