Кристаллизация металлов это процесс образования

Любое вещество может находиться в одном из четы­рех агрегатных состояний: твердом, жидком, газообразном и плазменном. Агрегатное состояние определяется энер­гией взаимодействия атомов.

Стабильным (равновесным) при определенных внешних условиях является состояние вещества, при котором оно обладает минимумом свободной энергии. Свободная энергия — часть внутренней энергии вещества.

Внутренняя энергия веще­ства — это сумма потенциаль­ной энергии (энергии взаи­модействия) и кинетической энергии частиц (тепловые колебания). Часть внутрен­ней энергии, высвобождающаяся при переходе вещества из одного состояния в другое,называется свободной энергией.

Чем больше высвободится свободной энергии, тем меньшей энергией будет обладать вещество, тем более стабильно его состояние. Свободную энергию можно представить как аналог потенциальной энергии (рис. 1).

В положении 1 шарик имеет максимальную потенциальную энергию. Это положение не является устойчивым, шарик скатывается в положение 2, при котором его потенциальная энергия будет равна 0. Вещество может находиться в метастабильном состоянии (закаленная сталь). Такое состояние не обладает минимумом свободной энергии, но является достаточно устойчивым (стабильным).

Вещество в метастабильном состоянии может находиться бесконечно долго при условии постоянства внешних факторов.Первичная кристаллизация металлов и сплавов. Кри­сталлизация — это переход металла из жидкого состояния в твердое с образованием кристаллического строения.

Это первичная кристаллизация (в отличие от вторичной, когда кристаллы металлических фаз выделяются из твердого вещества).
Рассмотрение кристаллизации для металлов и сплавов на их основе связано с тем, что эти материалы получают методом литья, тогда как многие неметаллические матери­алы производят другими способами.

Ряд неметаллических материалов существует в природном виде (углерод), мно­гие химические соединения получают путем химических реакций: карбиды — карбидизацией, нитриды — азотирова­нием и т.п. Процесс кристаллизации (затвердевания) обусловлен стремлением системы к переходу в более устойчивое термодинамическое состояние.

При изменении внешних условий, например темпе­ратуры, свободная энергия системы меняется различно для жидкого и твердого (кристаллического) состоя­ния (рис. 2). Выше темпе­ратуры Ts более стабильным

является жидкое состояние, так как металл в этом состоянии имеет меньший запас свободной энергии. Ниже температуры Ts меньшим запасом свободной энергии обладает металл в твердом состоянии.

При темпера­туре величины свободных энергий твердого и жидкого состояний равны. Это озна­чает, что металл может нахо­диться в обоих состояниях бесконечно долго, так как пере­ход из одного состояния в другое не будет сопровождаться уменьшением свободной энергии.

Температура Ts получила название теоретической температуры кристаллизации.

Для начала кристаллизации необходимо, чтобы свобод­ная энергия металла в твердом состоянии стала меньше свободной энергии жидкого состояния. Это становится воз­можным при охлаждении жидкости ниже Ts.

Температура, при которой фактически начинается процесс кристаллиза­ции, называется фактической температурой кристаллиза­ции (Тк).

Охлаждение жидкого металла ниже теоретической температуры кристаллизации называется переохлаждение, а разность между теоретической и фактической температу­рой кристаллизации — степенью переохлаждения (ΔТ):

ΔТ=Тs — Тk

Степень переохлаждения зависит от скорости охлажде­ния жидкого металла. С увеличением скорости охлаждения понижается фактическая температура кристаллизации и, следовательно, возрастает степень переохлаждения.

Процесс кристаллизации можно описать с помощью кривых охлаждения, построенных в координатах «тем­пература — время» (рис. 3).

Охлаждение в жидком состоянии сопровождается плавным понижением температуры (участок 1 кривой охлаждения), при достижении температуры кристаллизации на кри­вой охлаждения появля­ется горизонтальная пло­щадка (участок 2 кривой охлаждения), т.е. охлаж­дение (понижение темпе­ратуры) останавливается.

Это вызвано тем, что отвод тепла компенсируется выделяющейся в процессе кристаллизации скрытой
теплотой кристаллиза­ции. После полного перехода металла из жидкого состояния в твердое температура вновь начинает плавно снижаться (участок 3 кривой охлаждения). Увеличение скорости охлаждения от V1 до V3 приводит к увеличению степени

переохлаждения (см. рис. 3).

Кристаллизация начинается с образования в жидком металле центров кристаллизации и продолжается за счет роста их числа и размеров (рис. 4). Процесс кристаллизации можно охарактеризовать двумя параметрами: числом центров кристаллизации (ЧЦК),

образующихся в единицу времени в единице объема (1 см3/с), и скоростью роста кристаллов (СК ) [мм /с]. Эти параметры зависят от степени переохлаждения, а следовательно, от скорости охлаждения при кристалли­зации металла.

В соответ­ствии с законом Таммана для каждой степени пере­охлаждения указанные пара­метры могут иметь только одно значение (рис. 5).
При теоретической темпе­ратуре кристаллизации ( Ts) значения ЧЦК и СК равны 0 и кристаллизация происходить не может.

При повышении степени переохлаждения значения ЧЦК и СК возрастают, процесс кристаллизации идет быстро. Это объясняется тем, что при высоких температурах, близких к Тs подвижность атомов велика.

При определенных степенях переохлажде­ния значения ЧЦК и СК достигают максимума, после чего снижаются вследствие уменьшения подвижности атомов при низких температурах.

Размер образовавшихся в процессе кристаллизации зерен зависит от соотношения величин ЧЦК и СК, т.е. определяется степенью переохлаждения (скоростью охлаждения
металла в процессе кристаллизации).

При малых степенях переохлаждения (низкой скорости охлаждения металла) образуется малое число центров кристаллизации, которые
растут с большой скоростью,—- АТ' (см. рис. 5). В этом случае структура металла после окончания кристаллизации будет крупнозернистой.

При больших степенях переохлаждения, напротив, ЧЦК велико, а СК мала (ДГ» — АТ”'), поэтому структура металла получается мелкозернистой.
Если степень переохлаждения настолько велика, что значения ЧЦК и СК близки к пулю, кристаллизации не происходит.

При этом образуется твердое тело, имеющее не кристаллическое строение с «правильным» расположением атомов, а аморфное — с хаотическим расположением атомов — «твердая жидкость». Аморфное состояние

характерно для неметаллических материалов (стекла, полимеры). Для получения аморфного состояния у металлических материалов требуется очень большая скорость охлаждения 106… 107 °С/с.

КРИСТАЛЛИЗА́ЦИЯ

Авторы: В. П. Коверда

КРИСТАЛЛИЗА́ЦИЯ, об­ра­зо­ва­ние кри­стал­лов из рас­пла­вов, рас­тво­ров, га­зо­вой фа­зы или плаз­мы, а так­же из аморф­ных ве­ществ или кри­стал­лов др. струк­ту­ры. В про­цес­се К. ато­мы, мо­ле­ку­лы или ио­ны ве­ще­ст­ва вы­страи­ва­ют­ся в кри­стал­ли­че­скую ре­шёт­ку. К. яв­ля­ет­ся не­рав­но­вес­ным фа­зо­вым пе­ре­хо­дом 1-го ро­да.

