Что такое плазменная резка металла: описание и особенности резки

Содержание
  1. Что такое плазменная резка металла, технология процесса
  2. Для чего можно использовать плазморезку
  3. Важное о плазматроне
  4. Какие газы используются в плазморезке
  5. Плюсы и минусы плазменной резки
  6. Приборы для плазменной резки
  7. Автоматические устройства
  8. Ручные резаки
  9. Источники питания плазматрона
  10. Критерии выбора плазматрона
  11. Практика использования плазменного резака и требования безопасности
  12. Плазменная резка металла: принцип работы и особенности технологии, устройство ручного резака
  13. Физика плазмы
  14. Классификация видов плазменной резки
  15. Простой
  16. С применением защитного газа
  17. С водой вместо воздуха
  18. Преимущества резки плазмой
  19. Недостатки плазморезки
  20. Советы и нюансы
  21. Как работать плазморезкой?
  22. Выбор аппарата для плазменной резки
  23. Выбор плазменного резака по мощности
  24. Выбор резака по времени и скорости разрезания материала
  25. Пара слов о горелке
  26. Плазменная резка металла: принцип работы, технология, системы
  27. 1. Технология плазменной резки
  28. 1.1 Принцип работы плазменной резки
  29. 1.2 Газы, используемые в плазменной резке
  30. 1.3 Раскрой разных видов металлов
  31. 2. Ручная плазменно-дуговая резка металлов
  32. 3. Автоматическая плазменная резка
  33. 4. Применение плазменной резки
  34. 5. Преимущества и недостатки плазменной резки
  35. Плазменная резка металлов: описание технологии
  36. Основы плазменной резки металла
  37. Как осуществляется резка металлов плазмой?
  38. Виды плазменной резки металлов
  39. Скорость и точность процесса плазменной резки металлов
  40. Можно ли выполнять резку цветных металлов при помощи плазмы?
  41. Сфера применения плазменного раскроя металлов
  42. Основные достоинства и недостатки резки металлов плазмой
  43. Сравнение лазерной и плазменной резки металла
  44. Плазменная резка металла: особенности и преимущества метода
  45. Основные преимущества плазменной резки
  46. Особенности технологии
  47. Оборудование для плазменной резки
  48. По принципу действия плазмотроны делятся на два вида:
  49. Также оборудование различается по назначению:
  50. Плазменная резка металла в NAYADA

Что такое плазменная резка металла, технология процесса и критерии подбора аппаратов – об этом пойдёт речь в обзоре редакции HouseChief.

Благодаря высокой точности и аккуратности получаемого результата, именно этот способ раскроя металла выходит на первый план. Тем более, на рынке строительных товаров появились бытовые аппараты подобного назначения, доступные непрофессионалам.

Как выбрать такой аппарат? По каким критериям различаются модели? Обо всём этом и многом другом – в нашем материале.

Плазменная резка отличается высокой точностью и аккуратным разрезом

Что такое плазменная резка металла, технология процесса

Если объяснять эту технологию простыми словами, то плазменная резка – это процесс нагрева металла струёй плазмы. Для выполнения такой задачи используют специальный аппарат – плазморез.

Он формирует высокотемпературную электродугу, которая располагается между соплом резака и материалом. Температура дуги достигает 5000ºС.

Но её недостаточно для эффективной резки металла, так что дополнительно в рабочую область подаётся газ, который формирует плазму с температурой до 30000ºС.

Плазма ярко светится, скорость её выхода из сопла достигает 1500 м/с. Вместе всё это и режет металл, как горячий нож масло

Для чего можно использовать плазморезку

Плазменная резка востребована во многих отраслях. Между прочим, она используется не только для металлических деталей, но и для обработки пластика и камня.

Этот вид резки востребован в машиностроении, коммунальном хозяйстве и строительных работах

Плазморезкой можно кроить практически все металлы, с учётом их особенностей. Отличные результаты даёт резка низкоуглеродистых сталей. Именно по ним и рассчитываются стандартные параметры эффективности устройства. Высокоуглеродистые и легированные стали требуют усложнённого подхода с дополнительными настройками и режимами.

Цветные металлы режут с помощью смеси газов, состоящей из аргона, азота и водорода. Здесь важна высокая технологичность процесса и предельная аккуратность для устранения потерь в процессе работы

Важное о плазматроне

Задача плазматрона – объединить электродугу и газ в плазму. Для этой цели в приборе есть небольшое отверстие – сопло, через которое поступает газ. В бытовых приборах оно управляется вручную, держать его следует на весу, что усложняет процедуру раскроя. Отсутствие опыта такой работы приводит к появлению оплавленных краёв и неровностей.

Чтобы повысить качество обработки, можно воспользоваться различными приспособлениями в виде подставок и шаблонов

Для работы резака со сталью используют азот или воздух. Чтобы выдувать оплавленный метал из шва, газ должен направляться в сопло под давлением. Для этого его закачивают в ёмкости, которые и подключаются к плазморезке.

Какие газы используются в плазморезке

Для образования плазмы могут использоваться разные газовые смеси.

  1. Воздушно-плазменная резка предполагает применение воздуха. Так можно обрабатывать чёрные металлы, нержавеющую сталь, латунные и медные детали.
  2. Кислородная резка. Этот газ применяют в профессиональном инструменте, который позволяет быстро и качественно кроить металлические листы.
  3. Защитные газы. Резаки с такими видами смесей используется, в том числе в ювелирном деле, так как дают высокое качество реза. Установки с использованием защитных газов стоят до 12 миллионов рублей.

При работе с кислородом образуется минимальное количество оплавленного шлака

Плюсы и минусы плазменной резки

Чтобы определиться с достоинствами и недостатками плазмореза, нужно сравнить его работу с ближайшими конкурентами: лазерным, гидроабразивным и кислородно-газовым резаками. В результате сравнения можно отметить такие положительные параметры:

  • способность резки листов до 50 мм толщиной;
  • возможность обработки любых видов металлов: от чёрных до цветных;
  • высокую точность реза;
  • скорость работы до 7 м/мин.;
  • мобильность приборов с ручным управлением;
  • минимальное количество шлака и оплава.

