Плавление сплавов металлов это

Металлы обладают рядом оригинальных свойств, которые присущи только этим материалам. Существует температура плавления металлов, при которой кристаллическая решетка разрушается. Вещество сохраняет объем, но уже нельзя говорить о постоянстве формы.

В чистом виде отдельные металлы встречают крайне редко. На практике применяют сплавы. У них есть определенные отличия от чистых веществ.

При образовании сложных соединений происходит объединение кристаллических решеток между собой. Поэтому у сплавов свойства могут заметно отличаться от составляющих элементов.

Температура плавления уже не остается постоянной величиной, она зависит от концентрации входящих в сплав ингредиентов.

Понятие о шкале температур

Некоторые неметаллические предметы тоже обладают похожими свойствами. Самым распространённым является вода. Относительно свойств жидкости, занимающей господствующее положение на Земле, была разработана шкала температур. Реперными точками признаны температура изменения агрегатных состояний воды:

  1. Превращения из жидкости в твердое вещество и наоборот приняты за ноль градусов.
  2. Кипения (парообразования внутри жидкости) при нормальном атмосферном давлении (760 мм рт. ст.) принята за 100 ⁰С.

Внимание! Кроме шкалы Цельсия на практике измеряют температуру в градусах Фаренгейта и по абсолютной шкале Кельвина. Но при исследовании свойств металлических предметов другие шкалы используют довольно редко.

В идеальном виде принято считать, что металлам свойственна кубическая решетка (в реальном веществе могут быть изъяны). Между молекулами имеются равные расстояния по горизонтали и вертикали.

Твердое вещество характеризуется постоянством:

  • формы, предмет сохраняет линейные размеры в разных условиях;
  • объема, предмет не изменяет занимаемое количество вещества;
  • массы, количество вещества, выраженное в граммах (килограммах, тоннах);
  • плотности, в единице объема содержится постоянная масса.

При переходе в жидкое состояние, достигнув определенной температуры, кристаллические решетки разрушаются. Теперь нельзя говорить о постоянстве формы. Жидкость будет принимать ту форму, в какую ее зальют.

Когда происходит испарение, то постоянным остается только масса вещества. Газ займет весь объем, который будет ему предоставлен. Здесь нельзя утверждать, что плотность постоянная величина.

Когда соединяются жидкости, то возможны варианты:

  1. Жидкости полностью растворяются одна в другой, так себя ведут вода и спирт. Во всем объеме концентрация веществ будет одинаковой.
  2. Жидкости расслаиваются по плотности, соединение происходит только на границе раздела. Только временно можно получать механическую смесь. Перемешав разные по свойствам жидкости. Примером является масло и вода.

Металлы образуют сплавы в жидком состоянии. Чтобы получить сплав, каждый из компонентов должен быть в жидком состоянии. У сплавов возможны явления полного растворения одного в другом.

Не исключаются варианты, когда сплав будет получен только в результате интенсивного перемешивания.

Качество сплава в этом случае не гарантируется, поэтому стараются не смешивать компоненты, которые не позволяют получать стабильные сплавы.

Образующиеся растворимые друг в друге вещества при застывании образуют кристаллические решетки нового типа. Определяют:

  • Гелиоцентрированные кристаллические решетки, их еще называют объёмно-центрированными. В середине находится молекула одного вещества, а вокруг располагаются еще четыре молекулы другого. Принято называть подобные решетки рыхлыми, так как в них связь между молекулами металлов слабее.
  • Гранецентрированные кристаллические решетки образуют соединения, в которых молекулы компонента располагаются на гранях. Металловеды называют подобные кристаллические сплавы плотными. В реальности плотность сплава может быть выше, чем у каждого из входящих в состав компонентов (алхимики средних веков искали варианты сплавов, при которых плотность будет соответствовать плотности золота).

Температура плавления металлов

Разные вещества имеют различную температуру плавления. Принято делить металлы на:

  1. Легкоплавкие – их достаточно нагревать до 600 ⁰С, чтобы получать вещество в жидком виде.
  2. Среднеплавкие металлы расплавляются в диапазоне температур 600…1600 ⁰С.
  3. Тугоплавкими называют металлы, которые могут расплавляться при температуре более 1600 ⁰С.

