Пластичность металлов по порядку

16.06.2022 VT-METALL Пластичность металлов по порядку

Из этого материала вы узнаете:

  • Что такое пластичность металлов
  • Зависимость пластичности металлов от химического состава
  • Влияние температуры на пластичность металлов
  • Влияние скорости деформации на пластичность металлов
  • Как напряженное состояние влияет на пластичность металлов
  • Примеры металлов, обладающих высокой пластичностью

Пластичность металлов проявляется под воздействием высокой температуры. При этом материал деформируется или растягивается под воздействием силы, но не разрушается. Это свойство активно применяется при изготовлении разнообразных деталей. 

Высокая пластичность металла характеризуется постепенным разрушением с предварительным образованием изгиба, при низкой – материал ломается внезапно. О том, какими показателями пластичности обладают разные металлы и как это свойство используется в промышленности, расскажем далее.

Что такое пластичность металлов

Рассмотрим для начала определение пластичности металлов. Пластичностью называют способность металлов меняться под воздействием внешних факторов с сохранением изменений после окончания этого влияния. Специалисты называют это свойство обратной упругостью металлов. Высокая пластичность позволяет легко обрабатывать материалы (штамповать, ковать и пр.).

Существует прямая зависимость пластичности от температуры, до которой нагревают материал. Пластичность металлов увеличивается при нагревании, а при уменьшении температуры мягкость снижается. Если вы имеете дело с металлами, показывающими высокую пластичность в условиях комнатной температуры, то существует возможность их разрушения в случае охлаждения ниже нуля градусов по Цельсию.

VT-metall предлагает услуги:

Порошковая покраска металла

Для большинства металлов характерна пластичность. У одних она высокая – это так называемые пластичные материалы, а у других низкая – это хрупкие. При этом последние не показывают какой-либо деформации при разрушении или перед ним. Хрупким может быть, например, стекло – один из самых часто встречающихся материалов. Или чугун (особенно белый) – это уже металл, причем широкого использования.

При необходимости обработки (изменении формы) пластичность металла будет очень важным свойством. Как на практике можно использовать пластичность металлов? Кузова автомобилей, например, изготавливают из материалов с достаточной пластичностью для того, чтобы была возможность придать им необходимую форму.

Характеристика пластичности металлов прочно связана с соотношением направления, куда была приложена сила, и направления, в котором происходила прокатка материала. Катаные металлы имеют свойство направленности из-за удлинения структурных кристаллов/зерен вдоль прокатки. Соответственно, пластичность будет выше в том же направлении. Это характерно и для листовой стали.

Пластичность металлов по порядку

В поперечном же направлении прочность материала снижается, иногда до 30 %. Пластичность в том же направлении может упасть на 50 %. А по толщине материала эти свойства падают еще больше.

Некоторые виды стали показывают очень низкую пластичность в поперечном направлении. Итак, мы имеем три направления. Им присваиваются следующие обозначения.

Продольное (направление прокатки) обозначается X, поперечное – Y, по толщине – Z.

При проведении аттестации сварщиков, к примеру, при проверке навыка загиба листа стали, частенько можно увидеть излом основного металла. Он возникает из-за того, что ось шва идет параллельно с направлением прокатки металла. Несмотря на хорошие характеристики материала в направлении X, возникновение нагрузки в направлении Y или Z способно разрушить металл.

Проверка пластичности происходит с помощью теста на растяжение. Его производят в тот момент, когда испытывают металл на предел его прочности. Выражается данное свойство, как относительные удлинение и сужение сечения материала.

Существует несколько факторов, влияющих на пластичность металлов. Подробнее остановимся на каждом из них.

Зависимость пластичности металлов от химического состава

Высокую пластичность металлов обеспечивает их чистота. Мягкость чистых металлов выше, чем у сплавов. Примером может служить медь, у которой это свойство выше, чем у бронзы (сплав с оловом).

Пластичность больше выражена у сплавов, которые создают твердые растворы, нежели у тех, что образуют смеси (механические) и химические соединения.

Чем больше разница в пределах текучести и прочности, тем более прочными являются металлы.

