Особенностью строения атомов металлов является

Содержание
  1. Внутреннее строение и физические свойства металлов
  2. Сплавы
  3. Коррозия металлов
  4. Выводы
  5. Металлы особенности строения атомов металлов и их положения в псхэ. физические свойства. — презентация
  6. Строение металлов
  7. Строение металлов – особенности атомов в таблице (химия, 8 класс) — Помощник для школьников Спринт-Олимпик.ру
  8. Строение
  9. Физические свойства
  10. Виды
  11. Химические свойства
  12. Что мы узнали?
  13. В чем особенность строения атомов металлов и неметаллов?
  14. В чем заключается особенность строения атомов металла?
  15. Какие особенности строения атомов металлов определяют их восстановить?
  16. Что характерно для атомов металла?
  17. Какие особенности строения имеют атомы неметаллов?
  18. Почему металлы легко отдают электроны?
  19. Как строение металлов влияет на их свойства?
  20. Какие химические элементы относятся к металлам?
  21. Где металлы в таблице Менделеева?
  22. Каковы особенности строения атомов металлов как в периодической системе?
  23. Какая особенность строения металлов определяют их общие физические свойства?
  24. Какие особенности строения атома углерода позволили ему стать?
  25. Что характерно для всех металлов?
  26. Как доказать что элемент металл?
  27. Какие элементы металлы и неметаллы?

Самоучитель по химии › Неорганическая химияОсобенностью строения атомов металлов является

Известно, что все простые вещества условно можно разделить на простые вещества-металлы и простые вещества-неметаллы.

МЕТАЛЛЫ, по определению М. В. Ломоносова — это «светлые тела, которые ковать можно». Обычно это ковкие блестящие материалы, обладающие высокой тепло- и электропроводностью. Эти физические и многие химические свойства металлов связаны со способностью их атомов ОТДАВАТЬ электроны.

НЕМЕТАЛЛЫ, напротив, способны ПРИСОЕДИНЯТЬ электроны в химических процессах. Большинство неметаллов проявляют противоположные металлам свойства: не блестят, не проводят электрический ток, не куются. Являясь противоположными по свойствам, металлы и неметаллы легко реагируют друг с другом.

Эта часть Самоучителя посвящена краткому освещению свойств металлов и неметаллов. Описывая свойства элементов, желательно придерживаться следующей логической схемы:

1. Вначале описать строение атома (указать распределение валентных электронов), сделать вывод о принадлежности данного элемента к металлам или неметаллам, определить его валентные состояния (степени окисления) — см. урок 3;

2. Затем описать свойства простого вещества, составив уравнения реакций

  • с кислородом;
  • с водородом;
  • с металлами (для неметаллов) или с неметаллами (для металлов);
  • с водой;
  • с кислотами или со щелочами (там, где это возможно);
  • с растворами солей;

3. Затем нужно описать свойства важнейших соединений (водородных соединений, оксидов, гидроксидов, солей). При этом вначале следует определить характер (кислотный или основной) данного соединения, а затем, вспомнив свойства соединений этого класса, составить необходимые уравнения реакций;

4. И наконец нужно описать качественные реакции на катионы (анионы), содержащие этот элемент, способы получения простого вещества и важнейших соединений этого химического элемента, указать практическое применение изучаемых веществ этого элемента.

Так, если вы определите, что оксид кислотный, то он будет реагировать с водой, основными оксидами, основаниями (см. урок 2.1) и ему будет соответствовать кислотный гидроксид (кислота). При описании свойств этой кислоты также полезно заглядывать в соответствующий раздел: урок 2.2.

Внутреннее строение и физические свойства металлов

Металлы — это простые вещества, атомы которых могут только отдавать электроны.

Такая особенность металлов связана с тем, что на внешнем уровне этих атомов мало электронов (чаще всего от 1 до 3) или внешние электроны расположены далеко от ядра.

Чем меньше электронов на внешнем уровне атома и чем дальше они расположены от ядра, — тем активнее металл (ярче выражены его металлические свойства).

