Как определить нагрузку на металл

Содержание
  1. Механические свойства металлов и сплавов: общий взгляд
  2. Основные механические свойства
  3. Таблица.1. Механические свойства основных промышленных сплавов
  4. Основные механические свойства металлов
  5. Механические свойства металлов
  6. Оценка свойств
  7. Физические свойства металлов
  8. Конструкторская прочность металлов
  9. Критерии оценки
  10. Как определить механические свойства?
  11. Расчет металлоконструкций — простые вычисления с помощью калькулятора + Видео
  12. Расчет металлоконструкций, основанный на СНиП
  13. Расчет металлоконструкций в отношении их экономичности
  14. Калькулятор металлоконструкций – определяем нагрузку
  15. Расчет металлоконструкций — основы расчёта металлоконструкций
  16. Расчёт по СНиП
  17. Расчет металлоконструкций в отношении экономичности
  18. Калькулятор определения нагрузки
  19. Как рассчитать металлоконструкцию
  20. Расчёт металлической балки онлайн (калькулятор)

Поведение металла под нагрузкой определяется его механическими свойствами (прочностью, пластичностью, твердостью, упругостью, жесткостью, вязкостью).

Методы испытаний механических свойств в зависимости от характера действия нагрузки делят на три группы: статические, когда нагрузка возрастает медленно (плавно); динамические – нагрузка возрастает с большой скоростью (мгновенно) – удар; циклические – при повторно-переменных нагрузках, когда нагрузка многократно изменяется по величине и знаку (испытания на усталость).

Механические свойства металлов при статическом нагружении.В результате испытаний определяют следующие характеристики металлов: прочность, пластичность, твердость, упругость, жесткость.

Прочность – свойство металла сопротивляться пластической деформации и разрушению под действием внешних сил. В зависимости от способа статического нагружения различают прочность при растяжении, сжатии и изгибе.

Испытания на растяжение. Для испытаний применяют специальные цилиндрические или плоские образцы. Расчетная длина образца равна десяти- или пятикратному диаметру. Образец закрепляют в испытательной машине и нагружают. Результаты испытаний отражают на диаграмме растяжения.

На диаграмме растяжения пластичных металлов (рис. 13, а) можно выделить три участка: ОА – прямолинейный, соответствующий упругой деформации; АВ – криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; ВС – соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит разрушение образца с разделением его на две части.

От начала деформации (точка О) до точки А образец деформируется пропорционально приложенной нагрузке. Участок ОА – прямая линия. Максимальное напряжение, не превышающее предела пропорциональности, практически вызывает только упругую деформацию, поэтому его часто называют пределом упругости металла.

Рис. 13. Диаграмма растяжения пластичных металлов:

а – с площадкой текучести; б – без площадки текучести

При испытании пластичных металлов на кривой растяжения образуется площадка текучести АА¢. В этом случае напряжение, отвечающее этой площадке, sт называют физическим пределом текучести. Физический предел текучести – это наименьшее напряжение, при котором металл деформируется (течет) без заметного изменения нагрузки.

Напряжение, вызывающее остаточную деформацию, равную 0,2 % от первоначальной длины образца, называют условным пределом текучести (σ0,2).

Участок А¢В (см. рис 13, а) соответствует дальнейшему повышению нагрузки и более значительной пластической деформации во всем объеме металла образца. Напряжение, соответствующее наибольшей нагрузке (точка В), предшествующей разрушению образца, называют временным сопротивлением, или пределом прочности при растяжении σв. Это характеристика статической прочности:

  • sв = Рmax / F0, (3)
  • где Рmax – наибольшая нагрузка (напряжение), предшествующая разрушению образца, МПа;
  • F0 – начальная площадь поперечного сечения образца, м2.

У пластичных металлов, начиная с напряжения σв, деформация сосредоточивается (локализуется) в одном участке образца, где появляется сужение, так называемая шейка.

В результате развития множественного скольжения в шейке образуется множество вакансий и дислокаций, возникают зародышевые несплошности.

Сливаясь, они образуют трещину, которая распространяется в поперечном направлении растяжению, и образец разрушается (точка С). Кривая растяжения образца без площадки текучести показана на рис. 13, б.