Пластичность металлов по порядку

Пластичность металлов обусловлена в том числе компонентами сплавов:

  1. Высокое содержание углерода приводит к уменьшению пластичности. Если в материале более полутора процентов углерода, то сталь плохо поддается ковке.
  2. Пластичность стали падает с появлением в ее составе кремния. Именно поэтому холодная штамповка и глубокая вытяжка используются для обработки малоуглеродистой стали с небольшим количеством кремния. Это такие марки, как 08кп или 10кп. 
  3. Благодаря ванадию и никелю пластичность легированной стали повышается, а из-за присутствия вольфрама, хрома падает.
  4. Хрупкой сталь делает соединение серы и железа, в результате которого появляется сульфид железа в виде эвтектики. Он размещается на границах зерен и плавится в процессе нагрева до +1 000 С, разрушая связи зерен. Данный процесс получил название красноломкости.
  5. Для нейтрализации негативного воздействия серы используется марганец, который создает тугоплавкое соединение.
  6. Фосфор двояко воздействует на сталь. С одной стороны в металле возрастают пределы текучести/прочности, с другой – появляется хладноломкость из-за снижения пластичности/вязкости металла при низкой температуре.

Крупнозернистая структура литого металла создает более низкую пластичность, а в деформированном мелкозернистом она выше. Пластичность падает из-за присутствия в материале макро- и микротрещин, пор, пузырьков.

Влияние температуры на пластичность металлов

Пластичность металлов во многом зависит от температуры. Но не все так однозначно. Высокие значения повышают пластичность мало- и среднеуглеродистой стали. А, например, высокоуглеродистые более пластичны при низких значениях. При этом для шарикоподшипниковых температура вообще не влияет на пластичность.

Пластичность металлов по порядку

Существуют также сплавы, у которых пластичность повышается в определенных температурных интервалах. От +800–1 000 °С для технического железа – это температура понижения пластичности металла. А при достижении градуса плавления металла происходит увеличение хрупкости, поскольку возрастает вероятность пережога/перегрева.

У углеродистой стали существует зона синеломкости. Это температура от +100 °С до +300 °С, когда прочность материала увеличивается, а пластичность падает. Объясняется это тем, что малые части карбидов выпадают по направлению плоскости скольжения во время деформации металла. Также уменьшение пластичности происходит при фазовых превращениях.

При излишнем росте зерен в структуре металла пластичность резко уменьшается. Специалисты называют этот процесс перегревом, который исправляется отжигом. Другой процесс – пережог.

Это когда на границах зерен появляются оксиды, а также происходит плавление межзеренных прослоек при приближении температуры материала к показателю его плавления. Все это ведет к возникновению трещин и утрате пластичности.

Такой процесс невозможно исправить. Материал отдается на переплавку.

Влияние скорости деформации на пластичность металлов

Скорость деформации представляет собой изменение ее степени за определенный промежуток времени. При возрастании скорости происходит падение пластичности. Это особенно заметно в случае с высоколегированной сталью, сплавами меди и магния.

Объясняется это наличием двух разнонаправленных процессов при работе с нагретым материалом. С одной стороны, при деформации происходит его упрочение. С другой – ослабление прочности из-за рекристаллизации. Если мы имеем высокие скорости деформации, то упрочнение происходит быстрее, чем разупрочнение.

Но при еще большей скорости деформации (например, штамповке взрывом), пластичность снова начинает расти. Происходит это по причине увеличения температуры вследствие выработки теплоты при деформации. Она не может столь быстро рассеяться и приводит к возрастанию пластичности.

Как напряженное состояние влияет на пластичность металлов

Напряженное состояние определяется схемой расположения главных напряжений, которые действуют в малых объемах деформируемого металла.

Пластичность металлов по порядку

Главными напряжениями считаются нормальные, которые действуют на трех площадках, перпендикулярных друг другу, где напряжения по касательной взаимно уничтожаются (0). Существует 9 таких схем. Две из них линейные, три – плоские, четыре – объемные. Обработка давлением приводит к появлению двух объемных схем:

  • Трехосное сжатие – когда напряжения распространяются по трем осям. Присутствует при таких видах обработки металла, как прокатка, свободная ковка, прессовка, объемное штампование.
  • Напряженное состояние – когда две оси имеют напряжение сжатия, а одна – растяжения. Появляется при листовой штамповке (не всегда), а также при волочении.