В таблице по возрастанию показаны легкоплавкие металлы. Здесь видно, что самым необычным металлом является ртуть (Hg). В обычных условиях она находится в жидком состоянии. Этот металл имеет самую низкую температуру плавления.

  • Таблица 1, температуры плавления и кипения легкоплавких металлов:
  • Таблица 2, температуры плавления и кипения среднеплавких металлов:
  • Таблица 3, температуры плавления и кипения тугоплавких металлов:

Чтобы вести процесс плавки используют разные устройства. Например, для выплавки чугуна применяют доменные печи. Для плавки цветных металлов производят внутренний нагрев с помощью токов высокой частоты.

В изложницах, изготовленных из неметаллических материалов, находятся цветные металлы в твердом состоянии. Вокруг них создают переменное магнитное поле СВЧ. В результате кристаллические решетки начинают расшатываться. Молекулы вещества приходят в движение, что вызывает разогрев внутри всей массы.

При необходимости плавки небольшого количества легкоплавких металлов используют муфельные печи. В них температура поднимается до 1000…1200 ⁰С, что достаточно для плавки цветных металлов.

Черные металлы расплавляют в конвекторах, мартенах и индукционных печах. Процесс идет с добавлением легирующих компонентов, улучшающих качество металла.

Сложнее всего проводить работу с тугоплавкими металлами. Проблема в том, что нужно использовать материалы, имеющие температуру более высокую, чем температура плавления самого металла.

В настоящее время авиационная промышленность рассматривает использование в качестве конструкционного материала Титан (Ti). При высокой скорости полета в атмосфере происходит разогрев обшивки.

Поэтому нужна замена алюминию и его сплавам (AL).

Максимальная температура плавления этого довольного легкого металла привлекает конструкторов. Поэтому технологи разрабатывают технологические процессы и оборудование, чтобы производить детали из титана и его сплавов.

Чтобы проектировать изделия из сплавов, сначала изучают их свойства. Для изучения в небольших емкостях расплавляют изучаемые металлы в разном соотношении между собой. По итогам строят графики.

Нижняя ось представляет концентрацию компонента А с компонентом В. По вертикали рассматривают температуру. Здесь отмечают значения максимальной температуры, когда весь металл находится в расплавленном состоянии.

При охлаждении один из компонентов начинает образовывать кристаллы. В жидком состоянии находится эвтектика – идеальное соединение металлов в сплаве.

Металловеды выделяют особое соотношение компонентов, при котором температура плавления минимальная. Когда составляют сплавы, то стараются подбирать количество используемых веществ, чтобы получать именно эвтектоидный сплав. Его механические свойства наилучшие из возможных. Кристаллические решетки образуют идеальные гранецентрированные положения атомов.

Изучают процесс кристаллизации путем исследования твердения образцов при охлаждении. Строят специальные графики, где наблюдают, как изменяется скорость охлаждения. Для разных сплавов имеются готовые диаграммы. Отмечая точки начала и конца кристаллизации, определяют состав сплава.

Сплав Вуда

В 1860 г. американский зубной техник Барнабас Вуд искал оптимальные соотношения компонентов, чтобы изготавливать зубы для клиентов при минимальных температурах плавления. Им был найден сплав, который имеет температуру плавления всего 60,2…68,5 ⁰С. Даже в горячей воде металл легко расплавляется. В него входят:

  • олово — 12,5…12,7 %;
  • свинец — 24,5…25,0 %;
  • висмут — 49,5…50,3 %;
  • кадмий — 12,5…12,7 %.

Сплав интересен своей низкой температурой, но практического применения так и не нашел. Внимание! Кадмий и свинец – это тяжелые металлы, контакт с ними не рекомендован. У многих людей могут происходить отравления при контакте с кадмием.