Пластичность – свойство металла пластически деформироваться, не разрушаясь под действием внешних сил. Это одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом.

Для определения пластичности не требуется образцов и оборудования. После испытания металла на растяжение эти же образцы измеряют и определяют характеристики пластичности. Показатели пластичности – относительное удлинение δ и относительное сужение ψ.

Относительным удлинением δ называется отношение абсолютного удлинения, т. е. приращения расчетной длины образца после разрыва (ll0), к его первоначальной расчетной длине l0, выраженное в процентах:

где l0 – первоначальная длина образца, мм;

l – длина образца после разрыва, мм.

Относительным сужением y называется отношение абсолютного сужения, т. е. уменьшения площади поперечного сечения образца после разрыва (Fо – F), к первоначальной площади его поперечного сечения, выраженное в процентах:

где F0 – первоначальная площадь поперечного сечения образца, мм2;

F – площадь поперечного сечения образца после разрыва, мм2.

Твердость – свойство металла сопротивляться внедрению в него другого более твердого тела. Для определения твердости часто не требуется изготовления специальных образцов, испытания проводятся без разрушения металла.

Существует множество методов определения твердости металлов. Но лишь некоторые из них нашли широкое применение в машиностроении. Все они названы в честь своих создателей.

Метод Бринелля. В плоскую поверхность металла вдавливается стальной закаленный шарик диаметром 10; 5 или 2,5 мм (рис. 14, а). После снятия нагрузки в металле остается отпечаток (лунка).

Диаметр отпечатка d измеряют специальным микроскопом с точностью 0,05 мм.

На практике пользуются специальной таблицей, в которой каждому диаметру отпечатка соответствует определенное число твердости НВ.

Метод Бринелля не рекомендуется применять для металлов с твердостью более НВ450, так как шарик может деформироваться и получится искаженный результат. Этот метод в основном используется для измерения твердости неупрочненного металла заготовок и полуфабрикатов.

Метод Роквелла. Твердость определяют по глубине отпечатка. Наконечником служит стальной закаленный шарик диаметром 1,58 мм для мягких металлов или алмазный конус с углом при вершине 120° – для твердых и сверхтвердых (более HRC70) металлов (рис. 14, б).

Шарик и конус вдавливаются в металл нагрузкой 60, 100 или 150 кг. Отсчет результатов измерений определяется по показанию стрелки на шкале индикатора твердомера (рис. 15, а). После включения нагрузки стрелка перемещается по шкале индикатора твердомера (рис. 15, б) и указывает значение твердости (рис. 15, в).

а б в

Рис. 15. Показания индикатора прибора ТК

При вдавливании стального шарика нагрузка – 100 кг (отсчет по внутренней (красной) шкале индикатора), твердость обозначают как НRВ.

При вдавливании алмазного конуса отсчет твердости осуществляется по показанию стрелки на наружной (черной) шкале индикатора (см. рис. 15, в). Нагрузка 150 кг – для твердых металлов. Это основной метод измерения твердости закаленных сталей.

Обозначение твердости – НRC. Для очень твердых металлов, а также мелких деталей нагрузка – 60 кг, обозначение твердости – НRА.

Определение твердости по Роквеллу дает возможность испытывать мягкие и твердые металлы, а отпечатки от шарика или конуса очень малы, поэтому можно измерять твердость готовых деталей. Измерения не требуют никаких вычислений – число твердости читается на шкале индикатора твердомера. Поверхность для испытания должна быть шлифованной.

Метод Виккерса. В испытуемую поверхность (шлифованную или полированную) вдавливается четырехгранная алмазная пирамида под нагрузкой 5, 10, 20, 30, 50, 100 кг. В металле остается квадратный отпечаток. Специальным микроскопом твердомера измеряют величину диагонали отпечатка (рис. 16). Зная нагрузку на пирамиду и величину диагонали отпечатка, по таблицам определяют твердость металла, обозначаемую как HV.