Пластичность металла хорошо видна на схемах главных напряжений. Повышение роли напряжения сжатия приводит к увеличению пластичности в ходе обработки материала. Следовательно, пластичность при волочении ниже, чем при прессовании. Сжимая инструментом заготовку с боков при обработке давлением, можно увеличить напряжение сжатия металла.

Читайте также:  Металл ян на драконе денежные профессии

В элементарно малом объеме деформация определяется схемой главных ее частей. Основными считаются те, что происходят по трем перпендикулярным осям, где касательное напряжение равно нулю. В ходе обработки давлением появляются три схемы главных деформаций:

  1. По двум осям происходят главные деформации сжатия, а по одной идет тот же процесс растяжения. Схема хорошо заметна при волочении, прессовании.
  2. По одной оси идет главная деформация сжатия, по двум видны процессы растяжения. Так происходит при прокатке (в калибрах, узкой полосы…), объемной штамповке или ковке.
  3. Первая ось – это главная деформация сжатия, вторая – главная деформация растяжения, на третьей ничего не происходит. Схема работает при штамповке листов, прокатке широких полос.

Информацию о зернах и волокнах металла, а также характере их формирования можно определить из схемы главных деформаций. При обработке давлением свойства материала (физические, механические), а также текстуру определяет максимальная главная деформация.

Примеры металлов, обладающих высокой пластичностью

 Пластичность металлов объясняется в том числе чистотой металлов, но не только. Самыми высокими показателями обладают платина (серебряного цвета), золото (желтого) и медь (розово-оранжевого). Чуть более низкую пластичность имеют:

  • сталь – зависит от различных добавок и углеродистого состава;
  • латунь и прочие сплавы;
  • свинец – достаточно высокая пластичность проявляется в диапазонах температуры.

Пластичность металлов по порядку

Пластичность металла можно определить, только применяя ранее приобретенные знания или проводя эксперименты. Она зависит от того, каким образом различные добавки работают с металлическим стеклом, а также от степени чистоты металла.

Важную роль играют и иные переменные. Например, количество электронов, а также молекулярных орбиталей, которые принимают участие в связях материала. Кроме того, расположение кристалла, размер зерен.

Не существует стандартных правил. Для каждого металла нужно найти связи между различными переменными (электронными, микроскопическими), проанализировать их, используя многомерный анализ. Все это приводит к тому, что даже похожие по свойствам и характеристикам материалы могут не быть одинаково пластичными.

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Пластичность металлов по порядку

Пластичность металла

Другой, не менее важной характеристикой является пластичность металла.

Пластичность металлов по порядку

При испытании на растяжение
пластичность определяют двумя величинами:

  1. относительным удлинением,
  2. относительным сужением.

Для того чтобы понять, как эти величины определяются, следует образец до испытания сопоставить с разрушенным образцом, как это сделано на рис. 22 (выше).

После разрушения образец оказался длиннее, но он сузился, особенно в месте образования шейки.

Относительное удлинение
определяет, на какую величину образец удлинился после растяжения по отношению к первоначальной длине.

где:

  • l — начальная расчетная длина образца в мм;
  • l — конечное значение расчетной длины в мм.

Относительное сужение характеризует степень уменьшения площади поперечного сечения в шейке.

Обозначается эта величина буквой φ (пси) выражается в процентах:

где:

  • F — первоначальная площадь в мм2;
  • F —- площадь в шейке в мм2.

Испытательные машины, применяемые для определения механических свойств металлов при растяжении, очень разнообразны как по способу создания растягивающего усилия, так и по способу определения этого усилия и деформаций образца.

Испытательные машины снабжены специальным нагружающим механизмом для создания усилий.
Эти механизмы бывают механического
и гидравлического действия.

Для определения этих усилий и деформаций образца при растяжении машины снабжаются силоизмерительными устройствами разных типов.

Эти устройства в большинстве случаев имеют диаграммный аппарат, позволяющий автоматически записывать диаграмму деформации. По этой диаграмме и определяются прочностные и
пластические свойства металла.

Пластичность металлов по порядку

На рисунке показан общий вид
разрывной 4-тонной машины. Схема ее работы такова:

  1. Образец зажимается в захваты машины 4.