Ус­ло­вия рав­но­ве­сия кри­стал­ла со сре­дой (рас­пла­вом, па­ром, рас­тво­ром и др.) оп­ре­де­ля­ют­ся как фа­зо­вое рав­но­ве­сие аг­ре­гат­ных со­стоя­ний ве­ще­ст­ва при фа­зо­вых пе­ре­хо­дах 1-го ро­да: ра­вен­ст­во темп-ры, дав­ле­ния и хи­мич. по­тен­циа­ла.

Не­об­хо­ди­мое ус­ло­вие рос­та кри­стал­ла – от­кло­не­ние от рав­но­ве­сия, оп­ре­деля­емое пе­ре­ох­ла­ж­де­ни­ем (от­ли­чи­ем темп-ры от рав­но­вес­ной) и пе­ре­сы­ще­ни­ем (от­ли­чи­ем дав­ле­ния или кон­цен­тра­ции от рав­но­вес­ных зна­че­ний). Тер­мо­ди­на­мич. дви­жу­щая си­ла фа­зо­во­го пе­ре­хо­да тем вы­ше, чем боль­ше от­кло­не­ние от рав­но­ве­сия.

Пе­ре­ход ве­ще­ст­ва в кри­стал­лич. фа­зу со­про­во­ж­да­ет­ся вы­де­ле­ни­ем скры­той те­п­ло­ты К., и при не­пол­ном от­во­де этой те­п­ло­ты воз­мож­но умень­ше­ние от­кло­не­ния от рав­но­ве­сия и за­мед­ле­ние про­цес­са. Как фа­зо­вый пе­ре­ход 1-го ро­да К.

со­про­во­ж­да­ет­ся скач­ком удель­но­го объ­ё­ма по от­но­ше­нию к ис­ход­ной фа­зе, и это мо­жет при­во­дить к из­ме­не­нию дав­ле­ния в кри­стал­ли­зую­щей­ся сис­те­ме. Та­ким об­ра­зом, К. – это слож­ный про­цесс те­п­ло­мас­со­пе­ре­но­са, ко­то­рый управ­ля­ет­ся тер­мо­ди­на­мич. и ки­не­тич. фак­то­ра­ми. Мно­гие из них труд­но кон­тро­ли­ро­вать.

Уро­вень чис­то­ты, темп-ра и кон­цен­тра­ция ком­по­нен­тов в не­по­сред­ст­вен­ной бли­зо­сти к фа­зо­вой гра­ни­це, пе­ре­ме­ши­ва­ние, те­п­ло­об­мен мо­гут быть гл. фак­то­ра­ми, оп­ре­де­ляю­щи­ми раз­мер, чис­ло и фор­му воз­ни­каю­щих кри­стал­лов.

Про­цесс К. со­сто­ит из двух ста­дий: за­ро­ж­де­ние цен­тров К. и рост кри­стал­лов. На­чаль­ная ста­дия – за­ро­ж­де­ние цен­тров К. – пред­став­ля­ет со­бой об­ра­зо­ва­ние кла­сте­ров с ха­рак­тер­ной для кри­стал­ла упо­ря­до­чен­но­стью. Но ино­гда их струк­ту­ра мо­жет от­ли­чать­ся от струк­ту­ры ус­той­чи­во­го мак­ро­ско­пич. кри­стал­ла.

Об­ра­зо­ва­ние та­ких кла­сте­ров в чис­тых жид­ко­стях или га­зах про­ис­хо­дит ни­же темп-ры плав­ления мас­сив­но­го кри­стал­ла в ре­зуль­та­те слу­чай­ных столк­но­ве­ний при те­п­ло­вом дви­же­нии ато­мов или мо­ле­кул. При темп-рах ни­же рав­но­вес­ной объ­е­ди­не­ние час­тиц в кри­стал­лич.

кла­стер тер­мо­ди­на­ми­че­ски вы­год­но, но по­яв­ле­ние его но­вой по­верх­но­сти тре­бу­ет за­тра­ты энер­гии, что яв­ля­ет­ся пре­пят­ст­вую­щим фак­то­ром при за­ро­ж­де­нии цен­тров К. Чем мень­ше кла­стер, тем бóльшая до­ля час­тиц со­став­ля­ет его по­верх­ность.

По­это­му при ма­лых раз­ме­рах боль­шин­ст­во кла­сте­ров рас­па­да­ет­ся вслед­ст­вие флук­туа­ций ко­ле­ба­тель­ной энер­гии час­тиц. С рос­том кла­сте­ра до­ля по­верх­но­ст­ной энер­гии умень­ша­ет­ся по от­но­ше­нию к объ­ём­ной энергии объ­е­ди­не­ния час­тиц, что по­вы­ша­ет ус­той­чи­вость кла­сте­ра.

При за­дан­ном пе­ре­сы­ще­нии су­ще­ст­ву­ет кри­тич. раз­мер, при пре­вы­ше­нии ко­то­ро­го кла­сте­ры спо­соб­ны к даль­ней­ше­му рос­ту и ста­но­вят­ся цен­тра­ми кри­стал­ли­за­ции. 

Чис­лен­ной ха­рак­те­ри­сти­кой ин­тен­сив­но­сти за­ро­ж­де­ния цен­тров К. яв­ля­ет­ся час­то­та за­ро­ды­ше­об­ра­зо­ва­ния (нук­леа­ции) – чис­ло цен­тров, воз­ни­каю­щих в еди­ни­цу вре­ме­ни в еди­ни­це объ­ё­ма сре­ды.

Су­ще­ст­вую­щая тео­рия объ­яс­ня­ет тем­пе­ра­тур­ную за­ви­си­мость час­то­ты нук­леа­ции и свя­зы­ва­ет её с па­ра­мет­ра­ми сре­ды, в ко­то­рой идёт об­ра­зо­ва­ние цен­тров К. Для жид­ко­стей с ма­лой вяз­ко­стью, напр.

для боль­шин­ст­ва рас­плав­лен­ных ме­тал­лов, тео­рия пред­ска­зы­ва­ет боль­шие пе­ре­ох­ла­ж­де­ния, при ко­то­рых долж­но на­блю­дать­ся спон­тан­ное за­ро­ж­де­ние цен­тров К.

При даль­ней­шем уве­ли­че­нии пе­ре­ох­ла­ж­де­ния час­то­та ну­кле­ации бы­ст­ро воз­рас­та­ет, дос­ти­гая мак­си­му­ма при темп-ре, при­бли­зи­тель­но рав­ной од­ной тре­ти темп-ры рав­но­ве­сия кри­стал­ла с рас­пла­вом. Бы­ст­рый спад час­то­ты за­ро­ж­де­ния цен­тров К.