Этот метод универсальный. Его можно использовать для определения твердости деталей малой толщины и тонких поверхностных слоев большой твердости (после азотирования, нитроцементации и т. п.). Чем тоньше металл, тем меньше должна быть нагрузка на пирамиду, но чем больше нагрузка, тем точнее получаемый результат.

Прочность при динамическом нагружении(испытания на ударную вязкость – на удар).В процессе эксплуатации многие детали машин испытывают динамические (ударные) нагрузки.

Для определения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб.

В результате определяют ударную вязкость – характеристику динамической прочности.

Для определения ударной вязкости применяют 20 типов образцов (обычно размером 10 ´ 10 ´ 55 мм) с U- или V-образным надрезом. Надрез посередине образца называется концентратором. Испытания проводят на маятниковом копре 1 (рис. 17, а).

Маятник 2, падая с определенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 17, б).

Работа удара К (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:

  1. К = G (h1 – h2), (6)
  2. где G – вес маятника, Н;
  3. h1 – высота подъема маятника до разрушения образца, м;
  4. h2 – высота подъема маятника после разрушения, м.
  5. Ударная вязкость обозначается КС (прежнее обозначение – aн) и подсчитывается как отношение работы, затраченной на разрушение образца К, к площади поперечного сечения образца в месте надреза F, МДж/м2:
  6. КС (aн) = К / F. (7)

Если образец имеет U-образный надрез, то в обозначение ударной вязкости добавляется буква U (КСU), а если V-образный, то добавляется буква V (КСV). Например, KCU = 1 кгс×м/см2 = 98 кДж/м2.

Читайте также:  Надо ли смывать преобразователь ржавчины с металла

Определение ударной вязкости является наиболее простым и показательным способом оценки способности металлов, имеющих объемно центрированную кубическую решетку, к хрупкости при работе в условиях низких температур, называемой хладноломкостью.

Практически хладноломкость определяют при испытании на удар серии образцов при нескольких понижающихся значениях температуры (от комнатной до минус 100°С). Результаты испытаний наносят на график в координатах «ударная вязкость – температура испытания».

Температура, при которой происходит падение ударной вязкости, называется критической температурой хрупкости, или порогом хладноломкости.

Порог хладноломкости – отрицательная температура, при которой металл переходит из вязкого состояния в хрупкое.

Прочность при циклическом нагружении(испытания на усталость). Многие детали (валы, рессоры, рельсы, шестерни) в процессе работы подвергаются повторно-переменным нагрузкам. Разрушение таких деталей при эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла.

Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, называется уста-лостью. Свойство металла выдерживать большое число циклов переменных напряжений, т. е.

противостоять усталости, называется выносливостью, или циклической (усталостной) прочностью.

Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках.

Она характеризуется наибольшим напряжением s-1, которое выдерживает металл при бесконечно большом числе циклов нагружения не разрушаясь и называется пределом усталости, или пределом выносливости.

Для углеродистой конструкционной стали предел усталости принимается равным (0,4 – 0,5) sв.

Значение предела выносливости зависит от целого ряда факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.

Пораженная трещиной часть сечения детали не несет нагрузки, и она перераспределяется на оставшуюся часть, которая непрерывно уменьшается, пока не произойдет мгновенное разрушение. Таким образом, для усталостного излома характерно, как минимум, наличие зоны прогрессивно растущей трещины 1 и зоны долома 2 (рис. 18).

Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.

Живучесть – это способность металла работать в поврежденном состоянии после образования трещины. Она измеряется числом циклов нагружения до разрушения или скоростью развития трещины усталости при данном напряжении.

Живучесть является самостоятельным свойством, которое не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии.

Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.

Для повышения усталостной прочности деталей желательно в поверхностных слоях металла создавать напряжение сжатия методами поверхностного упрочнения (механическими, термическими или химико-термическими).

3. металлические сплавы

Чистые металлы в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств, поэтому для изготовления деталей машин наибольшее распространение получили металлические сплавы – вещества, обладающие металлическими свойствами, представляющие собой сочетание какого-либо металла (основа сплава) с другими металлами или неметаллами. Например, латунь – сплав меди (металл) с цинком (металл), сталь – сплав железа (металл) с углеродом (неметалл). Большинство сплавов получают путем сплавления, т. е. соединения компонентов сплава в жидком состоянии. Есть и другие способы образования сплавов. Так, металлокерамические сплавы образуются путем спекания из порошков.