  2. Нижний захват опускается с помощью механического привода 1, смонтированного в нижней части машины.

  3. Верхний захват связан с маятником 3, который, отклоняясь на определенный угол, уравновешивает силу, тянущую образец вниз.

  4. Угол отклонения маятника соответствует нагрузке, прикладываемой к образцу 5.

  5. Эта нагрузка, а также растяжение образца отмечаются на диаграммном аппарате2 в виде диаграммы деформации.

§

Пластичность, в чем она состоит, свойства, примеры, эксперименты / химия

тягучесть это технологическое свойство материалов, позволяющее им деформироваться до растяжения; то есть разделение его двух концов без раннего перелома где-то посередине удлиненного участка. По мере удлинения материала его поперечное сечение уменьшается, становясь более тонким.

Поэтому пластичные материалы механически обрабатывают, чтобы придать им нитевидные формы (провода, кабели, иглы и т. Д.). На швейных машинах катушки с витыми нитями представляют собой домашний пример пластичных материалов; в противном случае текстильные волокна никогда бы не приобрели характерных форм.

Пластичность металлов по порядку

Какова цель пластичности в материалах? Способность преодолевать большие расстояния или привлекательные дизайны, будь то для разработки инструментов, украшений, игрушек; или для транспортировки некоторой жидкости, такой как электрический ток.

Последнее приложение представляет собой ключевой пример пластичности материалов, особенно металлов. Тонкие медные провода (верхнее изображение) являются хорошими проводниками электричества, и наряду с золотом и платиной доступны во многих электронных устройствах для обеспечения их работы..

Некоторые волокна настолько тонкие (толщиной всего в несколько микрометров), что поэтическая фраза «золотые волосы» приобретает все истинное значение. То же самое касается меди и серебра.

Пластичность не была бы возможным свойством, если бы не было молекулярной или атомной перегруппировки для противодействия падающей растягивающей силе. И если бы его не существовало, человек никогда бы не узнал о кабелях, антеннах, мостах, которые исчезли бы, и мир остался бы в темноте без электрического света (помимо других неисчислимых последствий).

индекс

  • 1 Что такое пластичность??
  • 2 свойства
  • 3 Примеры пластичных металлов
    • 3.1 Размер зерен и кристаллические структуры металлов
    • 3.2 Влияние температуры на пластичность металлов
  • 4 Эксперимент по объяснению пластичности у детей и подростков
    • 4.1 Жевательная резинка и пластилин
    • 4.2 Демонстрация с металлами
  • 5 ссылок

Что такое пластичность?

В отличие от пластичности пластичность заслуживает более эффективной структурной перестройки.

Почему? Потому что, когда поверхность, где натяжение больше, твердое тело имеет больше средств для скольжения своих молекул или атомов, образуя листы или пластины; в то время как когда напряжение сосредоточено во все меньшем поперечном сечении, молекулярное скольжение должно быть более эффективным для противодействия этой силе..

Не все твердые вещества или материалы могут это сделать, и по этой причине они разрушаются при испытаниях на растяжение. Полученные разрывы в среднем горизонтальны, в то время как из пластичных материалов конические или заостренные, признак растяжения.

Пластичные материалы также могут прорваться через точку напряжения. Это может быть увеличено, если температура повышается, так как тепло способствует и облегчает молекулярные слайды (хотя есть несколько исключений). Именно благодаря этим оползням материал может проявлять пластичность и, следовательно, быть пластичным.

Однако пластичность материала включает в себя другие переменные, такие как влажность, тепло, примеси и способ применения силы. Например, свежеплавленное стекло является пластичным, принимая нитевидные формы; но при охлаждении становится хрупким и может сломаться при любом механическом воздействии.

Читайте также:  Меламиновая краска по металлу

свойства

Пластичные материалы имеют свои собственные свойства, непосредственно связанные с их молекулярным расположением. В этом смысле жесткий металлический стержень и мокрый глиняный стержень могут быть пластичными, даже если их свойства сильно отличаются.

Тем не менее, все они имеют что-то общее: пластичное поведение до распада. В чем разница между пластиком и упругим предметом?

Эластичный объект обратимо деформируется, что происходит первоначально с пластичными материалами; но сила растяжения увеличивается, деформация становится необратимой, и объект становится пластичным.