Задание 8.1. Какой металл активнее:

Назовите химические элементы А, Б, В, Г.

Металлы и неметаллы в Периодической системе химических элементов Менделеева (ПСМ) разделяет линия, проведённая от бора к астату. Выше этой линии в главных подгруппах находятся неметаллы (см. урок 3). Остальные химические элементы — металлы.

Задание 8.2. Какие из следующих элементов относятся к металлам: кремний, свинец, сурьма, мышьяк, селен, хром, полоний?

Вопрос. Как можно объяснить тот факт, что кремний — неметалл, а свинец — металл, хотя число внешних электронов у них одинаково?

Существенной особенностью атомов металлов является их большой радиус и наличие слабо связанных с ядром валентных электронов. Для таких атомов величина энергии ионизации* невелика.

* ЭНЕРГИЯ ИОНИЗАЦИИ равна работе, затрачиваемой на удаление одного внешнего электрона из атома (на ионизацию атома), находящегося в основном энергетическом состоянии.

Часть валентных электронов металлов, отрываясь от атомов, становятся «свободными». «Свободные» электроны легко перемещаются между атомами и ионами металлов в кристалле, образуя «электронный газ» (рис. 28).

В последующий момент времени любой из «свободных» электронов может притянуться любым катионом, а любой атом металла может отдать электрон и превратиться в ион (эти процессы показаны на рис. 28 пунктирами).

Таким образом, внутреннее строение металла похоже на слоёный пирог, где положительно заряженные «слои» атомов и ионов металла чередуются с электронными «прослойками» и притягиваются к ним.

Наилучшей моделью внутреннего строения металла является стопка стеклянных пластинок, смоченных водой: оторвать одну пластинку от другой очень трудно (металлы прочные), а сдвинуть одну пластинку относительно другой очень легко (металлы пластичные) (рис. 29).

Особенностью строения атомов металлов является

Задание 8.3. Сделайте такую «модель» металла и убедитесь в этих свойствах.

Химическая связь, осуществляемая за счёт «свободных» электронов, называется металлической связью.

«Свободные» электроны обеспечивают также такие физические свойства металлов, как электро- и теплопроводность, пластичность (ковкость), а также металлический блеск.

Задание 8.4. Найдите дома металлические предметы.

Выполняя это задание, вы легко найдёте на кухне металлическую посуду: кастрюли, сковородки, вилки, ложки. Из металлов и их сплавов делают станки, самолёты, автомобили, тепловозы, инструменты.

Без металлов невозможна современная цивилизация, так как электрические провода также делают из металлов — Cu и Al. Только металлы годятся для получения антенн для радио- и телеприёмников, из металлов делают и лучшие зеркала.

При этом чаще используют не чистые металлы, а их смеси (твёрдые растворы) — СПЛАВЫ.

Особенностью строения атомов металлов является

Сплавы

Металлы легко образуют сплавы — материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов (простых веществ), из которых хотя бы один является металлом.

Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других компонентов.

В принципе, чёткую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других химических элементов.

Все перечисленные выше предметы — станки, самолёты, автомобили, сковородки, вилки, ложки, ювелирные изделия — делают из сплавов.

Металлы-примеси (легирующие компоненты) очень часто изменяют свойства основного металла в лучшую, с точки зрения человека, сторону. Например, и железо и алюминий — довольно мягкие металлы.

Но, соединяясь друг с другом или с другими компонентами, они превращаются в сталь, дуралюмин и другие прочные конструкционные материалы. Рассмотрим свойства самых распространённых сплавов.

Сталь — это сплавы железа с углеродом, содержащие последнего до 2 %. В состав легированных сталей входят и другие химические элементы — хром, ванадий, никель.

Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно перечислить.

Малоуглеродистая сталь (менее 0,25 % углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55 %) идет на изготовление режущих инструментов: бритвенные лезвия, сверла и др.