Механические свойства металлов и сплавов: общий взгляд

Главная / Виды металла /  

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.

Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень.

чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств.

Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства

К основным механическим свойствам относят прочность, пластичность, твердость, ударную вязкость и упругость. Большинство показателей механических свойств определяют экспериментально растяжением стандартных образцов на испытательных машинах.

Прочность — способность металла сопротивляться разрушению при действии на него внешних сил.

Пластичность — способность металла необратимо изменять свою форму и размеры под действием внешних и внутренних сил без разрушения.

Твердость — способность металла сопротивляться внедрению в него более твердого тела.

Твердость определяют с помощью твердомеров внедрением стального закаленного шарика в металл (на приборе Бринелля) или внедрением алмазной пирамиды в хорошо подготовленную поверхность образца (на приборе Роквелла).

Чем меньше размер отпечатка, тем больше твердость испытуемого металла. Например, углеродистая сталь до закалки имеет твердость 100 . . . 150 НВ () , а после закалки — 500 . . . 600 НВ.

Ударная вязкость — способность металла сопротивляться действию ударных нагрузок. Эта величина, обозначаемая КС (Дж/см2 или кгс • м/см ), определяется отношением механической работы А, затраченной на разрушение образца при ударном изгибе, к площади поперечного сечения образца.

Упругость — способность металла восстанавливать форму и объем после прекращения действий внешних сил. Эта величина характеризуется модулем упругости Е (МПа или кгс/мм2), который равен отношению напряжения а к вызванной им . Высокой упругостью должны обладать стали и сплавы для изготовления рессор и пружин.

Таблица.1. Механические свойства основных промышленных сплавов

Техническое железо Мембраны
Чугун серый 12—38 до 0,25 143—220 Отливки фасонные
Чугун высокопрочный 30—60 0,5—10 170—262 Ответственные отливки
Сталь малоуглеродистая (мягкая) 32 — 70 11 — 28 100—130 Котельное железо трубы, котлы
Сталь среднеуглеродистая (средней твердости) 50—70 12 — 16 170 — 200 Оси, шатуны, валы, рельсы
Сталь твердая после закалки и отпуска 110—140
  • до 9
  • 400—600
  • Инструмент ударный и режущий
  • Бронза оловянистая
  • 15 — 25
  • 3—10
  • 70—80
  • Детали, работающие на истирание и подверженные коррозии
  • Бронза алюминиевая
  • 40—50
  • 120
  • То же
  • Латунь однофазная
  • 25 — 35
  • 30-60
  • 42—60
  • Патронно-гильзовое производство
  • Латунь двухфазная
  • 35—45
  • 30—40
  • _
  • Детали, изготовленные горячей штамповкой
  • Силумин
  • 21—23
  • 1 — 3
  • 65—100
  • Детали в авиастроении и автостроении
  • Сплавы магния
  • 24 — 32
  • 10—16
  • 60—70
  • То же

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

— Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

— Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.

— Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

— Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Механические свойства металлов

Под механическими свойствами понимают характеристики, определяющие поведение металла (или другого материала) под действием приложенных внешних механических сил. К механическим свойствам обычно относят сопротивление металла (сплава) деформации (прочность) и сопротивление разрушению (пластичность, вязкость, а также способность металла не разрушаться при наличии трещин).

В результате механических испытаний получают числовые значения механических свойств, т. е. значения напряжений или деформаций, при которых происходят изменения физического и механического состояний материала.

Читайте также:  Чем изолировать нихромовую нить от металла

Оценка свойств

При оценке механических свойств металлических материалов различают несколько групп их критериев.