С этого момента проволока или нить принимают определенную форму. После непрерывного растяжения его поперечное сечение становится настолько малым, а растягивающее напряжение слишком высоким, так что его молекулярные скольжения больше не могут противодействовать растяжению и в конечном итоге разрушаются..

Если пластичность материала чрезвычайно высока, как в случае с золотом, с помощью одного грамма можно получить провода длиной до 66 км, толщиной 1 мкм..

Чем длиннее проволока, полученная из массы, тем меньше ее поперечное сечение (если у вас нет тонны золота, чтобы построить проволоку значительной толщины)..

Примеры пластичных металлов

Металлы относятся к пластичным материалам с неисчислимым количеством применений. Триада состоит из металлов: золота, меди и платины. Один золотой, другой розовато-оранжевый, а последний серебряный. В дополнение к этим металлам есть и другие с более низкой пластичностью:

  • -железо
  • -цинк
  • -Латунь (и другие металлические сплавы)
  • -золото
  • -алюминий
  • -самарий
  • -магний
  • -ванадий
  • -Сталь (хотя на ее пластичность может повлиять, в зависимости от ее углеродного состава и других добавок)
  • -Серебро
  • -олово
  • -Свинец (но в определенных небольших температурных диапазонах)

Без предварительных экспериментальных знаний трудно определить, какие металлы действительно пластичны. Его пластичность зависит от степени чистоты и от того, как добавки взаимодействуют с металлическим стеклом.

Другие переменные, такие как размер кристаллических зерен и расположение кристалла, также рассматриваются. Кроме того, количество электронов и молекулярных орбиталей, участвующих в связи металла, то есть в «море электронов», также играет важную роль.

Взаимодействия между всеми этими микроскопическими и электронными переменными делают пластичность концепцией, которую необходимо глубоко проанализировать с помощью многомерного анализа; и вы найдете отсутствие стандартного правила для всех металлов.

Именно по этой причине два металла, хотя и с очень похожими характеристиками, могут быть или не быть пластичными.

Размер зерен и кристаллические структуры металлов

Зерна представляют собой кристаллические участки, которые не имеют заметных неровностей (зазоров) в своих трехмерных решетках. В идеале они должны быть полностью симметричными, а их структура должна быть четко определена..

Каждое зерно для одного и того же металла имеет одинаковую кристаллическую структуру; то есть металл с компактной гексагональной структурой, ГПУ, имеет зерна с кристаллами с системой ГПУ. Они расположены таким образом, что перед силой тяги или растяжения они скользят друг над другом, как если бы они были плоскостями, состоящими из мрамора..

Обычно, когда плоскости, состоящие из мелких зерен, скользят, они должны преодолевать большую силу трения; в то время как если они большие, они могут двигаться более свободно. Фактически, некоторые исследователи стремятся изменить пластичность некоторых сплавов посредством контролируемого роста их кристаллических зерен..

С другой стороны, что касается кристаллической структуры, то обычно металлы с кристаллической системой ГЦК (гранец по центру, или кубические по центру лица) являются наиболее пластичными. Между тем, металлы с ОЦК кристаллической структурой (кубическое тело, кубические с центром на гранях) или ГПУ, как правило, менее пластичны.

Например, и медь, и железо кристаллизуются с помощью ГЦК-компоновки и являются более пластичными, чем цинк и кобальт, оба с ГЦП-компоновками.

Влияние температуры на пластичность металлов

Высокая температура может уменьшить или увеличить пластичность материалов, и исключения также относятся к металлам. Однако, как правило, при размягчении металлов, тем больше возможностей превратить их в нити, не разрывая их..

Это связано с тем, что повышение температуры вызывает колебание металлических атомов, что приводит к объединению зерен; то есть несколько мелких зерен соединяются, образуя крупное зерно.

С более крупными зернами пластичность увеличивается, и молекулярные слайды сталкиваются с меньшим количеством физических препятствий.

Эксперимент по объяснению пластичности у детей и подростков

Пластичность металлов по порядку

Пластичность становится чрезвычайно сложной концепцией, если начать анализировать под микроскопом. Итак, как вы объясните это детям и подросткам? Таким образом, что это кажется настолько простым, насколько это возможно, на ваших любопытных глазах.