Но вместе с тем, присутствуют и сложности, о которых следует знать:

  • сами аппараты и расходники к ним стоят довольно дорого;
  • конусность реза минимальна.

Приборы для плазменной резки

На прилавках специализированных магазинов вы встретите приборы двух типов: для бесконтактной и контактной резки.

Бесконтактная резка используется для обработки пластика и натурального камня. В таких устройствах плазма образуется между соплом и электродом.

Бесконтактная резка используется для обработки пластика и натурального камня

Контактная обработка подразумевает непосредственное соприкосновение электродуги с металлом. Именно такие устройства обычно приобретают для бытовых нужд.

Автоматические устройства

Такие приборы можно встретить на промышленных предприятиях. Они управляются с помощью компьютеризированных систем и позволяют точно кроить серийные листовые детали толщиной до 7 см. Обычно это очень мощные агрегаты, которые питаются от сети в 380 В.

Стоимость подобных агрегатов – от миллиона рублей и выше

Ручные резаки

Устройства с ручным управлением мобильны и довольно компактны. Они состоят из самого плазмотрона, шланга, трансформаторного блока и выпрямительной подстанции.

Работа с такими аппаратами может происходить в двух направлениях:

  • косвенной, бесконтактной резки струёй плазмы. Этот принцип используется для неметаллических поверхностей;
  • прямой контактной резки для металлических деталей.

Такие устройства используются не только в быту, но и на предприятиях, осуществляющих металлообработку

Вес таких приборов редко превышает 25 кг, работают они от сети с обычным напряжением в 220 В. Подобные устройства универсальны и стоят от 15 тысяч рублей.

Источники питания плазматрона

Не все приборы для ручной резки работают от переменного тока. Некоторые резцы могут иметь преобразователи и усилители. Но КПД у них ниже, чем у инструментов, получающих питание постоянным током. Получается, что только такие приборы являются универсальными для резки любых изделий.

Для цветных металлов, температура плавления которых ниже стали, достаточно использования резака с инвертором. Это самый оптимальный выход, позволяющий работать в мобильном режиме

Трансформаторы весят гораздо больше, но и мощность выдают соответствующую. Они не дают сбои при перепадах напряжения. Плюс трансформаторы можно использовать постоянно, не делая перерывы на остывание. Но и счётчик электроэнергии при этом мотает киловатты с космической скоростью.

Критерии выбора плазматрона

На что следует обратить внимание при выборе инструмента? Вот существенные критерии:

  1. Универсальность модели. Обратите внимание на аббревиатуры в наименовании: CUT – только для металлов,  TIG – аргонодуговая сварка и  MMA – использование штучных электродов.
  2. Наличие инвертора или трансформатора в качестве источника питания. Трансформаторный более мощный, инверторный – лёгкий.
  3. Контактная или бесконтактная резка. Бесконтактные модели, как правило, более мощные.
  4. Бытовое и промышленное назначение. Разница не только в стоимости и габаритах, но и в вольтаже подключаемой сети.
  5. Максимально возможная толщина обработки металлов. Она зависит от мощности прибора. Для резки 1 мм толщины нержавейки и чёрных металлов нужна сила тока в 4 А, для цветных металлов – 6 А.
  6. Длительность рабочего цикла. Этот параметр указывается в технических характеристиках изделия и считается в процентах. Например, показатель в 60% означает, что после 6 минут работы нужно дать прибору отдыхать 4 минуты. 100% показатель имеют модели трансформаторного типа. Во многих из них для охлаждения используется водяной контур.
  7. Наличие встроенного или наружного компрессора. Встроенные варианты не отличаются мощностью, так что их чаще можно встретить в качестве бытовых приборов. Они более компактны.
  8. Удобство пользования. Этот фактор формируется из длины шланга, и чем он длиннее, тем проще работать с прибором. Но слишком длинные шланги приводят к падению мощности.

Лучше брать прибор с запасом мощностиЕсли есть необходимость в длительной и непрерывной работе, лучше выбирать внешний компрессор

Практика использования плазменного резака и требования безопасности

Плазморез – потенциально опасный инструмент, так как использует электродугу и производит высокотемпературную плазму. По этой причине резаком не работают при отрицательных температурах. Не стоит браться за прибор при отсутствии опыта. Особенно важно следить за износом сопла и электродов. Их несвоевременная смена может привести к печальным последствиям.

Как работать плазменной резкой – в этом видеокурсе:

А у вас есть опыт работы плазменным резаком? Какую модель аппарата вы предпочитаете? Напишите об этом в х!

Загрузка…

Источник: https://HouseChief.ru/chto-takoe-plazmennaya-rezka-metalla-tekhnologiya.html

Плазменная резка металла: принцип работы и особенности технологии, устройство ручного резака

Плазменная резка – новая великолепная технология, позволяющая разрезать металлы солидной толщины и любой природы, даже самой капризной. В качестве режущего предмета выступает не нож, а плотная струя плазмы, которая позволяет формировать идеально точный рисунок реза в единицу заданного времени.

Этот способ работы с металлом содержит множество достоинств, которые мы разберем ниже. А сейчас начнем с физики – нужно разобраться с сутью процесса.

Физика плазмы

Технология плазменной резки металла отдает главную женскую роль нашей любимой электрической дуге. Он формируется между электродом и соплом. Иногда вместо электрода выступает металл, который нужно разрезать. Разберемся, что такое плазменная резка.

Начало процесса – включение источника электрического питания и подача тока высокой частоты в плазменный резак. Источник питания включается автоматически после нажатия тумблера розжига в аппарате.

Сначала формируется так называемая промежуточная дуга – она имеет временный характер и соединяет электрод с наконечником сопла резака. Нагревается эта дежурная дуга до уровня температуры около 8000°С.

Это важный момент общего процесса плазменной резки – нужно помнить, что настоящая дуга между электродом и металлом образуется не сразу, а через ее промежуточный вариант.

Следующий этап процесса – поступление воздуха из компрессора, который обычно прилагается к аппарату резки металла. Компрессор подает воздух в сжатом виде. Этот воздух поступает в камеру плазмотрона, в котором находится и уже раскалена временная электрическая дуга.

Малый диаметр сопла дает возможность разгонять поток этой раскаленной плазмы до огромных скоростей, с которыми струя вылетает из аппарата. Скорость потока может достигать трех метров в секунду.