  1. Критерии, определяемые независимо от конструктивных особенностей и характера службы изделий. Эти критерии находятся путем стандартных испытаний гладких образцов на растяжение, сжатие, изгиб, твердость (статические испытания) или на ударный изгиб образцов с надрезом (динамические испытания).
  2. Прочностные и пластические свойства, определяемые при статических испытаниях на гладких образцах хотя и имеют важное значение (они входят в расчетные формулы) во многих случаях не характеризуют прочность этих материалов в реальных условиях эксплуатации деталей машин и сооружений. Они могут быть использованы только для ограниченного числа простых по форме изделий, работающих в условиях статической нагрузки при температурах, близких к нормальной.
  3. Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия и характеризуют работоспособность материала в условиях эксплуатации.

Физические свойства металлов

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.

Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства — те что проявляется в покое, механические — только под воздействием извне.

Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла «прочность» может быть результатом его грамотной технологической обработки (с этой целью нередко используют «закалку» и «старение»).

Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.

В чем отличия механических свойств металлов и сплавов?

Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств.

Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью.

Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции.

Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя «шов» под нагрузкой, будет зависеть безопасность и надежность всей конструкции.

Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Конструкторская прочность металлов

Критерии конструктивной прочности металлических материалов можно разделить на две группы:

  • критерии, определяющие надежность металлических материалов против внезапных разрушений (вязкость разрушения, работа, поглощаемая при распространении трещин, живучесть и др.). В основе этих методик, использующих основные положения механики разрушения, лежат статические или динамические испытания образцов с острыми трещинами, которые имеют место в реальных деталях машин и конструкциях в условиях эксплуатации (надрезы, сквозные отверстия, неметаллические включения, микропустоты и т. д.). Трещины и микронесплошности сильно меняют поведение металла под нагрузкой, так как являются концентраторами напряжений;
  • критерии, которые определяют долговечность изделий (сопротивление усталости, износостойкость, сопротивление коррозии и т. д.).

Критерии оценки

Критерии оценки прочности конструкции в целом (конструкционной прочности), определяемые при стендовых, натурных и эксплуатационных испытаниях. При этих испытаниях выявляется влияние на прочность и долговечность конструкции таких факторов, как распределение и величина , дефектов технологии изготовления и конструирования металлоизделий и т. д.

Для решения практических задач металловедения необходимо определять как стандартные механические свойства, так и критерии конструктивной прочности.

Как определить механические свойства?

  1. Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:
  2. — испытания на растяжение;
  3. — метод вдавливания по Бринеллю;
  • — определение твердости металла по Роквеллу;
  • — оценка твердости по Виккерсу;
  • — определение вязкости с помощью маятникового копра;

Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

Поделитесь в соц.сетях:

Расчет металлоконструкций — простые вычисления с помощью калькулятора + Видео

Изделия из стали и чугуна, прокатные или литые, используются обычно при сооружении несущих элементов построек, вследствие чего расчет металлоконструкций должен быть предельно точным.

Расчет металлоконструкций, основанный на СНиП

Определение пригодности любого продукта металлургической промышленности начинается с марки стали или чугуна, которая в наибольшей степени отвечает возлагаемым на изделие задачам.

Иными словами, если конструкция, которая будет собрана из ряда металлических изделий, является несущей, нужны одни марки сплавов, если не несущей, можно использовать их же, или варианты с более низкой прочностью.

Однако, поскольку вы будете покупать готовые изделия, задумываться о свойствах металлов не придется, нужно лишь выбрать наиболее подходящий материал с оптимальными характеристиками.

В первую очередь, вам нужно определиться, будете ли вы собирать конструкцию сваркой или это будет болтовое соединение деталей. Исходя из заданных параметров, вам останется выбрать тот или иной вид металлопроката.

При этом рекомендуется оглядываться на СНиП II-23-81, поскольку для каждого вида металлоконструкций существуют определенные нормативы.

По большей части в строительстве используется металлопрокат общего назначения, а именно: тавры и двутавры, трубы различных типов профиля (круг, квадрат, прямоугольник), уголки, швеллеры. Также в ход идут специальные изделия, получаемые путем проката – двутавровые балки, профильный лист.

Все метизы классифицируются по сортаментам, то есть, по таким характеристикам, как форма, габариты, вес определенной единицы длины (как правило, погонного метра), допустимые погрешности размеров и геометрии, и даже способ перевозки.