Жевательная резинка и пластилин

До сих пор мы говорили о металлах и расплавленном стекле, но есть и другие невероятно пластичные материалы: жевательная резинка и пластилин..

Чтобы продемонстрировать пластичность жевательной резинки, достаточно схватить две массы и начать их растягивать; один слева, а другой справа. Результатом будет мост подвески жевательной резинки, который не сможет вернуться к своей первоначальной форме, если не будет разминать руками.

Тем не менее, наступит момент, когда мост в конечном итоге сломается (и пол будет испачкан жвачкой).

На изображении выше показано, как ребенок, нажимающий на контейнер с отверстиями, заставляет пластилин появляться, как если бы это были волосы. Сухое игровое тесто менее пластично, чем маслянистое; следовательно, эксперимент может состоять просто в создании двух дождевых червей: один с сухим пластилином, а другой увлажненный маслом.

Ребенок заметит, что маслянистый червь легче вылепить и набрать длину за счет своей толщины; Пока червь высыхает, он может несколько раз сломаться.

Пластилин также представляет собой идеальный материал, чтобы объяснить разницу между податливостью (лодка, ворота) и пластичностью (волосы, дождевые черви, змеи, саламандры и т. Д.).

Демонстрация с металлами

Хотя подростки не будут манипулировать чем-либо, возможность стать свидетелем образования медных проводов в первом ряду может стать для них привлекательным и интересным опытом. Демонстрация пластичности будет еще более полной, если мы перейдем к другим металлам и, таким образом, сможем сравнить их пластичность..

Далее все провода должны подвергаться постоянному растяжению до их точки разрыва. При этом подросток будет визуально подтверждать, как пластичность влияет на сопротивление проволоки разрыву..

ссылки

  1. Энциклопедия примеров (2017). Пластичные материалы. Получено от: ejemplos.co
  2. Хельменстин, Анна Мари, доктор философии (22 июня 2018 г.) Точное определение и примеры. Получено с: мысли
  3. Chemstorm. (2 марта 2018 г.) Определение пластической химии. Получено с: chemstorm.com
  4. Белл Т. (18 августа 2018 г.). Объясненная пластичность: растягивающее напряжение и металлы. Баланс. Получено с: thebalance.com
  5. Доктор Маркс Р. (2016). Пластичность в металлах Кафедра машиностроения, Университет Санта-Клары. [PDF]. Получено от: scu.edu
  6. Рейд Д. (2018). Пластичность: определение и примеры. Исследование. Получено с: study.com
  7. Кларк Дж. (Октябрь 2012). Металлические конструкции. Получено от: chemguide.co.uk
  8. Chemicool. (2018). Факты о золоте. Получено с: chemicool.com
  9. Материалы сегодня. (18 ноября 2015 г.) Сильные металлы все еще могут быть пластичными. Elsevier. Получено с: materialstoday.com

Пластичность металлов

Раздел: БИБЛИОТЕКА ТЕХНИЧЕСКОЙ ЛИТЕРАТУРЫ Короткий путь http://bibt.ru

  • Адрес этой страницы' ?>
  • Пластичностью называется способность металла принимать под действием нагрузки новую форму не разрушаясь.

Пластичность металлов определяется также при испытании на растяжение. Это свойство обнаруживается в том, что под действием нагрузки образцы разных металлов в различной степени удлиняются, а их поперечное сечение уменьшается. Чем больше способен образец удлиняться, а его пеперечное сечение сужаться, тем пластичнее металл образца.

Необходимость определения пластичности металлов вызывается тем, что пластичные металлы можно подвергать обработке давлением, т. е. ковать, штамповать или на прокатных станах превращать слитки металлов в полосы, листы, прутки, рельсы и многие другие изделия и заготовки.

В противоположность пластичным хрупкие металлы под действием нагрузки разрушаются без изменения формы. При испытании хрупкие образцы разрушаются без удлинения, внезапно. Хрупкость является отрицательным свойством. Вполне пригодным для изготовления деталей машин будет не только прочный, но и в определенной мере пластичный металл.

Для того чтобы получить представление о пластичности металла и определить величину этого свойства, существуют две единицы измерения: относительное удлинение и относительное сужение при разрыве.