Схема работы плазменной резки.

Температура воздуха – запредельная, вплоть до 30 000°С. При этих условиях электрическая проводимость воздуха – плазмы практически равна проводимости разрезаемого металла.

Настоящая конечная дуга появляется мгновенно, как только поток плазмы достигает и касается поверхности металла. Временная дуга, в свою очередь, автоматически выключается. Металл начинает плавится точно в месте среза.

Жидкие металлические капли сразу же сдуваются струей сжатого воздуха. Это и есть принцип плазменной резки. Как видите, все просто, логично и понятно.

Классификация видов плазменной резки

Виды плазменной резки будут зависеть от среды, в которой проводятся работы по металлу:

Простой

Главное отличие способа – ограниченность электрической дуги. Для резки используется электрический ток и воздух. Иногда вместо воздуха применяются газ в виде азота. Если металлически лист тонкий – всего несколько миллиметров, процесс можно сравнить с лазерным разрезанием.

При этом способе толщина металлов не должна превышать 10-ти мм. Способ отлично работает для низколегированных сплавов стали и других мягких металлов. Режущим элементом выступает кислород, из которого формируется сжатая струя, превращающаяся в итоге в плазму.

В разрезах получаются очень ровные кромки, не требующие дальнейшей доработки.

С применением защитного газа

При этом способе вместо воздуха используются защитные газы, которые превращаются в плазменный поток после преобразования в плазмотроне. Качество срезов в данном случае значительно повышается благодаря отличной защите процесса от воздействия окружающей среды.

Газ для плазменной резки не представляет из себя ничего необычного: это может быть водород или аргон – «газовая классика».

Читайте также:  Свое ремесло ковку по металлу

С водой вместо воздуха

Отличны способ со многими преимуществами, одно из которых – отсутствие необходимости в дорогостоящей и громоздкой системе охлаждения.

Существуют и другие критерии классификации плазменной резки. К примеру, виды резки бывают разделительными и поверхностными. Первый из них используется чаще.

Плазменные резаки представлены на рынке в самых разнообразных вариантах, так что их можно классифицировать по маркам, производителям и многим другим техническим и торговым параметрам.

Есть, например, ручная плазменная резка – самый демократичный способ и по цене, и по простоте исполнения. Есть машинные автоматические технологии, устройства для которых намного дороже и сложнее.

Преимущества резки плазмой

Принцип работы плазменной резки.

Самой близкой технологией является лазерная резка металлов, поэтому логично будет перечислить преимущества в сравнении с «соседкой»:

  • Плазменной резке по плечу металлы любой природы, в том числе цветные, тугоплавкие и другие, сложные для обработки.
  • Скорость процесса значительно выше, чем резка газовым резаком.
  • Одна из значительных особенностей – возможность производить резы любой формы, включающие и геометрические узоры, и фигурную резку самой высокой сложности. Иными словами, резка с помощью плазмы – это реализация самых смелых творческих идей по металлу и другим трудно поддающимся материалам.
  • Плазменному резаку нипочем любая толщина металла: скорость и качество никоим образом не теряются.
  • Этому способу поддаются не только металлы, но и другие материалы: он вполне универсальный.
  • Резка плазмой и быстрее, и эффективнее по качеству кромки, чем любые другие механические способы резки.
  • В данном методе возможна работа не только перпендикулярно к поверхности металла, но под углом, что помогает освоить широкие листы металла.
  • С экологической точки зрения это вполне благополучный вид работы с металлом с минимальным выбросом вредных веществ или загрязнений в воздух.
  • Отличная экономия времени из-за отсутствия необходимости предварительно нагревать металл.
  • Поскольку в методе не используются взрывоопасные газовые баллоны, он значительно безопаснее, чем другие способы.

Недостатки плазморезки

Ни один способ обработки металлов не обходится без недостатков, и плазменная резка здесь не исключение.

Недостатки плазменной резки следующие:

  • Дороговизна всего модельного ряда аппаратов для плазменной резки, включая даже самые простые ручные варианты.
  • Пределы толщины металла для резки плазмой: предельная толщина всего 100 миллиметров.
  • Это шумный способ работы, потому что сжатый воздух или газ подаются с огромной скоростью.
  • Оборудование непростое, дорогое и требующее грамотного и постоянного технического обслуживания.

Советы и нюансы

Еще одной отличительной положительно характеристикой метода является то, что во время процесса происходит нагрев лишь небольшого локального участка. Да и остывает этот участок намного быстрее, чем при лазерной или механической резке.

Охлаждение необходимо только для двух составных элементов – катода и сопла, как самых нагруженных. Это без проблем производится с помощью рабочей жидкости.

Дуга начинает работать стабильно в результате рабочего соотношения катода и сопла с паром из сжатого раскаленного воздуха. На катоде локализуется отрицательный заряд, на наконечнике сопла – соответственно положительный. В результате этого образуется промежуточная дуга.

Лишняя влага впитывается специальным материалом, который находится в резервуаре камеры плазмотрона.

Правила безопасности при данном методе имеют строжайший характер, потому что все аппараты плазменной резки могут быть очень травматичными для мастера. Особенно это касается моделей с ручным управлением.

Все будет в порядке, если вы будете соблюдать рекомендации по защитной амуниции мастера: щиток, затемнённые очки, защитные ботинки и т.д. В этом случае вы сможете уберечься от главных факторов риска данного метода – капель расплавленного металла, высокого напряжения и раскаленного воздуха.

Экономия расходных материалов занимает не последнее место в эффективной резке. Для этого зажигаем электрическую дугу не слишком часто, а точно и в срок, чтобы не обрывать ее без надобности.

Экономия ресурсов также распространяется на силу и мощность тока. Если рассчитать его правильно, вы получите не только экономию, но и отличный срез без заусениц, окалины и деформации металла.

Для этого следует работать по следующей схеме: сначала подать ток высокой мощности, сделать пару – тройку разрезов с его помощью. Если сила и мощность тока великоваты, на металле сразу же будет образовываться окалина из-за значительного перегрева.

После осмотра срезов будет ясно, оставить ток на этом уровне или изменить его. Иными словами, работаем экспериментально – малыми пробами.