Железо составляет основу чугуна. Чугуном называется сплав железа с 2–4 % углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей и др.

Бронза — сплав меди, обычно с оловом как основным легирующим компонентом, а также с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка. Оловянные бронзы знали и широко использовали ещё в древности.

Большинство античных изделий из бронзы содержат 75–90 % меди и 25–10 % олова, что делает их внешне похожими на золотые, однако они более тугоплавкие. Это очень прочный сплав. Из него делали оружие до тех пор, пока не научились получать железные сплавы.

С применением бронзы связана целая эпоха в истории человечества: Бронзовый век.

Латунь — это сплавы меди с Zn, Al, Mg. Это цветные сплавы с невысокой температурой плавления, их легко обрабатывать: резать, сваривать и паять.

Мельхиор — является сплавом меди с никелем, иногда с добавками железа и марганца. По внешним характеристикам мельхиор похож на серебро, но обладает большей механической прочностью.

Сплав широко применяют для изготовления посуды и недорогих ювелирных изделий.

Большинство современных монет серебристого цвета изготавливают из мельхиора (обычно 75 % меди и 25 % никеля с незначительными добавками марганца).

Дюралюминий, или дюраль — это сплав на основе алюминия с добавлением легирующих элементов — медь, марганец, магний и железо. Он характеризуется своей стальной прочностью и устойчивостью к возможным перегрузкам. Это основной конструкционный материал в авиации и космонавтике.

Особенностью строения атомов металлов является

Металлы легко отдают электроны, т. е. являются восстановителями. Поэтому они легко реагируют с окислителями.

Вопросы

  1. Какие атомы являются окислителями?
  2. Как называются простые вещества, состоящие из атомов, которые способны принимать электроны?

Таким образом, металлы реагируют с неметаллами. В таких реакциях неметаллы, принимая электроны, приобретают обычно НИЗШУЮ степень окисления.

Рассмотрим пример. Пусть алюминий реагирует с серой:

Вопрос. Какой из этих химических элементов способен только отдавать электроны? Сколько электронов?

Алюминий — металл, имеющий на внешнем уровне 3 электрона (III группа!), поэтому он отдаёт 3 электрона:

Поскольку атом алюминия отдает электроны, атом серы принимает их.

Вопрос. Сколько электронов может принять атом серы до завершения внешнего уровня? Почему?

У атома серы на внешнем уровне 6 электронов (VI группа!), следовательно, этот атом принимает 2 электрона:

Таким образом, полученное соединение имеет состав:

Читайте также:  Для чего необходима арматура аушгн ответ

В результате получаем уравнение реакции:

Задание 8.5. Составьте, рассуждая аналогично, уравнения реакций:

  • кальций + хлор (Cl2);
  • магний + азот (N2).
  • Составляя уравнения реакций, помните, что атом металла отдаёт все внешние электроны, а атом неметалла принимает столько электронов, сколько их не хватает до восьми.
  • Названия полученных в таких реакциях соединений всегда содержат суффикс ИД:

Корень слова в названии происходит от латинского названия неметалла (см. урок 2.4).

Металлы реагируют с растворами кислот (см. урок 2.2). При составлении уравнений подобных реакций и при определении возможности такой реакции следует пользоваться рядом напряжений (рядом активности) металлов:

  1. Металлы, стоящие в этом ряду до водорода, способны вытеснять водород из растворов кислот:

Задание 8.6. Составьте уравнения возможных реакций:

  • магний + серная кислота;
  • никель + соляная кислота;
  • ртуть + соляная кислота.
  • Все эти металлы в полученных соединениях двухвалентны.
  • Реакция металла с кислотой возможна, если в результате её получается растворимая соль. Например, магний практически не реагирует с фосфорной кислотой, поскольку его поверхность быстро покрывается слоем нерастворимого фосфата:
  • Металлы, стоящие после водорода, могут реагировать с некоторыми кислотами, но водород в этих реакциях не выделяется:

Задание 8.7. Какой из металлов — Ва, Mg, Fе, Рb, Сu — может реагировать с раствором серной кислоты? Почему? Составьте уравнения возможных реакций.