при ещё бо­лее низ­ких темп-рах обу­слов­лен за­мед­ле­ни­ем те­п­ло­во­го дви­же­ния и силь­ным воз­рас­та­ни­ем вяз­ко­сти. Для бо­лее вяз­ких жид­ко­стей мак­си­мум час­то­ты сдви­нут в сто­ро­ну бо­лее низ­ких пе­ре­ох­ла­ж­де­ний и са­ми зна­че­ния час­то­ты зна­чи­тель­но ни­же.

По­сколь­ку мн. па­ра­мет­ры тео­рии из­вест­ны с не­дос­та­точ­ной для рас­чё­тов точ­но­стью, важ­ную роль иг­ра­ют экс­пе­рим. дан­ные. При­бли­же­ние к иде­аль­ным ус­ло­ви­ям дос­ти­га­ет­ся ис­поль­зо­ва­ни­ем в опы­тах ма­лых ка­пель жид­ко­стей диа­мет­ром от не­сколь­ких мик­ро­мет­ров до на­но­мет­ров.

При спон­тан­ном за­ро­ж­де­нии тре­бу­ют­ся боль­шие от­кло­не­ния от рав­но­ве­сия, а цен­тры К. ха­рак­те­ри­зу­ют­ся кри­тич. раз­ме­ром по­ряд­ка од­но­го на­но­мет­ра. Напр., для рас­пла­вов чис­тых ме­тал­лов на­блю­дае­мая в опы­тах темп-ра спон­тан­но­го за­ро­ж­де­ния цен­тров К. со­став­ля­ет 30–50% от темп-ры плав­ле­ния. Мн.

Читайте также:  Плотность чугуна и удельный вес в кг: определение значения по таблице плотности металлов

си­ли­кат­ные рас­пла­вы при ох­ла­ж­де­нии во­об­ще за­твер­де­ва­ют без К., об­ра­зуя стёк­ла. Экс­пе­ри­мен­таль­но по­ка­за­но, что в вяз­ких жид­ко­стях про­цесс за­ро­ж­де­ния цен­тров К. не­ста­цио­на­рен. Это оз­на­ча­ет, что ха­рак­тер­ная для за­дан­но­го от­кло­не­ния от рав­но­ве­сия час­то­та за­ро­ж­де­ния цен­тров К.

по­яв­ля­ет­ся толь­ко по ис­те­че­нии вре­ме­ни за­паз­ды­ва­ния, ко­то­рое мо­жет быть дос­та­точ­но боль­шим, срав­ни­мым или да­же пре­вы­шаю­щим вре­мя ох­ла­ж­де­ния об­раз­ца. Ме­тал­лич. рас­пла­вы ха­рак­те­ри­зу­ют­ся зна­чи­тель­но мень­шей вяз­ко­стью, и по­дав­ле­ние спон­тан­но­го за­ро­ж­де­ния цен­тров К.

для не­ко­то­рых спла­вов воз­мож­но лишь при очень бы­ст­ром ох­ла­ж­де­нии (со ско­ро­стью св. 106 К/c). Это ле­жит в ос­но­ве тех­но­ло­гии по­лу­че­ния аморф­ных ме­тал­лов. Ста­биль­ность аморф­но­го со­стоя­ния обес­пе­чи­ва­ет­ся силь­ным за­мед­ле­ни­ем об­ме­на ато­ма­ми ме­ж­ду кри­стал­лом и сре­дой при низ­ких темп-рах. На­блю­дать К.

по­лу­чен­но­го та­ким об­ра­зом аморф­но­го со­стоя­ния мож­но при на­гре­ва­нии, уве­ли­чи­вая ин­тен­сив­ность те­п­ло­во­го дви­же­ния, а вы­де­ляю­щая­ся при этом скры­тая те­п­ло­та фа­зо­во­го пе­ре­хо­да мо­жет су­ще­ст­вен­но ин­тен­си­фи­ци­ро­вать про­цесс, до­пол­ни­тель­но по­вы­шая темп-ру.

Для не­ко­то­рых ве­ществ (гер­ма­ний, крем­ний, аморф­ный лёд) на­блю­да­ет­ся взрыв­ная К. аморф­но­го со­стоя­ния.

В за­гряз­нён­ных сре­дах цен­тры К. воз­ни­ка­ют на по­сто­рон­них кри­стал­лич. час­ти­цах при го­раз­до мень­ших от­кло­не­ни­ях от рав­но­ве­сия. Час­то­та за­ро­ж­де­ния цен­тров К. в та­ких слу­ча­ях за­ви­сит так­же от ма­те­риа­ла сте­нок со­су­да, дей­ст­вия из­лу­че­ний.

За­ро­ды­ше­вые кри­стал­лы на хо­ро­шо сма­чи­ваю­щей­ся ори­ен­ти­рую­щей по­верх­но­сти име­ют при­бли­зи­тель­но ку­по­ло­об­раз­ную фор­му, за­трат­ная до­ля по­верх­но­ст­ной энер­гии у них мень­ше по срав­не­нию с объ­ём­ным вы­иг­ры­шем при аг­ре­ги­ро­ва­нии час­тиц в та­кой кри­стал­лик.

По­это­му та­кое ге­те­ро­ген­ное за­ро­ж­де­ние цен­тров К. про­ис­хо­дит при мень­ших пе­ре­ох­ла­ж­де­ни­ях. Кон­тро­ли­руе­мое ге­те­ро­ген­ное за­ро­ж­де­ние цен­тров К. ис­поль­зу­ет­ся, напр., при эпи­так­си­аль­ном по­лу­че­нии мо­но­кри­стал­лич. плё­нок. При вы­ра­щи­ва­нии на за­тра­воч­ном цен­тре К.

круп­ных со­вер­шен­ных мо­но­кри­стал­лов, со­дер­жа­щих ми­ни­маль­но воз­мож­ное чис­ло де­фек­тов, не­об­хо­ди­мо из­бе­гать по­яв­ле­ния спон­тан­ных за­ро­ды­шей. Для это­го ис­поль­зу­ют не­боль­шое от­кло­не­ние от ус­ло­вий рав­но­ве­сия. В ме­тал­лур­гии при по­лу­че­нии кри­стал­лич.

ма­те­риа­лов стре­мят­ся по­лу­чить макс. чис­ло цен­тров К., для че­го соз­да­ют глу­бо­кое пе­ре­ох­ла­ж­де­ние рас­пла­вов.

В за­ви­си­мо­сти от то­го, ка­кой яв­ля­ет­ся по­верх­ность кри­стал­ла в атом­ном мас­шта­бе – глад­кой или ше­ро­хо­ва­той, раз­ли­ча­ют два ме­ха­низ­ма рос­та кри­стал­лов: по­слой­ный и нор­маль­ный. Атом­но-глад­ким по­верх­но­стям обыч­но от­ве­ча­ют наи­бо­лее раз­ви­тые гра­ни с про­сты­ми кри­стал­ло­гра­фич. ин­дек­са­ми.