На практике многие сталкиваются с плавлением при пайке деталей. Если поверхности соединяемых материалов очищены от загрязнений и окислов, то их нетрудно спаять припоями. Принято делить припои на твердые и мягкие. Мягкие получили наибольшее распространение:

  • ПОС-15 — 278…282 °C;
  • ПОС-25 — 258…262 °C;
  • ПОС-33 — 245…249 °C;
  • ПОС-40 — 236…241 °C;
  • ПОС-61 — 181…185 °C;
  • ПОС-90 — 217…222 °C.

Их выпускают для предприятий, изготавливающих разные радиотехнические приборы.

Твердые припои на основе цинка, меди, серебра и висмута имеют более высокую температуру плавления:

  • ПСр-10 — 825…835 °С;
  • ПСр-12 — 780…790 °С;
  • ПСр-25 — 760…770 °С;
  • ПСр-45 — 715…721 °С;
  • ПСр-65 — 738…743 °С;
  • ПСр-70 — 778…783 °С;
  • ПМЦ-36 — 823…828 °С;
  • ПМЦ-42 — 830…837 °С;
  • ПМЦ-51 — 867…884 °С.
Читайте также:  15х29 дрива металл сверло

Использование твердых припоев позволяет получать прочные соединения.

Внимание! Ср означает, что в составе припоя использовано серебро. Такие сплавы обладают минимальным электрическим сопротивлением.

Температура плавления неметаллов

Неметаллические материалы могут быть представлены в твердом и жидком виде. Неорганические вещества представлены в табл. 4.

Таблица 4, температура плавления неорганических неметаллов:

На практике для пользователей наибольший интерес представляют органические материалы: полиэтилен, полипропилен, воск, парафин и другие. Температура плавления некоторых веществ показана в табл. 5.

Таблица 5, температура плавления полимерных материалов:

Внимание! Под температурой стеклования понимают состояние, когда материал становится хрупким.

  1. Видео: температура плавления известных металлов.

Заключение

  1. Температура плавления зависит от природы самого вещества. Чаще всего – это постоянная величина.
  2. На практике используют не чистые металлы, а их сплавы. Обычно они имеют свойства гораздо лучше, чем чистый металл.

Republished by Blog Post Promoter

Pereosnastka.ru

  • Теория и особенности плавления
  • Категория:
  • Литейное производство

Теория и особенности плавления

Металлы отличаются от других твердых тел наличием свободных электронов.

Эти электроны не связаны с каким-то определенным атомом и движутся по всему металлу. Свободные электроны определяют такие свойства металлов, как пластичность, электропроводимость и др. Специфика твердого металлического состояния, в основном, сохраняется и после расплавления.

Особый характер так называемой металлической связи приводит к возможности образования различных смешанных кристаллов (сплавов).

Процесс плавления металлов и сплавов является достаточно сложным из-за «накладывающихся» друг на друга различных физико-химических явлений, однако, его сущность легче представить, чем процесс кристаллизации.

Это объясняется тем, что плавление не требует образования зародышей, и процесс перехода из твердого состояния в жидкое начинается сразу же, как только металл или сплав будет нагрет до температуры начала плавления.

Некоторый перегрев выше температуры плавления необходим для того, чтобы расплавление кристалла началось внутри него. Плавление — относительно простой процесс еще и потому, что жидкий сплав имеет строение, малозависящее от условий его образования.

В твердой плавящейся фазе практически не происходит перераспределения химических веществ.

Известно, что кристаллическим телам свойственна строгая периодичность в расположении частиц. В то же время силы, удерживающие атомы в узлах кристаллической решетки, очень малы.

Достаточно тепловой энергии самих атомов, чтобы они отклонялись от равновесного положения на заметные расстояния.

Установлено, что при обычной температуре величина теплового колебания может составлять 5-10% межатомного расстояния.

  1. Наиболее существенными способами поглощения тепловой энергии твердыми металлическими телами являются способы увеличения:
    1) интенсивности колебания атомов,
    2) энергии поступательного движения электронов (возбуждение их),
  2. 3) энергии вращательного движения молекул.