Как работать плазморезкой?

Электрическая схема плазменного генератора.

Резка металлов с помощью плазменного потока – слишком серьезное дело, чтобы заниматься им без предварительного изучения и тщательной подготовки. Это поможет вам сделать резку эффективнее со всех точек зрения, и, что весьма немаловажно, минимизировать риски, связанные с производственными опасностями.

Прежде всего нужно знать принцип работы плазменной резки – видеть картинку физических явлений целиком.

Плазменную горелку следует держать очень близко к поверхности и краю металла, в отличие от лазерной резки. Когда тумблер с «пуском» включится, первой загорится временная электрическая дуга, и только затем – настоящая, которая будет главным режущим элементом. Горелку с режущей дугой нужно вести по материалу ровно и медленно.

Скорость резки следует строго контролировать. Это можно делать, наблюдая за искрами с обратной стороны листа разрезаемого металла. Если этих искр нет, то это значит, что разрезка металла произошла неполная.

Такое может произойти по нескольким причинам: из-за слишком большой скорости ведения горелки или прохождения аппарата, либо слишком недостаточной мощности подаваемого тока, либо несоблюдения прямого угла в 90° между горелкой и поверхностью металла.

Дело в том, что полная проплавка металла происходит лишь при наклоне плазморезки к поверхности металла под прямым углом и ни градусом больше или меньше.

Перед работой невредно изучить схему вашего аппарата: именно в ней можно прочитать самую достоверную информацию по допускаемой толщине металла, который можно прорезать или сделать в нем отверстие. Устройство плазменного резака может различаться, все зависит от функций его назначения.

Выбор аппарата для плазменной резки

Покупка любого технического оборудования – дело, для которого не нужно жалеть времени и усилий: слишком высок риск неудачного решения и потери денег. А деньги здесь немалые, вы не найдете плазменного резака дешевле 500 USD в принципе.

Сначала разбираемся с параметрами и техническими характеристиками прибора.

Две большие группы плазморезов – это инверторные и трансформаторные. Названия говорят сами за себя.

Открытая и закрытая плазменная струя.

Если вам нужен компактный резак для работы с металлами небольшой толщины, вы можете остановить свой выбор на резаке инверторного типа. Они забирают немного энергии, легкие и с небольшими габаритами.

Вместе с тем работают они с перерывами и легко выходят из строя при перепадах сетевого напряжения. Цена на такие приборы вполне умеренная, из всех плазморезов это самые недорогие.

Другое дело – трансформаторные резаки. Здесь и с габаритами, и с весом «все в порядке»: серьезные аппараты по всем параметрам.

Энергии потребляют много, зато работать они могут практически без перерыва в течение целого дня. И толщина металла может быть побольше, чем при резке инверторной моделью. Стоимость таких устройств высокая – от 3000 до 20000 USD.

Выбор плазменного резака по мощности

Рассуждения начинаем со свойств и технических характеристик деталей, которые вы планируете обрабатывать и резать. Именно это этого рассчитывается мощность режущего прибора, потому что в нем будут различаться и сопло по своему диаметру, и тип используемого газа.

Применение плазменной резки – область чрезвычайно широкая, поэтому говорить нужно только о ваших конкретных нуждах.

А вот если ваш металл потолще, ищите подходящую модель в диапазоне мощности от 90 до 170А.

Выбор резака по времени и скорости разрезания материала

Скорость плазменной резки металла измеряют в сантиметрах за одну минуту. Эта скорость у разных аппаратов тоже разная и зависит от их общей мощности и природы разрезаемого металла.

Например, при всех прочих равных медленнее всего режется сталь, чуть быстрее – медь и ее сплавы. И еще быстрее – алюминий со своими алюминиевыми сплавами.

Устройство плазменного резака.

Если для вас важна скорость, не забывайте о таком показателе, как длительность работы без перегрева, то есть без перерыва. Если в технической спецификации к аппарату написано, что длительность работы 70%, это означает, что после семи минут резки аппарат должен быть выключенным в течение трех минут, чтобы остыть.

Среди трансформаторных резаков встречаются чемпионы с продолжительностью работы в 100%. Иными словами, они могут работать целый день без отключения. Стоят они, конечно, немало. Но если у вас впереди длинные разрезы, думайте о покупке «чемпионских» трансформаторных плазменных резаков.

Пара слов о горелке

Снова оцениваем природу металла или другого материала, который планируем разрезать. От этого будет зависеть мощность горелка плазмореза. Она должна быть достаточной для качественного реза.

При расчетах нужно учитывать факт, что вы можете встретиться со сложными условиями работы, которая, как назло, должны быть произведена в самые короткие сроки, то есть резка должна носить выраженных интенсивный характер.

Рукоятку горелку не упускаем из зоны внимания, это важная часть для комфортной, а значит качественной работы. На рукоятке можно зафиксировать дополнительные элементы, которые помогут держать сопло на одинаковом расстоянии от поверхности металла. Данный совет распространяется только на ручные модели аппаратов.

  • Если вы собираетесь резать тонкий металл, выбирайте модель с горелкой, которая предназначена для поступления воздуха.
  • Если же ваши планы связаны с массивными толстыми заготовками, покупайте резак с горелкой для приема защитного газа – азота, например.

Источник: https://tutsvarka.ru/vidy/plazmennaya-rezka-metalla

Плазменная резка металла: принцип работы, технология, системы

Уважаемые друзья, в этой статье мы расскажем Вам всё о плазменной резке – как она работает, где применяется, что нужно для ее использования и каких результатов можно добиться, в чем основные преимущества плазменной резки и какие есть недостатки, и многое другое.

Вся статья написана на бытовом языке, без сложных технических терминов, и поэтому она доступна для понимания любому заинтересованному посетителю, в том числе, не связанному с металлообработкой.

1. Технология плазменной резки

1.1 Принцип работы плазменной резки

Начнем мы с краткой расшифровки такого слова «плазма». Итак…

Плазма – представляет собой ионизированный квазинейтральный газ, образующий нейтральные молекулы и заряженные частицы. Плазма возникает при нагреве квазинейтрального газа (например кислорода) до достаточно высокой температуры при его активной ионизации. За счёт подвижности частиц в газе, плазма имеет свойство проводить электрический ток.