Они со­дер­жат срав­ни­тель­но не­боль­шое чис­ло де­фек­тов: ва­кан­сий и ад­сор­би­ро­ван­ных ато­мов. Края не­за­вер­шён­ных атом­ных плос­ко­стей об­ра­зу­ют сту­пе­ни (рис. 1), ко­то­рые, в свою оче­редь, име­ют не­боль­шое чис­ло из­ло­мов. Эле­мен­тар­ный акт рос­та кри­стал­ла со­сто­ит в при­сое­ди­не­нии но­вой час­ти­цы к из­ло­му и не ме­ня­ет по­верх­но­ст­ную энер­гию.

По­сле­до­ва­тель­ное при­сое­ди­не­ние час­тиц к из­ло­му при­во­дит к его дви­же­нию вдоль сту­пе­ни, а сту­пени по по­верх­но­сти – та­кой рост на­зы­ва­ет­ся по­слой­ным. Плот­ность сту­пе­ней при по­слой­ном рос­те за­ви­сит от ме­ха­низ­ма их ге­не­ра­ции. Сту­пе­ни мо­гут воз­ни­кать в ре­зуль­та­те об­ра­зо­ва­ния и рос­та дву­мер­ных за­ро­ды­шей.

Про­цесс об­ра­зо­ва­ния дву­мер­ных за­ро­ды­шей, спо­соб­ных к даль­ней­ше­му рос­ту на атом­но-глад­кой по­верх­но­сти, име­ет не­ко­то­рую ана­ло­гию с об­ра­зо­ва­ни­ем цен­тров К. в жид­ко­сти. Дву­мер­ный за­ро­дыш так­же име­ет кри­тич. раз­мер, на­чи­ная с ко­то­ро­го он спо­со­бен к даль­ней­ше­му рос­ту.

При аг­ре­ги­ро­ва­нии дву­мер­но­го за­ро­ды­ша пре­пят­ст­вую­щим фак­то­ром его раз­ви­тия при ма­лых раз­ме­рах яв­ля­ет­ся за­тра­та ра­бо­ты на ли­ней­ную энер­гию его пе­ри­мет­ра. Но с рос­том раз­ме­ра до­ля ли­ней­ной энер­гии пе­ри­мет­ра ста­но­вит­ся всё мень­ше, и, на­чи­ная с не­ко­то­ро­го кри­тич.

раз­ме­ра, дву­мер­ный за­ро­дыш ста­но­вит­ся цен­тром рос­та но­вой сту­пе­ни. Час­то­та об­ра­зо­ва­ния дву­мер­ных за­ро­ды­шей очень ма­ла при ма­лых от­кло­не­ни­ях от рав­но­ве­сия, со­от­вет­ст­вен­но ма­ла и ско­рость рос­та, оп­ре­де­ляе­мая дву­мер­ным за­ро­ды­ше­об­ра­зо­ва­ни­ем.

За­мет­ные ско­ро­сти рос­та при та­ком ме­ха­низ­ме обра­зо­ва­ния сту­пе­ней на­чи­на­ют­ся при ощу­ти­мом пе­ре­ох­ла­ж­де­нии и очень силь­но (экс­по­нен­ци­аль­но) воз­рас­та­ют при его уве­ли­че­нии. Др. ме­ха­низм ге­не­ра­ции сту­пе­ней свя­зан с вин­то­вы­ми дис­ло­ка­ция­ми.

Ес­ли кри­сталл со­дер­жит вин­то­вую дис­ло­ка­цию, то его рост про­ис­хо­дит пу­тём при­сое­ди­не­ния ато­мов к тор­цу сту­пе­ни, окан­чи­ваю­щей­ся на дис­ло­ка­ции (рис. 2,а). При рос­те на вин­то­вой дис­ло­ка­ции сту­пень при­об­ре­та­ет спи­раль­ную фор­му (рис. 2,б), а за­мет­ная ско­рость рос­та увеличивается с пе­ре­ох­ла­ж­де­нием по квадратичному закону и на­блю­да­ет­ся уже при ма­лых от­кло­не­ни­ях от рав­но­ве­сия.

На атом­но-ше­ро­хо­ва­тых по­верх­но­стях (рис. 3) плот­ность из­ло­мов ве­ли­ка и при­сое­ди­не­ние но­вых час­тиц к кри­стал­лу про­исхо­дит прак­ти­че­ски в лю­бой точ­ке его по­верх­но­сти. Та­кой рост на­зы­ва­ет­ся нор­маль­ным. Его ско­рость ли­ней­но уве­ли­чи­ва­ет­ся с пе­ре­ох­ла­ж­де­ни­ем.

Тео­рия рос­та кри­стал­ла свя­зы­ва­ет плот­ность упа­ков­ки по­верх­но­сти кри­стал­ла с энер­ги­ей свя­зи ме­ж­ду час­ти­ца­ми по­верх­но­сти кри­стал­ла и те­п­ло­той К. Счи­та­ет­ся, что если энер­гия свя­зи дос­та­точ­но ве­ли­ка, все плот­но­упа­ко­ван­ные гра­ни – глад­кие.

Это ха­рак­тер­но для кри­стал­лов, рас­ту­щих из па­ра. Те­п­ло­та К. рас­пла­вов, как пра­ви­ло, зна­чи­тель­но ни­же, чем теп­ло­та К. из па­ра, по­это­му и энер­гия свя­зи час­тиц в кри­стал­ле по срав­не­нию с рас­пла­вом мень­ше, чем по срав­не­нию с па­ром.

В свя­зи с этим по­верх­ность кри­стал­ла, рас­ту­ще­го из рас­пла­ва, обыч­но ше­ро­хо­ва­тая, что оп­ре­де­ля­ет нор­маль­ный рост и фор­ми­ро­ва­ние ок­руг­лён­ных гра­ней.

Пе­ре­ход от ше­ро­хо­ва­то­сти к ог­ра­не­нию воз­мо­жен при из­ме­не­нии кон­цен­тра­ции в двух­ком­по­нент­ных сис­те­мах при рос­те кри­стал­ла из рас­тво­ра. В кри­стал­лах гер­ма­ния и крем­ния, рас­ту­щих из рас­пла­ва, мож­но на­блю­дать со­су­ще­ст­во­ва­ние пло­ских и ок­руг­лён­ных гра­ней.

оп­ре­де­ля­ют­ся ани­зо­тро­пи­ей их свойств и ус­ло­вия­ми те­п­ло­мас­со­пе­ре­но­са в про­цес­се К. Кри­стал­лы с ше­ро­хо­ва­ты­ми по­верх­но­стя­ми име­ют обыч­но ок­руг­лую фор­му.

При вы­ра­щи­ва­нии та­ких кри­стал­лов из-за боль­шой ско­ро­сти по­верх­но­ст­ных про­цес­сов пе­ре­ох­ла­ж­де­ние на гра­ни­це с рас­пла­вом малó и рас­ту­щая по­верх­ность по­вто­ря­ет фор­му изо­тер­мы тем­пе­ра­тур­но­го по­ля в сис­те­ме при темп-ре рав­но­ве­сия.