При нагревании металлов и сплавов от обычной температуры ДО температуры плавления происходит непрерывное поглощение энергии, которая расходуется на увеличение интенсивности указанных колебании и движений.

До какого-то момента времени каждый атом находится на своем обычном месте и окружен соответствующим числом ближайших атомов, расположенных на расстояниях, примерно соответствующих совершенной структуре. Но наступает момент, когда эти расстояния нарушаются или у атома изменяется число соседних атомов.

Этот период предплавления характеризуется значительным ростом дефектов структуры различного вида.

Схема 1. Классификация литейных сплавов

Из приведенного следует, что количество вакансий зависит главным образом от температуры. Например, у алюминия одна вакансия приходится на 1012 атомов при комнатной температуре, а при температуре плавления — только на 103 атомов. Для алюминия Еа = 0,75 эв. Следует отметить, что наличие одной вакансии на 1000 атомов типично для твердых металлов вблизи температуры плавления.

Особенность предплавления — значительная интенсификация диффузионных процессов — связана с тем, что атомы получают возможность перемещаться на большие расстояния вследствие увеличения количества вакансий и их передвижения.

При плавлении нарушаются термодинамическая устойчивость кристаллических решеток и характерный для твердого состояния порядок расположения атомов (молекул или ионов).

В результате твердые кристаллические тела теряют постоянство формы, происходит скачкообразное изменение (увеличение) внутренней энергии, объема, энтропии и некоторых других физических свойств металлов и сплавов.

Сплавы, в отличие от однокомпонентных веществ, плавятся в некотором интервале температур, зависящем от их состава и давления.

Тепло, образующееся в плавильных агрегатах в результате горения топлива или иного процесса, передается твердой металлической шихте и, в первую очередь, расходуется на тепловое расширение, являющееся следствием увеличения колебательного движения атомов относительно их обычного равновесного положения.

С повышением температуры колебательные движения увеличиваются и твердое тело, проходя через область неустойчивых состояний, превращается в жидкое.

Чтобы этот процесс мог завершиться полностью, в рабочее пространство печи должно поступать количество теплоты, необходимое для обеспечения отрыва атомов от их обычного равновесного положения и для компенсации различных потерь теплоты сопутствующих плавлению процессов.

Следовательно, плавление можно рассматривать как переход из состояния, при котором атомы в кристаллической решетке рас-положены правильно, в состояние, при котором решетка уничтожается. Отметим, что переход в жидкое состояние не всегда приводит к полному уничтожению кристаллической структуры. Еще в 1921 г. А. А.

Лебедев показал, что и в жидкостях можно встретить некоторую упорядоченность расположения молекул, выражающуюся в том, что в отдельных ультрамикроскопических участках объема молекулы образуют ничтожно малые по размерам кристаллиты. Такие образования в жидкостях обнаруживаются при температурах, близких к температуре плавления.

Полное уничтожение остатков кристаллического строения может быть достигнуто только при дальнейшем повышении температуры и длительной выдержке расплава.

Особенностью многих процессов плавки в литейном производстве является необходимость достижения температур превращения твердой шихты в состояние, при котором в максимально возможной степени были бы уничтожены остатки структуры твердого состояния. Это обеспечивает получение, например, требуемых механических свойств у многих сплавов, в частности у чугуна.

При плавлении объем металлов увеличивается на 3-4%, что необходимо учитывать при изучении кристаллизации отливок в литейных формах.

Следует подчеркнуть, что для качества будущей отливки небезразлично с какой интенсивностью и в какой среде производится плавление, а также какая степень перегрева выше температуры плавления была при этом достигнута. Перечисленные факторы могут в последующем оказать решающее влияние на процесс кристаллизации отливки и конечные ее свойства.

Например, большое влияние на кристаллизацию оказывают имеющиеся в расплаве частицы (подложки), образующие поверхность раздела. Они могут служить источником гетерогенного зарождения кристаллов. На этой поверхности, если она смачивается жидким металлом, могут образоваться зародыши и их образование потребует меньшей затраты энергии.

Большое значение имеет и краевой угол смачивания между подложкой и находящимся на ней зародышем твердой фазы.