Величина относительного удлинения определяется при испытании следующим образом.

Читайте также:  Кто сильнее металл или дерево

Сначала вычисляется общее удлинение образца при разрыве l1-l0, т. е. из его длины в момент разрыва l1 вычисляется первоначальная длина l0. Полученная разность могла бы служить показателем пластичности металлов только в том случае, если бы длина образцов для испытания была всегда одинаковой.

  1. При различной же начальной длине образцов величина их удлинения для сравнения пластичности металлов является недостаточной, так как длинные образцы будут удлиняться при разрыве больше, чем короткие образцы из того же металла.
  2. Поэтому, чтобы иметь возможность сравнивать пластичность различных металлов, необходимо учитывать, какова начальная длина образца и какое он получил удлинение при разрыве относительно первоначальной ее длины.
  3. Относительное удлинение принято численно выражать в процентах по отношению к первоначальной длине образца и обозначать буквой δn.

Пример.. Первоначальная длина образца l0 = 200 мм; длина при разрыве оказалась равной 236 мм; удлинение образца составило 236—200 = 36 мм. Относительное удлинение

Относительное удлинение (%) при испытании некоторых металлов составляет: для цинка 20, алюминия 40, олова 40, железа 45, свинца 45, никеля 50, меди 50.

Вторую величину, характеризующую пластичность металлов,— относительное сужение при разрыве ψ определяют подобным же способом:

где F0 — начальная площадь поперечного сечения образца до испытания, мм2; F1 — площадь поперечного сечения образца в месте разрыва, мм2.

Таким образом, относительное сужение представляет собой отношение величины уменьшения площади поперечного сечения образца при разрыве к первоначальной площади поперечного сечения.

Перейти вверх к навигации

Физические основы пластичности металлов

Развитие учения о механических свойствах твердых тел, как известно, шло от механики абсолютно твердого тела, в которой деформации вовсе не учитываются, через теорию упругости, являющуюся первым приближением и пригодную в случаях малых и обратимых деформаций, к разрабатываемой в настоящее время теории малых упруго-пластических деформаций. Теория взаимодействия атомов кристаллической решетки, разработанная свыше 40 лет назад, находилась в резком противоречии с экспериментальными данными относительно прочности кристаллов. Из этого положения было предложено два выхода. Оба они основаны на том, что в реальном кристалле, как и вообще в твердых материалах, имеются неоднородности и несовершенства. Именно вследствие несовершенства строения у реальных тел возникает преждевременная пластичность.

Далее мнения разных исследователей расходились. Одни считали, что реальный кристалл состоит из кусочков идеального кристалла, между которыми имеются слабые места. Пластическое течение происходит только по слабым местам.

Другие полагали, что слабые места, если и играют роль в пластичности, то только в качестве источников перенапряжения.

Иначе говоря, для пластического течения необходимы большие местные перенапряжения, как это, например, было показано в опытах по управлению образованием пластических сдвигов.

Несомненно, что изучение строения реального кристалла и разнообразных дефектов, которые могут в нем существовать, является важной по своему значению задачей.

Однако спорным является положение о том, необходимо ли основывать теорию пластичности на учете этих явлений или же можно разработать теорию пластической деформации идеально правильной кристаллической решетки с последующим рассмотрением роли различных дефектов.

Ряд авторов предпочитает исходить из предположения о наличии в кристаллической решетке закономерно распределенных пороков, обладающих особыми свойствами. Предполагается, что пластическое течение кристаллов представляет собой движение этих пороков (дислокаций) в кристаллической решетке.

Последние экспериментальные данные в известной степени подтверждают дислокационные представления. Однако до сих пор остается недостаточно выясненным коренной вопрос о возникновении дислокаций в процессе пластической деформации. Поэтому необходимо уделить особое внимание экспериментальной проверке теории дислокаций.

Возможно, что такая проверка и соответствующее уточнение теории будут способствовать сближению различных точек зрения.

Разнообразные материалы, подвергаемые действию внешних механических сил, на самых начальных стадиях нагружения изменяют свои размеры и форму обратимо. Деформации, наблюдаемые при этом, называются упругими. Изучение упругих свойств твердых тел важно в связи с тем, что упругие постоянные являются мерой междучастичных сил в твердых телах.