  1. Металлы реагируют с водой, если они активнее железа (железо также может реагировать с водой). При этом очень активные металлы (Li – Al) реагируют с водой при нормальных условиях или при небольшом нагревании по схеме:
  2. где х — валентность металла.

Задание 8.8. Составьте уравнения реакций по этой схеме для К, Nа, Са. Какие ещё металлы могут реагировать с водой подобным образом?

Возникает вопрос: почему алюминий практически не реагирует с водой? Действительно, мы кипятим воду в алюминиевой посуде, — и… ничего! Дело, в том, что поверхность алюминия защищена оксидной пленкой (условно — Al2O3).

Если её разрушить, то начнётся реакция алюминия с водой, причём довольно активная. Полезно знать, что эту плёнку разрушают ионы хлора Cl–.

А поскольку ионы алюминия небезопасны для здоровья, следует выполнять правило: в алюминиевой посуде нельзя хранить сильно солёные продукты!

Вопрос. Можно ли хранить в алюминиевой посуде кислые щи, компот?

  • Менее активные металлы, которые стоят в ряду напряжений после алюминия, реагируют с водой в сильно измельчённом состоянии и при сильном нагревании (выше 100 °C) по схеме:
  • Металлы, менее активные, чем железо, с водой не реагируют!
  • Металлы реагируют с растворами солей. При этом более активные металлы вытесняют менее активный металл из раствора его соли:

Задание 8.9. Какие из следующих реакций возможны и почему:

  1. серебро + нитрат меди II;
  2. никель + нитрат свинца II;
  3. медь + нитрат ртути II;
  4. цинк + нитрат никеля II.

Составьте уравнения возможных реакций. Для невозможных поясните, почему они невозможны.

  1. Следует отметить (!), что очень активные металлы, которые при нормальных условиях реагируют с водой, не вытесняют другие металлы из растворов их солей, поскольку они реагируют с водой, а не с солью:
  2. А затем полученная щёлочь реагирует с солью:
  3. Поэтому реакция между сульфатом железа и натрием НЕ сопровождается вытеснением менее активного металла:

Коррозия металлов

Коррозия — самопроизвольный процесс окисления металла под действием факторов окружающей среды.

В природе практически не встречается металлов в свободном виде. Исключение составляют только «благородные», самые неактивные металлы, например золото, платина. Все остальные активно окисляются под действием кислорода, воды, кислот и др. Например, ржавчина образуется на любом незащищённом железном изделии именно в присутствии кислорода или воды. При этом окисляется железо:

  • а восстанавливаются компоненты атмосферной влаги:
  • В результате образуется гидроксид железа (II), который, окисляясь, превращается в ржавчину:

Подвергаться коррозии могут и другие металлы, правда, ржавчина на их поверхности не образуется. Так, нет на Земле металла алюминия — самого распространённого металла на планете.

Но зато основу многих горных пород и почвы составляет глинозём Al2O3. Дело в том, что алюминий мгновенно окисляется на воздухе.

Коррозия металлов наносит колоссальный ущерб, разрушая различные металлические конструкции.

Чтобы уменьшить потери от коррозии, следует устранить причины, которые её вызывают. В первую очередь, металлические предметы следует изолировать от влаги. Это можно сделать разными способами, например, хранить изделие в сухом месте, что далеко не всегда возможно.

Кроме того, можно поверхность предмета покрасить, смазать водоотталкивающим составом, создать искусственную оксидную плёнку. В последнем случае в состав сплава вводят хром, который «любезно» распространяет собственную оксидную плёнку на поверхность всего металла.

Сталь становится нержавеющей.

Изделия из нержавеющей стали дороги. Поэтому для защиты от коррозии используют тот факт, что менее активный металл не изменяется, т. е. не участвует в процессе. Поэтому если к сохраняемому изделию приварить более активный металл, то, пока он не разрушится, изделие корродировать не будет. Этот способ защиты называется протекторной защитой.