Если краевой угол смачивания 0 мал, то поверхностная энергия границы раздела между твердой фазой и подложкой также мала. В этом случае из атомов жидкого металла легко образуются зародыши твердой фазы на поверхности подложки. Когда 0 = 180°, подложка существенно не влияет на процессы зарождения потому, что межфазная энергия на границе твердой фазы и подложки оказывается достаточно большой.

Если краевой угол смачивания мал, то зарождение происходит Ри незначительном переохлаждении, если же краевой угол велик, 0 необходимо большое переохлаждение.

Практически все литейные сплавы в жидком состоянии содержат определенное количество мельчайших нерастворимых примесей, которые могут оказать влияние на условия кристаллизации. Именно поэтому сплавы (в жидком и твердом состояниях) следует отнести к коллоидным системам.

Особенностью коллоидных систем такого рода является их по-лидисперсность. Характер образующейся системы и ее способность к тем или иным взаимодействиям непосредственно связаны с условиями плавления и перегрева металла или сплава. Многие литейные сплавы, особенно цветные, содержат легкоиспаряющиеся компоненты.

В литейном производстве поэтому широко используют плавку в вакууме. При любой температуре выше абсолютного нуля все вещества, в основном жидкие, испаряются. Молекулярно-кинетическая теория дает объяснение этому явлению.

На поверхности жидкости или твердого тела энергия отдельных молекул значительно превышает среднюю для данной температуры. Эта энергия может быть достаточной для отрыва молекул и рассеивания их в окружающем пространстве.

Скорость испарения вещества определяется давлением его пара, зависящим от температуры, и внешним давлением других газов (например, воздуха) над испаряющимся веществом. Давление пара испаряющегося вещества зависит от его природы, температуры и кривизны поверхности и почти не зависит от давления других газов над испаряющимся веществом.

Однако скорость диффузии пара, влияющая на общую скорость испарения, уменьшается с увеличением давления постороннего газа в системе. Это обстоятельство учитывают и используют в реальных плавильных процессах для уменьшения потерь легкоиспаряющихся компонентов сплава.

Скорость испарения можно значительно снизить, если свободную поверхность испаряющейся жидкости покрыть поверхностно-активным слоем достаточно большой толщины. Слой шлака на жидком металле затрудняет испарение и является желательным при обычной плавке.

Читайте также:  Разметка металла это слесарная операция

Ппи таком равновесии число молекул, проникающих за единицу племени через единицу поверхности раздела из жидкости в пар, панно числу молекул, переходящих из пара в жидкость. Упругость насыщения пара каждого вещества зависит только от температуры и повышается с ее увеличением.

Удалению паров с поверхности испарения способствует постоянная «вентиляция» этой поверхности вызываемая различными причинами (движением пламени, продуктов горения, подсевом воздуха и т. п.).

Чем больше турбулентность движения газового потока над испаряющимся телом, тем больше удаляется пара и скорее протекает процесс испарения.

Если давление насыщенного пара становится равным внешнему давлению или несколько его превышает, испарение идет не только с поверхности жидкости, но и внутри нее. При этом образуются пузыри пара, быстро растущие и поднимающиеся на поверхность. Испарение переходит в кипение.

Изучение физико-химических закономерностей испарения имеет большое практическое значение для плавки в условиях вакуума.

Реклама:

Температура кипения и плавления металлов, температура плавления стали — таблицы

В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса.

Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.

Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э.

С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.

В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным — физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.

Таблица температур плавления

Узнать какая нужна температура для плавления металлов, поможет таблица по возрастанию температурных показателей.

Элемент или соединение Необходимый температурный режим
Литий +18°С
Калий +63,6°С
Индий +156,6°С
Олово +232°С
Таллий +304°С
Кадмий +321°С
Свинец +327°С
Цинк +420°С

Таблица плавления среднеплавких металлов и сплавов.