Атом­но-глад­кие по­верх­но­сти про­яв­ля­ют­ся в ви­де гра­ней. Рав­но­вес­ная фор­ма кри­стал­лич. мно­го­гран­ни­ка та­ко­ва, что рас­стоя­ние от цен­тра до ка­ж­дой гра­ни про­пор­цио­наль­но ве­ли­чи­не её по­верх­но­ст­ной энер­гии.

Рав­но­вес­ная фор­ма яв­ля­ет­ся и ста­цио­нар­ной фор­мой рос­та, но в ре­аль­ном про­цес­се рос­та она мо­жет быть силь­но ис­ка­же­на из-за не­ус­той­чи­во­сти по­верх­но­сти рос­та при ко­неч­ном (а не бес­ко­неч­но ма­лом) пе­ре­ох­ла­ж­де­нии, влия­нии при­ме­сей. 

Ес­ли рас­плав силь­но пе­ре­ох­ла­ж­дён и темп-ра в рас­пла­ве убы­ва­ет по ме­ре уда­ле­ния от фрон­та рос­та, то рост не­ус­той­чив: слу­чай­но воз­ник­ший на по­верх­но­сти кри­стал­ла вы­ступ по­па­да­ет в об­ласть боль­ше­го пе­ре­ох­ла­ж­де­ния, и ско­рость его рос­та уве­ли­чи­ва­ет­ся. Та­кая не­ус­той­чи­вость для плос­ко­го фрон­та К.

ве­дёт к об­ра­зо­ва­нию по­лос­ча­той или ячеи­стой струк­ту­ры кри­стал­ла (рис. 4). При рос­те ма­лень­ко­го кри­стал­ла эта не­ус­той­чи­вость про­яв­ля­ет­ся на­чи­ная с не­ко­то­ро­го раз­ме­ра кри­стал­ла.

На нём раз­ви­вают­ся вы­сту­пы, и он при­об­ре­та­ет ске­лет­ную или ден­д­рит­ную фор­му, ко­то­рая ха­рак­те­ри­зу­ет­ся по­яв­ле­ни­ем вто­рич­ных вет­вей по­сле дос­ти­же­ния пер­вич­ным вы­сту­пом кри­тич. дли­ны (рис. 5). Рост боль­ших ог­ра­нён­ных кри­стал­лов из не­под­виж­но­го рас­тво­ра мо­жет быть так­же не­ус­той­чив.

Пе­ре­сы­ще­ние в этом слу­чае вы­ше у вер­шин и рё­бер кри­стал­ла и мень­ше в центр. час­тях гра­ни. По­это­му вер­ши­ны ста­но­вят­ся ве­ду­щи­ми ис­точ­ни­ка­ми рос­та сло­ёв. При боль­шой раз­но­сти пе­ре­сы­ще­ний на вер­ши­нах и в цен­трах гра­ней вер­ши­ны об­го­ня­ют цен­тры гра­ней и воз­ни­ка­ет ске­лет­ная фор­ма кри­стал­ла (рис. 6).

При за­дан­ной темп-ре в двух­ком­по­нент­ной сис­те­ме рав­но­ве­сие мо­жет су­ще­ст­во­вать при раз­ных со­ста­вах кри­стал­ла и рас­пла­ва. При рос­те кри­стал­ла один из ком­по­нен­тов ска­п­ли­ва­ет­ся пе­ред фрон­том, вы­зы­вая кон­цен­тра­ци­он­ное пе­ре­ох­ла­ж­де­ние, и это час­то при­во­дит к не­ус­той­чи­во­сти фрон­та рос­та.

Раз­ные гра­ни кри­стал­ла при рос­те за­хва­ты­ва­ют раз­ные ко­ли­че­ст­ва при­ме­сей, со­дер­жа­щих­ся в сре­де. Так воз­ни­ка­ет его сек­то­ри­аль­ное строе­ние. Ес­ли кри­сталл пло­хо за­хва­ты­ва­ет при­месь, про­ис­хо­дит её на­ко­п­ле­ние пе­ред фрон­том рос­та.

Пе­рио­дич. за­хват это­го по­гра­нич­но­го слоя рас­ту­щим кри­стал­лом при­во­дит к фор­ми­ро­ва­нию зо­нар­ной струк­ту­ры (рис. 7). За­хват при­ме­сей при­во­дит к из­ме­не­нию па­ра­мет­ров кри­стал­лич.

ре­шёт­ки, и на гра­ни­цах об­лас­тей раз­но­го со­ста­ва воз­ни­ка­ют внутр. на­пря­же­ния, что при­во­дит к об­ра­зо­ва­нию дис­ло­ка­ций и тре­щин.

Дис­ло­ка­ции воз­ни­ка­ют в ре­зуль­та­те ре­лак­са­ции уп­ру­гих на­пря­же­ний в не­рав­но­мер­но на­гре­том кри­стал­ле или мо­гут пе­ре­хо­дить из за­трав­ки в вы­ра­щи­вае­мый кри­сталл.

од­но­времен­ный рост мно­же­ст­ва кри­стал­лов, ши­ро­ко ис­поль­зуе­мый в пром-сти. Свой­ст­ва слит­ков и от­ли­вок при К. ме­тал­лур­гич. рас­пла­вов в силь­ной сте­пе­ни за­ви­сят от ко­ли­че­ст­ва цен­тров К. и ус­ло­вий их рос­та. При за­твер­де­ва­нии от­ли­вок ме­тал­лов цен­тры К.

по­яв­ля­ют­ся вна­ча­ле на ох­ла­ж­дае­мых стен­ках из­лож­ни­цы, ку­да за­ли­ва­ют рас­плав­лен­ный ме­талл. Из хао­ти­че­ски ори­ен­ти­ро­ван­ных кри­стал­лов вы­жи­ва­ют те, ко­то­рые рас­тут пер­пен­ди­ку­ляр­но стен­ке. Они фор­ми­ру­ют столб­ча­тую зо­ну вбли­зи стен­ки.

Кон­век­ци­он­ные по­то­ки в рас­пла­ве мо­гут об­ла­мы­вать вет­ви ден­д­ри­тов, по­став­ляя в рас­плав вто­рич­ные цен­тры К. Мас­совая К. в рас­тво­рах на­чи­на­ет­ся на ге­те­ро­ген­ных цен­трах К. или на спе­ци­аль­но вве­дён­ных за­тра­воч­ных кри­стал­лах.

Столк­но­ве­ния этих кри­стал­ли­ков ме­ж­ду со­бой и со стен­ка­ми со­су­да в пе­ре­ме­ши­вае­мом рас­тво­ре да­ют на­ча­ло вто­рич­ным цен­трам К. Для соз­да­ния до­пол­нит. цен­тров К. ис­поль­зу­ют УЗ-дроб­ле­ние рас­ту­щих кри­стал­лов или до­бав­ки по­верх­но­ст­но-ак­тив­ных ве­ществ.

Мас­со­вая К. ис­поль­зу­ет­ся так­же для очи­ст­ки ве­ществ от при­ме­сей. 