Кроме того, все металлопрокатные изделия производятся согласно ГОСТ или, что случается реже, техническим условиям предприятия. Выбор же лучше делать, исходя из того, насколько характеристики выгодны для той или иной задачи.

Расчет металлоконструкций относительно экономичности проката выполняется отдельно, для этого существуют специальные формулы, и начнем мы именно с этого этапа.

Читайте еще:   Температура плавления цветных и черных металлов

Расчет металлоконструкций в отношении их экономичности

Мнение, что чем меньше габариты и вес металлопроката, тем выгоднее будет из него конструкция – ошибочно. Нетрудно догадаться, что более тонкие уголки выдержат меньшую нагрузку и это справедливо по отношению к любым материалам из стали или чугуна.

Поэтому основных критериев определения экономичности изделия, будь то двутавр или швеллер, используются довольно много. В частности, обычный и пластический момент сопротивления (соответственно, W и Wп), момент инерции I, радиус инерции i и сопротивление поперечного сечения срезу Cc.

Именно по всем этим параметрам определяется наиболее выгодная форма изделия.

Для частных случаев логичнее использовать такую величину, как удельная площадь профиля в поперечном сечении, которая обозначается как Аw и определяется по формуле Аw = А/W2/3.

Здесь А – площадь поперечного сечения профиля, или, иначе, заданное количество материала, а W – момент сопротивления, равный единице.

Сравнивая различные конструкционные элементы и имея показатели N = N1, которые могут выражать любую из характеристик материала (W, Wп, I, I или Cc), мы все равно не всегда получаем идентичные профили.

А потому необходимо выполнять расчет металлоконструкций по формуле определения относительной экономичности одного материала относительно другого: Δ = (F/F1 – 1) . 100 %, результат вычислений выражается в процентах. Здесь F и F1 могут означать массу либо стоимость определенной единицы длины или всего металлопрокатного изделия, а также площадь поперечного сечения.

Калькулятор металлоконструкций – определяем нагрузку

Неважно, что сделано из проката – ферма или балка, на нее сразу начинают воздействовать определенные силы изгиба, кручения и многие другие.

Помимо этого со временем добавляются и другие нагрузки, которые необходимо предусмотреть, например, масса снегового покрова на крыше или даже накапливание пыли и грязи на металлических перекрытиях.

Но в первую очередь следует учитывать именно воздействующие силы, и рассчитать их поможет калькулятор металлоконструкций.

Читайте также:  Фундаментный болт м36 оцинкованный

Читайте еще:   Особенности закалки стали 40x в домашних условиях

Итак, в первую очередь рассмотрим наиболее значительные нагрузки, возникающие за счет собственной массы конструкции и многих других факторов – на изгиб и изгиб с растяжением. Вычислить можно по формулам σ = M/W

Расчет металлоконструкций — основы расчёта металлоконструкций

Определение годности к использованию металлоконструкции начинается с выявления марки стали, которая в наибольшей степени отвечает возлагаемым на изделие задачам. Другими словами, если конструкция, является несущей, можно использовать элементы одной марки сплавов, если не несущей, есть возможность использовать варианты с более низкой прочностью.

Расчёт по СНиП

Перед тем как, перейти к расчетам, для начала, нужно определиться, каким образо будет собираться конструкция в последующем, с помощью сварных или болтовых соединений.

Исходя из этих данных, останется выбрать тот или иной вид металлопроката.

При этом желательно, а в некоторых случаях обязательно необходимо учитывать требования СНиП, поскольку для каждого вида металлоконструкций существуют определенные нормативы.

В большинстве случаев в строительстве используется металлопрокат общего назначения, а именно: тавры и двутавры, трубы различных типов профиля (круг, квадрат, прямоугольник), уголки, швеллеры. Также применяют специальные изделия, получаемые путем проката – двутавровые балки, профильный лист

Классификация проводится по следующим характеристикам: форма, габариты, вес определенной единицы длины, допустимые погрешности размеров и геометрии, и даже способ перевозки.

Важно знать, что все металлопрокатные изделия производятся согласно ГОСТ или в редких случаях согласно техническим условиям предприятия.