Элемент либо сплав Температурный режим
Магний +650°С
Алюминий +660°С
Барий +727°С
Серебро +960°С
Золото +1063°С
Марганец +1246°С
Медь +1083°С
Никель +1455°С
Кобальт +1495°С
Железо +1539°С
Дюрали +650°С
Латуни +950…1050°С
Чугун +1100…1300°С
Углеродистые стали +1300…1500°С
Нихром +1400°С

Таблица плавления тугоплавких металлов и сплавов.

Наименование элемента Температурный режим
Титан +1680°С
Платина +1769,3°С
Хром +1907°С
Цирконий +1855°С
Ванадий +1910°С
Иридий +2447°С
Молибден +2623°С
Тантал +3017°С
Вольфрам +3420°С

Что такое температура плавления

Каждый металл имеет неповторимые свойства, и в этот список входит температура плавления. При плавке металл уходит из одного состояния в другое, а именно из твёрдого превращается в жидкое.

Чтобы сплавить металл, нужно приблизить к нему тепло и нагреть до необходимой температуры – этот процесс и называется температурой плавления. В момент, когда температура доходит до нужной отметки, он ещё может пребывать в твёрдом состоянии.

Если продолжать воздействие – металл или сплав начнет плавиться.

Плавление и кипение – это не одно и то же. Точкой перехода вещества из твердого состояния в жидкое, зачастую называют температуру плавления металла. В расплавленном состоянии у молекул нет определенного расположения, но притяжение сдерживает их рядом, в жидком виде кристаллическое тело оставляет объем, но форма теряется.

При кипении объем теряется, молекулы между собой очень слабо взаимодействуют, движутся хаотично в разных направлениях, совершают отрыв от поверхности. Температура кипения – это процесс, при котором давление металлического пара приравнивается к давлению внешней среды.

Для того, чтобы упростить разницу между критическими точками нагрева мы подготовили для вас простую таблицу:

Свойство Температура плавки Температура кипения
Физическое состояние Сплав переходит в расплав, разрушается кристаллическая структура, проходит зернистость Переходит в состояние газа, некоторые молекулы могут улетать за пределы расплава
Фазовый переход Равновесие между твердым состоянием и жидким Равновесие давления между парами металла и воздухом
Влияние внешнего давления Нет изменений Изменения есть, температура уменьшается при разряжении

Как удалить примеси в домашних условиях

Такая процедура также осуществима, но хочу обратить внимание на то, что работа с концентрированными кислотами требует предельной осторожности и должна проводиться в помещении с вентиляцией.

Шлихт, предназначенный для очистки, помещается в стеклянную емкость, заливается концентрированной азотной кислотой и нагревается до полного растворения серебра. После этого в раствор добавляется обычная поваренная соль. Образовавшийся хлорид серебра выпадает в осадок. Полученное вещество промывается водой и фильтруется.

Следующий этап – металлизация вещества. Хлорид серебра заливается соляной кислотой и осаждается при помощи мелкой цинковой стружки и нагревания. Полученный песок темно-серого цвета готов к переплавке.

При какой температуре плавится

Металлические элементы, какими бы они ни были — плавятся почти один в один. Этот процесс происходит при нагреве. Оно может быть, как внешнее, так и внутреннее.

Первое проходит в печи, а для второго используют резистивный нагрев, пропуская электричество либо индукционный нагрев. Воздействие выходит практически схожее. При нагреве, увеличивается амплитуда колебаний молекул.

Образуются структурные дефекты решётки, которые сопровождаются обрывом межатомных связей. Под процессом разрушения решётки и скоплением подобных дефектов и подразумевается плавление.

У разных веществ разные температуры плавления. Теоретически, металлы делят на:

  1. Легкоплавкие – достаточно температуры до 600 градусов Цельсия, для получения жидкого вещества.
  2. Среднеплавкие – необходима температура от 600 до 1600 ⁰С.
  3. Тугоплавкие – это металлы, для плавления которых требуется температура выше 1600 ⁰С.

Плавление железа

Температура плавления железа достаточно высока. Для технически чистого элемента требуется температура +1539 °C. В этом веществе имеется примесь — сера, а извлечь ее допустимо лишь в жидком виде.