В при­ро­де К. при­во­дит к об­ра­зо­ва­нию ми­не­ра­лов, льда, иг­ра­ет важ­ную роль во мно­гих био­ло­гич. про­цес­сах. К. про­ис­хо­дит так­же при не­ко­то­рых хи­мич. ре­ак­ци­ях, в про­цес­се элек­тро­ли­за. Она ле­жит в ос­но­ве мн. тех­но­ло­гич.

про­цес­сов: в ме­тал­лур­гии, при по­лу­че­нии ма­те­риа­лов для элек­тро­ни­ки, оп­ти­ки. Пу­тём К. по­лу­ча­ют мас­сив­ные мо­но­кри­стал­лы и тон­кие плён­ки. К. ши­ро­ко ис­поль­зу­ет­ся в хи­мич., пи­ще­вой, мед.

пром-сти: в тех­но­ло­гии очи­ст­ки ве­ществ, при про­из-ве со­ли, са­ха­ра, ле­карств. 

Кристаллизация металла

Кристаллизация металла – процесс изменения жидкого состояния металла на твердое. Этот переход возможен при понижении температуры, и сопряжен с определенными затратами энергии на образование границы раздела – жидкость-кристалл.  Кристаллизация, как физический процесс представляет собой образование центров кристаллизации с последующим ростом в них непосредственно самих кристаллов.

Читайте также:  Название задвижек на фонтанной арматуре скважины

Этим же закономерностям подчиняется кристаллизация не только чистых металлов, но и их сплавов. Основным условием протекания процесса является то, что система должна стремиться к состоянию, в котором значение свободной энергии будет минимальным.

Особенности процесса

  • Центры образуются случайно, без привязки друг к другу. На начальной стадии они имеют правильную форму, но впоследствии из-за столкновения и соединения нескольких центров в один, форма их становится неправильной. Число центров напрямую зависит от температуры переохлаждения.
  • В начале процесса кристаллизация идет более быстро – объем жидкой фазы велик и в ней активно образуются кристаллы. Когда их объемное количество превышает половину всего тела, из-за столкновения кристаллов скорость процесса замедляется.

Важно понимать, что кристаллизация одного и того же металла может проходить по-разному и результат процесса, а именно размер кристаллов – будет различным. В частности, речь идет о зависимости от числа центров и скорости роста кристаллов. Если центров много, а скорость процесса кристаллизации невысокая, образуется твердый металл с мелкими зернами кристаллов. Если число центров небольшое, но скорость их роста высокая – образуется крупнозернистый металл.

Эту особенность используют на металлургическом производстве. Так, для литья тонкостенных изделий и обеспечения их прочности, используют процесс мелкозернистой кристаллизации. Если же необходимо отлить деталь с толстыми стенками, подойдет метод крупнозернистой кристаллизации.

Важно: если температура жидкого металла становится ниже температуры переохлаждения (то есть жидкий металл быстро и сильно переохладить), не выполняется основное условие кристаллизации – нет центров, и не растут кристаллы, то есть процесс кристаллизации не происходит. Жидкий металл, минуя твердую форму, сразу переходит в аморфное состояние.

Кристаллизация металлов

Эмпирически доказано, что при небольшом давлении с уменьшением температуры все вещества (исключение — гелий) превращаются в твердые тела, то есть кристаллизуются.

Если давление достаточно высоко, то большое количество веществ превращается из жидкостей в твердые вещества. Вещества, называемые аномальными, сохраняют свою жидкую фазу вплоть до $T=0K$ при большом давлении.

К таким веществам относят те вещества, плотность которых уменьшается при переходе от жидкости к твердому состоянию. Температура плавления таких веществ уменьшается при росте давления.

К аномальным веществам относят, например:

Определение 1

Кристаллизацией называют переход из состояния жидкости в твердое состояние при определенных температуре и давлении.

В процессе кристаллизации выделяется теплота, которую именуют теплотой кристаллизации.

Кристаллизация – это фазовый переход первого рода. Она происходит при давлении ниже тройной точки.

  • Соотношение давления и температуры в фазовом переходе первого рода задает уравнение Клапейрона — Клаузиуса:
  • $frac{dp}{dT}=frac{L}{T(V_1-V_2)} (1),$
  • где $L$ — скрытая теплота кристаллизации; $V_2$ — удельный объем вещества в твердом состоянии; $V_1$ — удельный объем этого же вещества в виде жидкости.

У большого количества веществ удельный объем в процессе перехода из жидкого состояния в твердое, становится меньше, соответственно плотность растет. Получается, что для этих веществ давление в состоянии фазового перехода $p$ при увеличении температуры увеличивается, поскольку $frac {dp}{dT}>0$.

Металлы могут находиться в трех состояниях:

  1. в виде газа;
  2. жидкости;
  3. твердом состоянии,
  1. это зависит от температуры и давления.
  2. Химически чистые металлы обладают температурой плавления, при которой они переходят из твёрдого состояния в жидкость, и температурой кипения, при которой они становятся газами.
  3. Температуры плавления металлов могут колебаться:
  • от $-38,9^0 C$ у ртути;
  • до $+3410^0C$ у вольфрама.

Возникновения кристаллической решетки идет в процессе перехода металла из состояния жидкости в состояние твердого тела.

Если условия в этом процессе являются идеальными, то результатом этого перехода атомы расположатся в геометрически верной структуре, между ними будут определенные расстояния, то есть атомы составят кристаллическую решетку.

Так, в процессе медленного охлаждения получают монокристаллы, масса которых достигает 200 грамм и больше. Эти кристаллы используют, например, в полупроводниковой технике.

Кривые охлаждения расплавов

Остывание расплавленного металла при уменьшении температуры происходит плавно (рис.1), кривая $A$.

Однако, если достигается температура кристаллизации $T_k$, возникает горизонтальный отрезок, который связывают с наличием выделения скрытой теплоты кристаллизации, компенсирующей отвод теплоты.

При дальнейшем уменьшении температуры металл становится твердым, и его температура продолжает уменьшаться.

Рисунок 1. Кривые охлаждения расплавов. Автор24 — интернет-биржа студенческих работ

В реальной действительности кривая кристаллизации несколько иная (рис.1 $B$). Это происходит потому, что металл в состоянии жидкости, способен существовать при температуре более низкой ($T_p$), чем температура кристаллизации. Температуру $T_p$ называют температурой переохлаждения ($T_p$ В процессе кристаллизации металлов можно выделить две стадии:

  1. Возникновение центов кристаллизации.
  2. Рост кристаллов.

Существует несколько схем, которые объясняют процесс кристаллизации жидких металлов. В расплаве возникают центы кристаллизации.

При уменьшении температуры ниже, чем $T_p$ (или $T_k$) за короткий отрезок времени в веществе возникают новые центры кристаллизации, они растут.

При свободном процессе кристаллизации появляется первичная ось, потом возникают вторичные оси и оси высших порядков. Кристаллы обретают древовидную (дендритную) форму.

В настоящих условиях кристаллизация протекает поначалу с большой скоростью, но при взаимном столкновении увеличивающихся кристаллов скорость процесса уменьшается.