Много непонятных слов? Не страшно! Это определение нужно только для понимания сути – нагреваем газ примерно до 10000 оС, создаем давление и ионизацию – получаем плазму. Далее переходим к определению плазменной резки.

Плазменная резка – это один из способов раскроя металла, при котором в качестве режущего инструмента выступает струя плазмы. Между электродом и соплом зажигается электрическая дуга, в сопло подается газ (воздух или кислород) в 6-8 атмосфер, при взаимодействии с электрической дугой газ нагревается до температуры 5000-30000 оС и превращается в плазменную струю.

Читайте также:  Размер отверстия под саморез по металлу таблица

Итак, сейчас, я думаю, у Вас должно уже появиться представление, относительно того, что есть плазменная резка. Если нет, то предлагаю Вам посмотреть материал, в котором подробно все рассказывается.

1.2 Газы, используемые в плазменной резке

Теперь давайте остановимся поподробнее на газах, используемых в плазменной резке.

Воздушно-плазменная резка

В данном случае, в качестве плазмообразующего газа используется воздух. Это, пожалуй, самый дешевый вариант плазменного раскроя.

Воздух подходит для резки почти всех видов металлов: чёрная сталь, нержавейка, медь, латунь и др.

Воздух дает средние показатели относительно качества и скорости раскроя и подходит для большинства пользователей плазменной резки. Подробнее об этой резки можно почитать здесь.

Кислородная плазменная резка

Кислород используется в более профессиональных системах плазменной резки, где необходимо получить наилучшее качество и наибольшую скорость раскроя. Говоря о качестве, мы имеем ввиду перпендикулярность реза и минимальное количество шлака (облоя) с нижней стороны вырезаемой детали.

Плазменная резка с использованием защитных газов

Данная технология используется в передовых профессиональных системах плазменного раскроя. Комплексы такого оборудования стоят от 5 до 12 млн. рублей.

В качестве режущего газа могут быть использованы: Кислород (О2), Азот (N2), Аргон (Ar) и воздух. Эти же газы могут использоваться как защитные, в определенных пропорциях.

 Использование защитных газов позволяет приблизить плазменную резку толстых заготовок (до 50 мм) к качеству лазерной.

Наиболее часто используемые показатели плазменной резки:

Толщина разрезаемого металла 0,5-70 мм Зависит от тока резки
Толщина плазменной струи 0,5-2 мм Зависит от толщины металла
Скорость плазменной резки 250-10000 мм/мин Зависит от тока резки и толщины металла
Давление газа 5-12 Атм Зависит от мощности источника плазмы
Ток плазменной резки 20-800 A Зависит от толщины металла

1.3 Раскрой разных видов металлов

Плазменная резка подходит для раскроя почти всех металлов, но в отдельности для каждого вида металла существуют свои особенности. Рассмотрим наиболее востребованные металлы.

Плазменная резка стали

Существует много видов стали, мы не будем углубляться в марки и состав. Основное значение для плазменного раскроя имеет содержание в стали углерода – именно этот параметр определяет качество, которого получится добиться при плазменной резке.

Низкоуглеродистая сталь наиболее подходит для плазменного раскроя. Именно на неё ориентируются все производители источников плазмы создавая карты резки и табличные значения тока и скорости раскроя для разных толщин стали.

Высокоуглеродистая сталь (в том числе оцинкованная сталь) так же поддается плазменной резке, но тут для получения качественного реза нужна будет тонкая настройка оборудования и эксперименты с режимами раскроя.

Легированные стали так же можно резать плазмой (наиболее известная — нержавеющая сталь). Поскольку легированные стали используются в промышленности гораздо реже, табличных показателей для их раскроя производители аппаратов плазмы не предоставляют.

Но по опыту, можем сказать, что показатели отличаются от раскроя низкоуглеродистой стали, в ту или иную сторону, в пределах 20%.

Высоколегированную толстостенную сталь рекомендуют резать не воздухом, а смесью газов: азота, аргона и в некоторых случаях водорода, дабы не повредить её структуру вокруг реза.

Плазменная резка цветных металлов

При раскрое цветных металлов, таких как: алюминий, медь, титан, для получения качественного реза используют так же смесь газов: азота, аргона и водорода.

Это связано с высокой стоимостью цветных металлов – не стабильный раскрой может привести к существенным денежным потерям в виде испорченных заготовок.

Воздухом резать данные материалы тоже возможно, но как правило, в небольших объемах и со средним качеством кромки.

2. Ручная плазменно-дуговая резка металлов

  1. Основного аппарата, содержащего трансформатор и выпрямительную  подстанцию.
  2. Силового кабеля питания.
  3. Шлангопакета, идущего от аппарата до плазменного пистолета. Шлангопакет содержит воздушный шланг и силовой кабель.
  4. Плазматрона (плазменного пистолета) – в нём происходит формирование плазмы.

Существует два основных способа ручного плазменного раскроя:

  1. Косвенная резка плазменной струей. Данный метод используют в основном для резки не
    металлических материалов. Электрическая дуга, формирующая плазму, в этом случае загорается между электродом и соплом плазматрона. Разрезаемый материал в формировании плазмы не учувствует, а резка осуществляется вырывающейся из резака плазменной струей.
  2. Прямая плазменно-дуговая резка. Это как раз наш случай, так как данный метод используется для резки металлов. Он используется как в ручной, так и в механизированной плазменной резке. Электрическая дуга загорается между электродом и разрезаемым металлом и совмещаясь со скоростным потоком воздуха образует плазму. Получаемая плазменная струя обладает такой мощностью, что буквально испаряет металл в процессе резки.

Ручная плазменно-дуговая резка на столько хорошо себя зарекомендовала, что применяется сейчас почти на всех предприятиях, имеющих цех металлообработки. Большое количество частников предлагают выездные услуги плазменной резки, т.к. ручные аппараты очень мобильны, их можно переносить в руках или на плечевом ремне.

Основные преимущества ручных плазменных аппаратов:

  1. Мобильность, портативность (ручные аппараты малой и средней мощности весят от 10 до 25 кг).
  2. Доступность использования (работают от 220 V, сила тока зависит от мощности аппарата).
  3. Универсальность (возможность резки всех видов металлов).
  4. Доступная цена (ручные аппараты плазменной резки российского производства стоят от 15000 до 70000 руб.