Без примесей чистый материал можно получить при электролизе солей металла.

Плавление чугуна

Чугун – это лучший металл для плавки. Высокий показатель жидкотекучести и низкий показатель усадки дают возможность эффективнее пользоваться им при литье. Далее рассмотрим показатели температуры кипения чугуна в градусах Цельсия:

  • Серый — температурный режим может достигать отметки 1260 градусов. При заливке в формы температура может подниматься до 1400.
  • Белый — температура достигает отметки 1350 градусов. В формы заливается при показателе 1450.

Важно! Показатели плавления такого металла, как чугун – на 400 градусов ниже, по сравнению со сталью. Это значительно снижает затраты энергии при обработке.

Плавление стали

Плавления стали при температуре 1400 °C

Сталь — это сплав железа с примесью углерода. Её главная польза — прочность, поскольку это вещество способно на протяжении длительного времени сохранять свой объем и форму. Связано это с тем, что частицы находятся в положении равновесия. Таким образом силы притяжения и отталкивания между частицами равны.

Справка! Сталь плавится при 1400 °C.

Плавление алюминия и меди

Температура плавления алюминия равна 660 градусам, это означает то, что расплавить его можно в домашних условиях.

Чистой меди – 1083 градусов, а для медных сплавов составляет от 930 до 1140 градусов.

Особенности процесса производства стали

В производстве чугуна и стали применяются разные технологии, несмотря на достаточно близкий химический состав и некоторые физико-механические свойства.

Отличия заключаются в том, что сталь содержит меньшее количество вредных примесей и углерода, за счет чего достигаются высокие эксплуатационные качества. В процессе плавки все примеси и лишний углерод, который становится причиной повышения хрупкости материала, уходят в шлаки.

Технология производства стали предусматривает принудительное окисление основных элементов за счет взаимодействия железа с кислородом.

Рассматривая процесс производства углеродистой и других видов стали, следует выделить несколько основных этапов процесса:

  1. Расплавление породы. Сырье, которое используется для производства металла, называют шихтой. На данном этапе при окислении железа происходит раскисление и примесей. Уделяется много внимания тому, чтобы происходило уменьшение концентрации вредных примесей, к которым можно отнести фосфор. Для обеспечения наиболее подходящих условий для окисления вредных примесей изначально выдерживается относительно невысокая температура. Формирование железного шлака происходит за счет добавления железной руды. После выделения вредных примесей на поверхности сплава они удаляются, проводится добавление новой порции оксида кальция.
  2. Кипение полученной массы. Ванны расплавленного металла после предварительного этапа очистки состава нагреваются до высокой температуры, сплав начинает кипеть. За счет кипения углерод, находящийся в составе, начинает активно окисляться. Как ранее было отмечено, чугун отличается от стали слишком высокой концентрацией углерода, за счет чего материал становится хрупким и приобретает другие свойства. Решить подобную проблему можно путем вдувания чистого кислорода, за счет чего процесс окисления будет проходить с большой скоростью. При кипении образуются пузырьки оксида углерода, к которым также прилипают другие примеси, за счет чего происходит очистка состава. На данной стадии производства с состава удаляется сера, относящаяся к вредным примесям.
  3. Раскисление состава. С одной стороны, добавление в состав кислорода обеспечивает удаление вредных примесей, с другой, приводит к ухудшению основных эксплуатационных качеств. Именно поэтому зачастую для очистки состава от вредных примесей проводится диффузионное раскисление, которое основано на введении специального расплавленного металла. В этом материале содержатся вещества, которые оказывают примерно такое же воздействие на расплавленный сплав, как и кислород.
Читайте также:  Типичные восстановители щелочные металлы

Кроме этого, в зависимости от особенностей применяемой технологии могут быть получены материалы двух типов:

  1. Спокойные, которые прошли процесс раскисления до конца.
  2. Полуспокойные, которые имеют состояние, находящееся между спокойными и кипящими сталями.