Расчет металлоконструкций относительно экономичности проката выполняется отдельно, для этого существуют специальные формулы, и начнем мы именно с этого этапа.

Расчет металлоконструкций в отношении экономичности

Существует ошибочное мнение, что чем меньше габариты и вес металлопроката, тем выгоднее будет из него конструкция. Понятно, что более тонкие уголки выдержат меньшую нагрузку и это справедливо по отношению к любым материалам из металла.

Поэтому основных критериев определения экономичности изделия, будь то двутавр или швеллер, используются довольно много. В частности, обычный и пластический момент сопротивления (соответственно, W и Wп), момент инерции I, радиус инерции i и сопротивление поперечного сечения срезу Cc.

Именно по всем этим параметрам определяется наиболее выгодная форма изделия.

  • Фото из открытых источников, носит иллюстрационный характер
  • В большинстве случаев логично использовать такую величину, как удельная площадь профиля в поперечном сечении, которая обозначается как Аw и определяется по формуле:
  • Аw = А/W2/3.
  • А – площадь поперечного сечения профиля, или, иначе, заданное количество материала;
  • W – момент сопротивления, равный единице.
  • Сравнивая различные элементы конструкции, при этом имея показатели N = N1, которые могут выражать любую из характеристик материала (W, Wп, I, I или Cc), мы все равно не всегда получаем идентичные профили. В связи с этим необходимо выполнять расчет металлоконструкций по формуле определения относительной экономичности одного материала относительно другого:
  • Δ = (F/F1 – 1). 100%
  • F и F1 могут означать массу либо стоимость определенной единицы длины или всего металлопрокатного изделия, а также площадь поперечного сечения.

Калькулятор определения нагрузки

На ферму или балку, сразу начинают воздействовать силы изгиба и кручения. Помимо этого, с течением времени добавляются другие нагрузки, которые необходимо предусмотреть, например это может быть: масса снега на кровле, накапливание пыли и грязи на металлических перекрытиях.

Однако в первую очередь следует учитывать именно воздействующие силы, и рассчитать их поможет калькулятор металлоконструкций. Рассмотрим наиболее значительные нагрузки, возникающие за счет собственной массы конструкции и других факторов – на изгиб и изгиб с растяжением.

Вычислить можно по формулам:

  1. σ = M/W

Как рассчитать металлоконструкцию

Вам понадобится

  • — все возможные размеры металлоконструкции, указанные в проекте либо на чертеже предполагаемого построения;
  • — сечения;
  • — сопряжения;
  • — нагрузки;
  • — специальное программное обеспечение.

Инструкция

Для расчета металлоконструкций используются данные определенных комбинаций нагрузок. Последние могут быть динамическими и статическими.

Статические нагрузки в определенном положении действуют постоянно и направлены по вертикали, потому их еще называют гравитационными. Динамические нагрузки могут возникать, исчезать, менять место и силу приложения. К ним относят ветер, осадки, температурные колебания.

Чтобы рассчитать прочность металлоконструкции, возьмите значение максимально действующей на сооружение силы, которое определяется в соответствии с техническими условиями, и умножьте на коэффициент запаса. Если отсутствуют вибронагрузки, то этого достаточно для расчета.

Проведите расчет по методу предельных состояний. Первое предельное состояние — это несущая способность металлоконструкции. При достижении этого состояния сооружение терпит изменения своей формы или теряет способность сопротивляться внешним воздействиям.

Условие для первого предельного состояния выглядит так: N≤Ф, где N — это усилие в элементе конструкции, а Ф — предельное усилие, определяющее сопротивление элемента. При втором предельном состоянии появляются недопустимые колебания или деформации. Его условие: δ ≤ δпр, где δ — это деформация конструкции в результате внешних воздействий, а δпр — предельная деформация.

Третье предельное состояние характеризуется появлением трещин, при которых дальнейшая эксплуатация конструкции невозможна. Для этого предельного состояния используют формулу: е ≤ епр, где е — это раскрытие трещины.

Воспользуйтесь программами для расчета металлоконструкций, такими как «Каркас» (из коллекции SCAD), MSC.Software, Nastran, Lira, ANSYS и другим софтом для инженерных расчетов.