3. Автоматическая плазменная резка

С появлением ручной плазменной резки данную технологию начали использовать совместно со станками с ЧПУ (числовое программное управление). Использование станков ЧПУ совместно с плазменным резаком позволяет производить раскрой листового металла, круглых и профильных труб с высокой точностью (±0,25-0,35 мм) и скоростью (до 7 м/мин).

Наиболее распространена автоматическая плазменная резка листового металла. Плазменные аппараты средней мощности режут листовой металл до 30 мм на пробой. Более профессиональные и мощные аппараты могут разрезать листы до 70 мм с высоким качеством.

Один и тот же аппарат плазменной резки может использоваться как для ручной резки, так и для автоматического раскроя, за исключением плазмотронов, которые разделяются на ручные и механизированные.

Для раскроя с ЧПУ как правило используются более мощные плазменные аппараты, чем для ручной резки. Наиболее востребованы аппараты мощностью от 65 до 125 А, питание у которых происходит от 380 V.

Плазменная резка на станке с ЧПУ позволяет резать металл толщиной до 60 мм с высоким качеством.

4. Применение плазменной резки

В силу своей универсальности и доступности плазменная резка сегодня применяется почти на всех средних и крупных предприятиях, занимающихся металлообработкой.
С применением плазменной резки изготавливаются металлоконструкции и изделия: двери, ворота, калитки, заборы, художественные орнаменты, узоры и флюгера, вешалки, отводы вентиляции, сваи и другие металлоизделия.

Многие предприниматели строят бизнес на плазменной резке, имея у себя оборудование и принимая заказы на раскрой металла.

5. Преимущества и недостатки плазменной резки

Чтобы говорить о преимуществах плазменной резки и ее недостатках, нужно определиться с чем мы будем сравнивать. У плазменного раскроя есть три основных конкурента – газо-кислородная резка, лазерная резка и гидроабразивная резка. Каждый из четырех видов раскроя имеет свою специфику применения. Подробное сравнение мы привели в предыдущей статье, рекомендуем Вам с ней ознакомиться.

Здесь же мы распишем основные преимущества и недостатки плазменной резки с практической точки зрения предприятий, которые ее используют. Итак…

Преимущества плазменной резки

  • Раскрой металла от 0,5 до 50 мм;
  • Раскрой всех видов металлов (алюминий, медь, титан, нержавейка, сталь и т.д.);
  • Точность плазменной резки 0,25-0,35 мм;
  • Скорость раскроя тонких металлов до 7 м/мин, быстрый пробой металла;
  • Мобильность ручных плазменных аппаратов;
  • Высокая степень готовности деталей (минимальная очистка от шлака).

Недостатки плазменной резки

  • Относительно высокая стоимость качественных плазменных аппаратов;
  • Высокая стоимость расходных материалов (сопло, электрод, защитный экран);
  • Наличие минимальной конусности реза;

Вот, в общем-то, все основные моменты, которые нужно знать, если Вы планируете использовать плазменную резку металлов в своих задачах.

По всем вопросам мы с радостью проконсультируем Вас по телефону 8 (800) 500-33-04!

Источник: https://plazma-stanok.ru/plazmennaya-rezka-metalla-prosto-o-slognom/

Плазменная резка металлов: описание технологии

В настоящее время существует несколько разных способов резки металлических изделий. Все методы отличаются друг от друга эффективностью и стоимостью. Но важным фактором является то, что некоторые способы могут использоваться только на промышленном предприятии, в то время как иные также могут применяться и в домашних условиях.

Среди методов, применяющихся в быту, особенно следует подчеркнуть плазменную резку металлов. Ведь, по сути, эффективность данного способа ограничивается тем, насколько опытен мастер и правильно ли была подобрана установка.

Для большего понимания давайте подробнее разберемся с тем, что представляет собой резка металла при помощи плазмы, как она осуществляется, а также в каких сферах она может применяться.

Основы плазменной резки металла

Прежде чем разбираться с основами плазменной резки металлических изделий, необходимо узнать, что такое плазма. Потому как от правильного понимания данного термина и принципов работы с плазматроном напрямую зависит качество конечного результата.

Для успешной резки металлов рабочая струя, состоящая из жидкости и газа и направленная на обрабатываемую поверхность, должна быть доведена до определенных характеристик. К данным характеристикам следует отнести:

  • скорость. Рабочая струя подается на поверхность металлического изделия под большим давлением. То есть плазменная резка подразумевает моментальный нагрев металла и его последующий выдув. Следует отметить, что скорость струи может достигать 1.5-4 км за секунду;
  • температуру. Так как для создания плазмы необходимо за максимально короткое время разогреть металлическое изделие до 5-30 тысяч градусов Цельсия, то для достижения такого показателя используется электрическая дуга. После того, как воздух достигнет необходимой температуры он ионизируется, поменяет свои свойства и обретет способность проводить электрический ток. В процессе плазменной резки также могут использоваться системы для нагнетания воздушного потока и специальные осушители для удаления излишков влаги;
  • наличие электроцепи. Сразу следует отметить, что абсолютно все о резке металлов при помощи плазмы можно узнать только на практике. Но все же определенные нюансы нужно учитывать еще перед покупкой установки. На современном рынке представлены плазматроны прямого и косвенного действия. Их основное отличие заключается в том, что первая разновидность устройств может использоваться только с теми материалами, которые могут проводить электрический ток и могут быть включены в электросеть, в то время как для второго вида данный нюанс не имеет абсолютно никакого значения. Именно поэтому использование плазматронов косвенного действия предоставляет возможность осуществлять раскройку металлов и каких-либо иных материалов, не проводящих ток.

Ко всему вышесказанному также следует добавить, что плазменная резка толстых металлических изделий практически никогда не используется. Почему? Все дело в том, что такого рода раскройка достаточно дорогостоящая и малоэффективна.

Как осуществляется резка металлов плазмой?

Основной принцип работы резки металлов при помощи плазмы следует описать следующим образом.