От чего зависит температура плавления

Для разных веществ температура, при которой полностью перестраивается структура до жидкого состояния – разная. Если взять во внимание металлы и сплавы, то стоит подметить такие моменты:

  1. В чистом виде не часто можно встретить металлы. Температура напрямую зависит от его состава. В качестве примера укажем олово, к которому могут добавлять другие вещества (например, серебро). Примеси позволяют делать материал более либо менее устойчивым к нагреву.
  2. Бывают сплавы, которые благодаря своему химическому составу могут переходить в жидкое состояние при температуре свыше ста пятидесяти градусов. Также бывают сплавы, которые могут «держаться» при нагреве до трех тысяч градусов и выше. С учетом того, что при изменении кристаллической решетки меняются физические и механические качества, а условия эксплуатации могут определяться температурой нагрева. Стоит отметить, что точка плавления металла — важное свойство вещества. Пример этому – авиационное оборудование.

Термообработка, в большинстве случаев, почти не изменяет устойчивость к нагреву. Единственно верным способом увеличения устойчивости к нагреванию можно назвать внесение изменений в химический состав, для этого и проводят легирование стали.

Виды чугуна

Существует несколько видов чугуна. В него добавляют различные легирующие примеси, которые изменяют характеристики цельного материала. Для этого используют алюминий, хром, ванадий или никель. В дополнение к ним идут и другие примеси. Параметры готовых изделий напрямую зависят от состава сплава. Разновидности:

  1. Серый чугун. Считается самым популярным видом. В составе содержится 2,5% углерода, который представляет собой частицу графита или перлита. Обладает высоким показателем прочности. Из серого чугуна делают детали, выдерживающие постоянные нагрузки. Это могут быть зубчатые шестерни, детали корпусов, втулки.
  2. Белый чугун. Углерод, содержащийся в составе, представляет собой частицы карбида. На изломе материала остаётся белый след, что соответствует названию. Содержание углерода в среднем более 3%. Хрупкая и ломкая разновидность материала, из-за чего его используют только в статических деталях.
  3. Половинчатый. Объединяет в себе характеристики двух предыдущих видов чугуна. Частицы графита и карбида насыщают металл углеродом. Его содержание от 3,5 до 4,2%. Износоустойчивый материал, который используется в машиностроении. Выдерживает постоянное трение.
  4. Ковкий чугун. Получается из второй разновидности материала, после проведения отжига. Сплав содержит углерод в виде частиц феррита. Его количество — около 3,5%. Как и половинчатый используется для изготовления деталей в машиностроении.

Чтобы получить высокопрочный материал, частицы графита подвергают обработке, чтобы они приняли шаровидную форму и заполнили кристаллическую решётку. В сплав добавляют магний, кальций или церий.

Температура кипения и плавления металлов. Температура плавления стали

Температура кипения и плавления металлов

В таблице представлена температура плавления металлов tпл, их температура кипения  при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см3, то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.

Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

Температура плавления стали — таблица Сталь
tпл, °С
Сталь
tпл, °С
Стали для отливок Х28Л и Х34Л 1350 Коррозионно-стойкая жаропрочная 12Х18Н9Т 1425
Сталь конструкционная 12Х18Н10Т 1400 Жаропрочная высоколегированная 20Х23Н13 1440
Жаропрочная высоколегированная 20Х20Н14С2 1400 Жаропрочная высоколегированная 40Х10С2М 1480
Жаропрочная высоколегированная 20Х25Н20С2 1400 Сталь коррозионно-стойкая Х25С3Н (ЭИ261) 1480
Сталь конструкционная 12Х18Н10 1410 Жаропрочная высоколегированная 40Х9С2 (ЭСХ8) 1480
Коррозионно-стойкая жаропрочная 12Х18Н9 1410 Коррозионно-стойкие обыкновенные 95Х18…15Х28 1500
Сталь жаропрочная Х20Н35 1410 Коррозионно-стойкая жаропрочная 15Х25Т (ЭИ439) 1500
Жаропрочная высоколегированная 20Х23Н18 (ЭИ417) 1415 Углеродистые стали 1535

Источники:

Понравилась статья? Поделиться с друзьями:
Станок