Видео по теме

Обратите внимание

Основные требования норм расчета заключаются в том, чтобы значения деформаций, напряжений и размеры трещин, возможность которых учитывается при расчете прочности металлоконструкций под влиянием внешних факторов, не превышали предельных значений. Эти значения определяются нормативными документами, такими как «Строительные нормы и правила», а также техническими условиями проектирования.

Полезный совет

Чтобы не ошибиться в подсчетах и учесть все возможные случаи, целесообразно обратиться к эксперту-проектировщику, который на основе ваших данных качественно произведет расчет металлоконструкции.

Источники:

  • Основы расчета металлических конструкций
  • как рассчитать прочность

Расчёт металлической балки онлайн (калькулятор)

1. Сбор нагрузок

Перед началом расчета стальной балки необходимо собрать нагрузку, действующая на металлическую балку. В зависимости от продолжительности действия нагрузки разделяют на постоянные и временные.

К постоянным нагрузкам относятся:

  • собственный вес металлической балки;
  • собственный вес перекрытия и т.д.;

К временным нагрузкам относятся:

  • длительная нагрузка (полезная нагрузка, принимается в зависимости от назначения здания);
  • кратковременная нагрузка (снеговая нагрузка, принимается в зависимости от географического расположения здания);
  • особая нагрузка (сейсмическая, взрывная и т.д. В рамках данного калькулятора не учитывается);

Нагрузки на балку разделяют на два типа: расчетные и нормативные. Расчетные нагрузки применяются для расчета балки на прочность и устойчивость (1 предельное состояние).

Нормативные нагрузки устанавливаются нормами и применяется для расчета балки на прогиб (2 предельное состояние). Расчетные нагрузки определяют умножением нормативной нагрузки на коэффициент нагрузки по надежности.

В рамках данного калькулятора расчетная нагрузка применяется при определении прогиба балки в запас.

Общий расчет металлоконструкций можно почитать нашем сайте.

Нагрузки можно собрать на нашем сайте.

После того как собрали поверхностную нагрузку на перекрытие, измеряемой в кг/м2, необходимо посчитать сколько из этой поверхностной нагрузки на себя берет балка. Для этого надо поверхностную нагрузку умножить на шаг балок(так называемая грузовая полоса).

Например: Мы посчитали, что суммарная нагрузка получилась Qповерхн.= 500кг/м2, а шаг балок 2,5м. Тогда распределенная нагрузка на металлическую балку будет: Qраспр.= 500кг/м2 * 2,5м = 1250кг/м. Эта нагрузка вносится в калькулятор

2. Построение эпюр

Далее производится построение эпюры моментов, поперечной силы. Эпюра зависит от схемы нагружения балки, вида опирания балки. Строится эпюра по правилам строительной механики. Для наиболее частоиспользуемых схем нагружения и опирания существуют готовые таблицы с выведенными формулами эпюр и прогибов.

3. Расчет по прочности и прогибу

После построения эпюр производится расчет по прочности (1 предельное состояние) и прогибу (2 предельное состояние). Для того, чтобы подобрать балку по прочности, необходимо найти требуемый момент инерции Wтр и из таблицы сортамента выбрать подходящий металлопрофиль.

Вертикальный предельный прогиб fult принимается по таблице 19 из СНиП 2.01.07-85* (Нагрузки и воздействия). Пункт2.а в зависимости от пролета. Например предельный прогиб fult=L/200 при пролете L=6м.

означает, что калькулятор подберет сечение прокатного профиля (двутавра, швеллера или двух швеллеров в коробку), предельный прогиб которого не будет превышать fult=6м/200=0,03м=30мм.

Для подбора металлопрофиля по прогибу находят требуемый момент инерции Iтр, который получен из формулы нахождения предельного прогиба. И также из таблицы сортамента подбирают подходящий металлопрофиль.

4. Подбор металлической балки из таблицы сортамента

Из двух результатов подбора (1 и 2 предельное состояние) выбирается металлопрофиль с большим номером сечения.

Понравилась статья? Поделиться с друзьями:
Станок