  • Во-первых, компрессор подает на горелку плазматрона воздух.
  • Во-вторых, благодаря практически моментальному нагреву воздушного потока при помощи электрического тока он начинает пропускать сквозь себя электричество и образовывать плазму. В некоторых устройствах вместо воздуха могут использоваться инертные газы.
  • В-третьих, резка металлической конструкции при помощи плазмы выполняется за счет моментального узконаправленного нагрева поверхности до определенной температуры и последующего выдувания расплавившегося металла.
  • В-четвертых, после того, как все работы по резке были окончены, образуются отходы, которые включают остатки металлического листа, высечку, окалины и остатки расплавленного металла.
Читайте также:  Джи профиль металл профиль чертеж

Так как для успешной резки при помощи плазмы материал разогревается до жидкого состояния, то толщина металла не должна превышать определенного значения. К примеру, толщина алюминия не должна быть больше 120 мм, меди – более 80 мм, легированной и углеродистой стали более 50 мм, а чугуна – более 90 мм.

Виды плазменной резки металлов

В настоящее время существует два метода обработки металлических изделий, от которых зависят характеристики плазменной резки. Такими способами являются:

  • плазменно-дуговая резка. Данный метод идеально подходит для всех разновидностей металлов, которые могут проводить электрический ток. В большинстве случаев плазменно-дуговую резку применяют для промышленного оборудования. Вся суть метода состоит в том, что плазма образуется благодаря дуге, появляющейся между плазматроном и поверхностью обрабатываемого металла;
  • плазменно-струйная резка. В этом случае дуга создается непосредственно в самом плазматроне. Благодаря этому плазменно-струйная резка более универсальна и позволяет осуществлять раскройку неметаллических изделий. Главным недостатком данного способа является необходимость регулярной замены электродов.

Следует отметить, что резка металлов при помощи плазмы работает также, как и стандартная дуговая, но в данном случае не используются привычные нам электроды. Но нужно учитывать, что эффективность резки, прежде всего, зависит от толщины обрабатываемого материала.

Скорость и точность процесса плазменной резки металлов

Как и в случае с другими разновидностями термической обработки материалов, при плазменной резке металлов осуществляется оплавление изделия, что отражается на качестве среза. Кроме того, существуют и иные нюансы, характерные для вышеуказанного метода. А именно:

  • конусность. В зависимости от производительности установки и от того, насколько опытный мастер выполнял резку, конусность может составлять 3-10 градусов;
  • оплавление кромки. Вне зависимости от профессионализма мастера и режима резки металлической конструкции в начале выполнения работ будет присутствовать небольшое оплавление поверхности;
  • скорость резки. Стандартная процедура раскроя металла при помощи плазматрона выполняется достаточно быстро и с минимальным расходом напряжения и электроэнергии. Если учесть технические характеристики ручных установок и нормы ГОСТ, то скорость резки металла при помощи плазмы не должна быть более 6500 мм/минута;
  • характеристики реза. Скорость и качество выполнения плазменной резки зависит от операций, которые необходимо выполнить. К примеру, для обычного разделительного реза потребуется меньше всего времени и, кроме того, большинство установок могут разрезать даже металл, толщина которого достигает 64 мм. Ну а если необходимо осуществить фигурную резку, то это займет больше времени, а толщина обрабатываемого материала не должна превышать 40 мм.

Важным нюансом является то, что от мастерства специалиста во многом зависит скорость и качество выполнения плазменной резки. Именно поэтому точный и чистый рез с минимальным отклонением от необходимых размеров сможет осуществить только квалифицированный работник, имеющий профильное образование.

Можно ли выполнять резку цветных металлов при помощи плазмы?

В зависимости от вида материала, его плотности и многих иных технических характеристик для обработки цветных металлов могут использоваться различные способы резки. Но в любом случае в процессе резки цветного сплава необходимо учитывать следующие рекомендации:

  • в процессе резки нержавеющей стали нежелательно использовать сжатый воздух. В зависимости от толщины материала может использоваться или же чистый азот, или азот, смешанный с аргоном. Кроме того, не стоит упускать такой нюанс, что нержавеющие стали чувствительные к воздействию переменных токов, так как это может привести к быстрому выходу материала из эксплуатации. Наиболее оптимальным решением для резки нержавейки будет использование установки косвенного воздействия;
  • для резки алюминия толщиной до 70 мм можно использовать сжатый воздух. Но его применение нецелесообразно в случае, если материал имеет малую плотность.

Сфера применения плазменного раскроя металлов

В настоящее время плазмотроны пользуются широкой популярностью и спросом. И это ничуть не удивительно, потому как если сравнивать с другим оборудованием для резки металла, то вышеуказанное устройство позволяет добиться высокого качества реза при относительно невысокой стоимости ручной установки.

Сегодня плазменная резка металлических конструкций используется в следующих отраслях промышленности:

  • обработка металлопроката. При помощи плазмы можно без каких-либо сложностей разрезать абсолютно любой металл, включая тугоплавкий, черный и цветной;
  • изготовление металлических конструкций;
  • обработка различных деталей и художественная ковка. Не сомневайтесь, при помощи плазменного резака удастся создать деталь практически любой сложности;
  • автомобилестроение, авиастроение, капитальное строительство и многое другое.

Следует отметить, что использование станков для плазменной резки не смогло заменить ручное оборудование.

Художественная плазменная резка металлов предоставляет уникальную возможность создать деталь, которая точно соответствует замыслу дизайнера или художника, что позволяет использовать ее для декоративного украшения лестниц, заборов, перил и т.п.

Основные достоинства и недостатки резки металлов плазмой

Сегодня плазменная резка металла используется практически в каждой отрасли промышленности. Причины такой распространенности скрываются в достоинствах процедуры. Так к преимуществам указанного выше метода следует отнести:

  • высокую скорость работы и производительность. Если сравнивать данный метод со стандартной электродной резкой, то плазменная резка предоставляет возможность выполнить все работы в несколько раз быстрее;
  • низкую стоимость. Если необходимо сэкономить, то резка при помощи плазмы – это идеальное решение. Главное и единственное ограничение скрывается в толщине материала. Ведь экономически невыгодно и нецелесообразно резать, к примеру, сталь, толщина которой составляет более 50 мм;
  • точность. Благодаря использованию современного оборудования деформации от тепловой обработки практически невидны и не нуждаются в дополнительной обработке;
  • безопасность резки. Что касается отрицательных сторон такого рода резки металла, то к минусам следует отнести:
  • ограничения, связанные с толщиной реза;
  • жесткие требования касательно выполнения обработки металлической детали.