До тех пор, пока кристалл находится в жидкости, он обладает правильной формой. Когда кристаллы сталкиваются между собой, они срастаются, правильная форма их нарушается.

Так появляются кристаллы с неправильной формой, называемые зернами (кристаллитами).

Факторы, влияющие на кристаллизацию

На прохождение процесса кристаллизации оказывают основное влияние:

  1. Наличие температуры переохлаждения.
  2. Скорость и направление отвода теплоты.
  3. Наличие примесей в металле, которые являются центрами кристаллизации.

Отметим, что в направлении отвода тепла в процессе кристаллизации, кристалл растет существенно быстрее, чем в других направлениях. Это ведет к возникновению неправильной формы кристаллов.

Рассмотрим кристаллизацию стали. Слитки стали создают в металлических изложницах. В этих емкостях металл не способен кристаллизоваться одновременно во всем объеме, поскольку теплота отводится от вещества не равномерно.

Процесс затвердевания начинается у стенок и дна емкости, так как эти части имеют более низкую температуру, чем вещество внутри.

Твердая сталь имеет более высокую плотность, чем ее расплав, в этой связи в слитке в верхней части, в результате уменьшения объема возникает усадочная раковина.

По химическому составу вещество будет неоднородным. Оси растущего кристалла имеют больше легкоплавких элементов, затвердевающих медленнее.

Процесс формирования слитка можно описать так:

  1. Расплав стали соприкасается со стенками сосуда, в котором она находится, при этом в начальный момент времени возникают мелкие центры кристаллизации, обладающие разной ориентацией.
  2. Скорость кристаллизации уменьшается, кристаллы увеличиваются. При этом они ориентируются по направлениям отвода тепла. Возникает зона слитка, которая состоит из ориентированных столбчатых и древовидных кристаллитов.
  3. Внутренняя часть слитка составлена из неориентированных, крупных равновесных кристаллитов.
  4. В верхней части слитка имеется усадочная раковина, около нее обычно располагаются мелкие газовые раковины.

Материаловедение: конспект лекций

Порядок расположения атомов – тип кристаллической решетки – природное свойство металла, форма кристаллов и их размеры зависят от процесса перехода металла из жидкого состояния в твердое.

Процесс образования кристаллов при затвердевании металлов называется кристаллизацией. При кристаллизации металлов выделяется тепло, а при переходе металлов из твердого состояния в жидкое происходит поглощение тепла.

Наблюдения с помощью измеряющих температуру проборов за процессом понижения температуры.

При переходе металла из жидкого состояния в твердое позволили установить определенную закономерность. Сначала температура понижается равномерно. В начальный период образования кристаллов вследствие выделения скрытой теплоты при формировании кристаллической решетки падение температуры прекращается, и она остается неизменной до полного затвердения металла.

После того как весь металл затвердеет, температура снова начинает понижаться. Температура, соответствующая горизонтальной площадке, называется критической. Кристаллизация металлов подобна кристаллизации солей, и этот процесс состоит из двух элементарных процессов, протекающих одновременно.

Первый заключается в образовании центров кристаллизации, или зародышей кристаллов, второй – в росте кристаллов из этих центров.

Первый этап – появление зародышей кристаллов металла.

Второй этап – по мере остывания металла к зародышам присоединяются все новые и новые атомы жидкого металла, которые группируются в определенном порядке один возле другого, образуя элементарные ячейки кристаллической решетки.

Этот процесс продолжается до тех пор, пока не закончится кристаллизация. Причем кристаллы затвердевшего металла имеют неправильную и весьма разнообразную форму, что объясняется условиями кристаллизации.

В процессе кристаллизации увеличивается количество кристаллов – в 1 мм 3 может образоваться свыше 1000 кристаллов. Кристаллы, имеющие неправильную внешнюю форму, называются кристаллитами, или зернами.

Чистые металлы относительно редко применяются в машиностроении и других отраслях хозяйственного комплекса. Более широко используются сплавы, состоящие из двух и более элементов (из двух металлов, например меди и цинка, или из металла и неметалла, например железа и углерода).

Элементы, входящие в сплав, называются компонентами. В зависимости от расположения атомов в кристаллической решетке различают твердые растворы замещения и твердые растворы внедрения.

Читайте также:  Заготовка лома черных металлов вторсклад

В твердом растворе замещения атомы растворимого компонента замещаются атомами растворителя, а в твердом растворе внедрения атомы растворителя размещаются между атомами растворимого компонента в наиболее слабых местах элементов кристаллической решетки.

Сплавы, представляющие собой твердые растворы, отличаются ценными свойствами. Они тверже и прочнее, чем входящие в него компоненты.

Компоненты некоторых сплавов при кристаллизации могут входить в химическую связь, образуя химическое соединение. Химические соединения обладают очень высокой твердостью и хорошим электросопротивлением.

Кристаллизация: определение, процесс, использование, примеры

Кристаллизация – это естественный процесс, который происходит, когда материалы затвердевают из жидкости или выпадают в осадок из жидкости или газа. Это может быть вызвано физическим изменением, таким как изменение температуры, или химическим изменением, таким как кислотность.

Кристаллизация – это процесс, определяемый размером и формой вовлеченных молекул и их химическими свойствами. Кристаллы могут быть сформированы из одного вид атома, различных видов ионов или даже больших молекул, таких как белки.

Некоторым крупным молекулам труднее пройти процесс кристаллизации, потому что их внутренняя химия не очень симметрична или взаимодействует сама с собой, чтобы избежать кристаллизации.

Самая маленькая единица кристалла называется единицей клетка, Это базовое образование атомов или молекул, к которому могут быть присоединены дополнительные единицы.

Вы можете думать об этом как о детском строительном блоке, к которому можно прикрепить другие блоки. Кристаллизация происходит так, как будто вы прикрепляете эти блоки во всех направлениях.

Некоторые материалы образуют кристаллы различной формы, что объясняет большие различия в форме, размере и цвете различных кристаллов.

Первый шаг в процессе кристаллизации – зародышеобразование. Первые атомы в массе, которые формируют кристаллическую структуру, становятся центром, и больше атомов организуется вокруг этого ядра. Когда это происходит, вокруг ядра собирается больше элементарных ячеек, образуется маленький затравочный кристалл.

Процесс зародышеобразования чрезвычайно важен при кристаллизации, поскольку ядро ​​кристалла будет определять структуру всего кристалла. Несовершенство ядра и затравочного кристалла может привести к резким перестройкам, поскольку кристалл продолжает формироваться.

Нуклеация происходит в переохлажденной жидкости или перенасыщенной растворитель.

Переохлажденная жидкость – это любая жидкость на грани превращения в твердое вещество. Для того, чтобы это произошло, должно сформироваться первоначальное ядро. Именно вокруг этого ядра процесс кристаллизации будет продолжаться.

В охлаждающей жидкости ядро ​​образуется, когда атомы или молекулы больше не имеют кинетической энергии, чтобы отскакивать друг от друга. Вместо этого они начинают взаимодействовать друг с другом и образуют стабильные кристаллические образования.