Явления формоизменения твердых тел под воздействием внешних сил весьма сложны.

Конечные изменения, происходящие в твердых телах под воздействием внешних сил, определяются совокупностью ряда процессов, каждый из которых сам по себе еще в полной мере неясен из-за отсутствия удовлетворительных и полных представлений о природе сил связи в твердых телах, об их строении, о характере теплового движения и т.

д., иными словами, в виду отсутствия исчерпывающей теории кристаллического состояния. Однако несомненно, что основные и общие явления, происходящие в твердых телах под действием внешних сил, заключаются в атомных и молекулярных смещениях.

Известно, что явления, происходящие при формоизменении твердых тел под действием внешних сил, в сильной степени зависят от структуры и теснейшим образом связаны с процессами диффузии, релаксации, рекристаллизации, с фазовыми превращениями и в весьма сильной степени зависят от температуры.

В силу этого проблема упругого и пластического формоизменений твердых тел — проблема пластичности, по сути дела, является частью более общей проблемы — проблемы подвижности атомов и молекул в твердых телах, включающей в себя: упругость, несовершенную упругость, пластичность, ползучесть, двойникование, фазовые превращения, диффузию, релаксацию, рекристаллизацию и другие (подобные) явления.

Таким образом, разработка физического учения о пластичности требует охвата большого круга явлений, часть из которых была перечислена выше, и неотделима от решения следующих фундаментальных проблем: проблемы общей теории твердого состояния; проблемы междучастичных сил в твердых телах; проблемы идеальной и реальной структуры твердых тел; проблемы теплового движения в твердых телах.

Пластичность — способность тела (металла) к пластической деформации, т. е. способность получать остаточное изменение формы и размеров без нарушения сплошности. Это свойство используют при обработке металлов давлением. Характеристиками пластичности являются относительное удлинение и относительное сужение.

  • По степени пластичности металлы принято подразделять следующим образом:
  • высокопластичные — (относительное удлинение превосходит 40 %) — металлы, составляющие основу большинства конструкционных сплавов (алюминий, медь, железо, титан, свинец) и «легкие» металлы (натрий, калий, рубидий идр.);
  • пластичные — (относительное удлинение лежит в диапазоне между 3% и 40%) — магний, цинк, молибден, вольфрам, висмут и др. (наиболее обширная группа);
  • хрупкие — (относительное удлинение меньше 3%) — хром, марганец, кольбат, сурьма.

Высокая очистка хрупких металлов несколько повышает пластичность. Сплавы, полученные на их основе, почти не поддаются обработке давлением. Промышленные изделия из них часто получают путем литья.

Относительное удлинение . Относительное удлинение является условной характеристикой пластичности. Это объясняется тем, что абсолютное удлинение состоит из двух составляющих: равномерного удлинения дeльта lр , пропорционального длине образца, и местного, сосредоточенного удлинения в шейке дельта lш , пропорционального площади поперечного сечения образца.

Отсюда следует, что доля местной деформации, а следовательно, и значения дельта lост и δ у коротких образцов больше, чем у длинных.

При этом для различных материалов относительная величина равномерной и местной деформаций колеблется в широких пределах. Большинство пластичных материалов деформируется с образованием шейки.

При этом равномерная деформация составляет 5-10% от местной деформации, у сплавов типа дуралюмин 18-20%, у латуней 35-45% и т. д., но не больше 50%.

Для хрупких материалов или находящихся в хрупком состоянии шейка не образуется и практически дельта lост = дельта lp . Относительное удлинение, определяемое на длинных образцах, обозначается δ10 , на коротких δ5 , причем всегда δ5 > δ10 .

Относительное удлинение металлов характеризует таблица 2.

Таблица 2.

Металл Относительное удлинение, % Металл Относительное удлинение, %
Золото Титан
Серебро Олово
Свинец Алюминий 30-40
Медь 50-60 Цинк
Железо 40-50 Магний 10-22

Пластичность металлов.

Относительное сужение. У пластичных материалов относительное сужение более точно характеризует их максимальную пластичность — способность к местной деформации и нередко служит технологической характеристикой при листовой штамповке и т. д.

Понравилась статья? Поделиться с друзьями:
Станок