Сравнение лазерной и плазменной резки металла

Основное отличие плазменной резки от лазерной состоит в методе воздействия на поверхность обрабатываемого материала.

Да, несомненно, лазерное оборудование обеспечивает меньший процент оплавленности, а также большую производительность и скорость обработки детали, но такого рода обработка будет стоить на порядок дороже и кроме того толщина обрабатываемого материала не должна превышать 20 мм. Что касается резки плазменным способом, то в данном случае плазматрон меньше стоит и имеет более широкую область применения.

Источник: https://tzgsho.ru/informatsiya/stati/plamennaya-rezka-metallov/

Плазменная резка металла: особенности и преимущества метода

Существует множество способов раскроя металлоизделий. Если в приоритете оперативная обработка при относительно низких затратах, поможет плазменная резка металла. Мощность и, соответственно, производительность специализированного оборудования в 6–7 раз выше, чем у традиционной газопламенной горелки. Качество реза сопоставимо с передовой лазерной технологией, при этом цена более выгодная.

Резка металла плазмой — разновидность термического раскроя. В качестве резца выступает плазменная струя — скоростной поток ионизированного раскаленного газа.

Если не вдаваться в научные тонкости, плазма представляет собой концентрированный источник тепла, температура которого может достигать 30 000 °С.

За счет этого удается резать материалы, с которыми не справляется обычная кислородная горелка.

Основные преимущества плазменной резки

  • Универсально. Материалы — черные и цветные металлы, их сплавы, углеродистые, легированные и другие стали. Изделия — лист, труба, профиль, заготовки, детали.
  • Оперативно. При резке элементов малой и средней толщины (до 50 мм) скорость работ в 25 раз выше, чем у газопламенной резки.
  • Качественно. Одновременно с резкой плазма выдувает излишки расплава. Локальный нагрев исключает тепловую деформацию вокруг зоны воздействия.
  • Точно. С помощью профессионального оборудования можно выполнять прямые и криволинейные резы, делать отверстия, в том числе сложной формы.
  • Выгодно. Цена плазменной резки металла во многом зависит от применяемого газа, для большинства металлоизделий подходит абсолютно бесплатный воздух.

Особенности технологии

Для образования высокотемпературной и высокоскоростной плазменной дуги (или струи) применяется плазмотрон — генератор плазмы. Сначала оборудование формирует рабочую электрическую дугу — ее температура составляет около 5000 градусов.

Затем в сопло аппарата поступает газ — при взаимодействии с электрической дугой он ионизируется и преобразуется в плазму с температурой около 30 000 градусов. В дополнение к высокой температуре поток имеет высокую скорость — 500–1500 м/с.

Дуга (или струя) с такими характеристиками справляется с резкой металла толщиной до 200 мм.

Эффективность сочетается с качеством — поток плазмы выдувает из полости реза излишки расплава, поэтому на кромках почти нет окалины и грата (наплава). К тому же за счет высокой концентрации плазмы металл нагревается локально, даже в непосредственной близости от линии реза нет теплового напряжения и деформации.

Оборудование для плазменной резки

По принципу действия плазмотроны делятся на два вида:

  • дуговой плазменный резак прямого действия формирует дугу между своим электродом и токопроводящим металлическим изделием. У прямой дуги максимально высокий КПД, поэтому плазменно-дуговая резка оптимальна в промышленных масштабах;
  • струйный плазменный резак косвенного действия образует собственную рабочую дугу между электродом и соплом. Обрабатываемая поверхность в цепь не включена, поэтому резка плазменной струей менее эффективна. Основные сферы применения — тонкие металлоизделия, материалы с низкой проводимостью, диэлектрики.

Также оборудование различается по назначению:

  • бытовые плазмотроны легкие и компактные, но производительность невысокая. Мощности хватает на резку деталей толщиной 15–20 мм. Средняя скорость распила — 6 м/мин. Держать ручной аппарат приходится на весу — даже опытному оператору сложно добиться высокого качества кроя. Зачастую на краях видны неровности, наплывы, следы рывков;
  • промышленные плазмотроны представляют собой мощные высокопроизводительные агрегаты. Как правило, они входят в состав автоматических линий, где с помощью ЧПУ можно программировать самый сложный раскрой. Благодаря гибким настройкам на одном аппарате возможна осуществлять плазменную резку листа, трубы и других прокатных изделий. Точная обработка позволяет соблюсти регламенты ГОСТ по всем основным критериям — перпендикулярности, угловатости, оплавлению верхнего края, шероховатости.

Ясно, что кустарная резка ручным аппаратом не дает гарантии качества.

Если нужна точная и оперативная металлообработка (особенно в больших масштабах), стоит обратиться в специализированную фирму с мощной технической базой.

Плазменная резка металла в NAYADA

Наша компания — профессионал в сфере обработки металла, в комплекс услуг входит и плазменная резка. Сотрудничаем с клиентами из Москвы, Подмосковья и других регионов страны — готовые изделия развозим по столице и области (есть свой автотранспорт), организуем доставку по России через надежную ТК.

Работаем со всеми металлами, сплавами, сталями. Режем листовые, трубные и другие изделия толщиной до 100 мм. Техническая база — мощный плазморез прямого действия КЕДР CUT-60G.

Оборудование подходит для особо твердых сталей толщиной до 20 мм, может кроить сетчатые и перфорированные изделия. Работы ведутся оперативно — за счет мощного воздушного охлаждения аппарату не требуются длительные перерывы.

Для сложного раскроя плазморез подключается к автоматической системе с ЧПУ.

Чтобы заказать услуги плазменной резки или проконсультироваться с технологом, позвоните нам, закажите обратный звонок или заполните форму обратной связи на сайте.

Источник: https://pokras.ru/useful/encyclopedia/plazmennaya-rezka-metalla-osobennosti-i-preimuschestva-metoda/

Понравилась статья? Поделиться с друзьями:
Станок