Чистые элементы обычно образуют кристаллическую структуру, в то время как крупные молекулы могут быть трудно кристаллизоваться при нормальных температурах и давлениях.

В перенасыщенном решение растворитель, несущий желаемый кристалл, находится на емкости. По мере того, как температура охлаждается или изменяется кислотность, растворимость атомов или молекул в растворе изменяется, и растворитель может удерживать их меньше. Как таковые, они «выпадают» из решения, сталкиваясь друг с другом. Это также вызывает зарождение и последующую кристаллизацию.

Поскольку другие молекулы и атомы окружают ядро, они отходят от уже установленной симметрии, добавляя к затравочному кристаллу. Этот процесс может происходить очень быстро или очень медленно, в зависимости от условий.

Вода может кристаллизоваться в лед за считанные минуты, в то время как для формирования «типичных» геологических кристаллов, таких как кварц и алмазы, требуются тысячелетия. Основное образование вокруг ядра определяет всю кристаллическую структуру.

Это различие в формации объясняет различия в кристаллах от уникальности снежинки до прозрачности алмаза.

Есть только несколько геометрических фигур, которые могут принимать кристаллы. Они определяются связями и взаимодействиями участвующих молекул.

Разные формы обусловлены разными углами связи атомов в зависимости от исходного ядра. Примеси в растворе или материале приведут к отклонению от типичного рисунка.

Как видно из снежинок, даже крошечные примеси в ядре приводят к совершенно новым и уникальным конструкциям.

Кристаллизация является распространенным и полезным лабораторным методом. Он может быть использован для очистки веществ и может быть объединен с передовыми методами визуализации для понимания природы кристаллизованных веществ.

При лабораторной кристаллизации вещество может быть растворено в подходящем растворителе. Тепло и изменения кислотности могут помочь материалу раствориться. Когда эти условия меняются местами, материалы в растворе осаждаются с разными скоростями.

Если условия контролируются должным образом, могут быть получены чистые кристаллы желаемого вещества.

Продвинутая техника визуализации, называемая кристаллографией, рентгеновскими лучами или другими высокоэнергетическими пучками и частицами, может быть пронизана через кристаллическую структуру чистого вещества.

Хотя это не создает видимого изображения, лучи и частицы дифрагируют в определенных образцах. Эти шаблоны могут быть обнаружены с помощью специальной проявочной бумаги или электронных детекторов.

Образец может затем быть проанализирован математикой и компьютерами, и модель кристалла может быть сформирована. Дифракционные картины создаются, когда частицы или лучи перенаправляются плотными электронными облаками внутри кристаллической структуры.

Эти плотные области представляют атомы и связи, присутствующие в кристалле, образовавшемся во время кристаллизации. Используя этот метод, ученые могут распознать практически любое вещество по его кристаллической форме.

Кристаллам может потребоваться огромное количество времени, чтобы сформироваться, или они могут сформироваться быстро. Ученые смогли изучить кристаллизацию, потому что в природе существует много событий, в которых кристаллизация происходит быстро.

Как уже обсуждалось, лед и снежинки являются отличными примерами кристаллизации воды. Другой интересный пример – кристаллизация меда. Когда пчелы срыгивают мед в соты, это жидкость.

Со временем молекулы сахара внутри меда начинают образовывать кристаллы в процессе кристаллизации, описанном выше. Если у вас есть старая бутылка меда, загляните внутрь. Скорее всего, в жидкости будет мало кристаллов сахара.

Если вы хотите ускорить процесс, положите мед в холодильник. Охлаждение жидкости снижает растворимость сахара в жидкости, и он быстро образует кристаллы.

Хотя процесс схожий, время, необходимое для формирования таких вещей, как кварц, рубин и гранит, намного больше. Эти кристаллы образуются при очень высоких давлениях в коре и магме Земли.

Несмотря на то, что процесс кристаллизации одинаков, условия и атомы долго соединяются, чтобы правильно кристаллизоваться. Эти процессы могут быть воспроизведены в лаборатории в более короткие сроки путем создания идеальных условий для кристаллизации.

Лаборатории также могут выращивать затравочные кристаллы, которые могут быть введены, чтобы значительно ускорить производство больших партий кристаллов одновременно.

В несколько более короткие сроки в процессе кристаллизации также образуются минеральные отложения, такие как сталактиты и сталагмиты. Когда на эти кристаллы падают небольшие капли воды, содержащиеся в них минералы интегрируются в уже имеющуюся кристаллическую структуру, и вода стекает.

1. Некоторые ученые утверждают, что кристаллы – это форма жизни. Какое из следующих утверждений поддерживает эту идею?A. Кристаллы могут свободно перемещатьсяB. Благодаря кристаллизации, кристаллы собираются и растут естественным путемC. Кристаллы – живые существа с нервной системой

Ответ на вопрос № 1

В верно. Кристаллизация – это процесс, который происходит естественным путем и во многом напоминает растущую клетку. Хотя рост кристаллов намного проще, он связан с набором правил, вытекающих из химических свойств участвующих молекул.

2. Что из перечисленного НЕ является кристаллом?A. Рубиновый каменьB. Слиток золотаC. Гелий Газ

Ответ на вопрос № 2

С верно. Очевидно, что газ не может образовывать кристалл. На самом деле, гелий должен быть переохлажден до того, как он станет жидким. Молекулы движутся слишком быстро, чтобы сформировать стабильную и правильную структуру.

Большинство других веществ в твердой форме представляют собой кристаллы, за исключением нескольких исключений. К ним относятся такие вещи, как стекло, которое не образует регулярную структуру.

Вместо кристаллизации такие материалы, как стекло и прозрачный пластик, замерзают, прежде чем можно будет создать структуру.

3. Вы берете немного морской воды из океана. Вы наливаете его в плоскую кастрюлю и оставляете на солнце. Когда вода испаряется, вы начинаете видеть маленькие кристаллы, формирующиеся на дне кастрюли.

Что происходит?A. Ничего, они были там раньшеB. По мере испарения воды присутствующие кристаллы становятся просто более заметнымиC.

Когда вода испаряется, соли кристаллизуются из раствора

Ответ на вопрос № 3

С верно. Меньше воды в кастрюле означает более высокую концентрацию соли. Когда уровень соли превышает уровень воды, она начинает выпадать из раствора и начинается процесс кристаллизации.

Если оставить на несколько дней, вода полностью испарится, оставив только кристаллизованную соль. Не ешьте это все же! Существует много видов соли, и это не хлорид натрия, который вы найдете на своем столе.

  • Брюс, П. Ю. (2011). Органическая химия (6-е изд.). Бостон: Прентис Холл.
  • Мур, Дж. Т. (2010). Основы химии для чайников. Индианаполис: Wiley Publishing, Inc.
  • Зильберберг М.С. (2009). Химия: Молекулярная природа материи и изменения (5-е изд.). Бостон: Высшее образование МакГроу-Хилл.
Понравилась статья? Поделиться с друзьями:
Станок