Выводы

Металлы — это простые вещества, которые всегда являются восстановителями. Восстановительная активность металла убывает в ряду напряжений от лития к золоту. По положению металла в ряду напряжений можно определить, как металл реагирует с растворами кислот, с водой, с растворами солей.

Металлы особенности строения атомов металлов и их положения в псхэ. физические свойства. — презентация

  • 1 МЕТАЛЛЫ Особенности строения атомов металлов и их положения в ПСХЭ. Физические свойства
  • 2 Металлы и небесные тела Золото – Солнце Серебро – Луна Ртуть – Меркурий Медь – Венера Железо – Марс Олово – Юпитер Свинец — Сатурн
  • 3 Роль металлов в истории развития человечества История древних цивилизаций неразрывно связана с использованием металлов для изготовления орудий труда, предметов обихода, украшений. Украшение из меди

4 Роль металлов в истории развития человечества Каменный век Медный век Бронзовый век 4-3 тыс. лет до н.э. конец 4 — начало 1 тысячелетия до н.э. Железный век с 1 тысячелетия до н.э.

5 Почему после каменного века наступил медный? Тит Лукреций Кар «О природе вещей» «… Все-таки в употребление вошла раньше медь, чем железо, так как была она мягче, причем изобильней гораздо…» ? Самородок меди

6 Бронзовый век При выплавке металлов человек использовал не чистую медную руду, а содержащую одновременно медь и олово. В результате была получена бронза – сплав меди и олова.

7 Железный век Смена бронзового века на железный связана с развитием техники и технологии выплавки металлов. Только когда человек смог увеличить температуру в печи до С наступил железный век.

8 Положение металлов в ПСХЭ

9 Группы металлов Щелочные металлы. Свое название получили от названия соответствующих им гидроксидов – щелочей. Щелочнозе- мельные металлы. Название указывает на то, что оксиды этих металлов (раньше называли «землями») при растворении в воде образуют щелочи.

10 Строение атомов металлов Особенности строения атомов металлов: 1. На внешнем энергетическом уровне 1 – 3 электрона. 2. Относительно большой радиус атомов. Металлы могут проявлять только восстановительные свойства.

11 Строение кристаллов металлов ? Какой вид химической связи характерен для металлов? ? Какой вид кристаллической решетки в металлах? Металлическая химическая связь (мет.х.св.) Металлическая кристаллическая решетка (мет.кр.реш.)

12 Металлическая химическая связь металлической связью. Химическая связь между атомами металла, осуществляемая посредством общих свободно перемещающихся электронов называют металлической связью. Эта связь характерна для типичных металлов, для их сплавов и их интерметаллических соединений, образованных атомами разные металлов.

13 Металлическая решетка Металлическимирешётк Металлическими называют решётки, в узлах которых находятся атомы и ионы металла, между ними — свободные электроны.

14 Физические свойства металлов 1. Твердое агрегатное состояние. 2. Серый цвет. 3. Металлический блеск. 4. Электропроводность. 5. Теплопроводность. 6. Пластичность, ковкость. искл. – Hg искл. – Cu (красн.), Au (желт.), Cs (золотистый) Ag Cu Au Al … Hg Pb Mn понижение Au Ag Cu Sn Pb Zn… Bi Mn понижение

15 Домашнее задание § 47, задание 1 Стр

Строение металлов

Введение

Металлы — простые вещества, обладающие в обычных условиях характерными свойствами: высокой электро — и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны (блеск и непрозрачность), высокой прочностью и пластичностью.

Свойства металлов могут значительно измениться при очень высоких давлениях. Многие металлы в зависимости от температуры и давления могут существовать в виде нескольких кристаллических модификаций.

Подобными металлическими свойствами обладают более 80 химических элементов и множество металлических сплавов. Число металлических сплавов, применяемых в технике, исчисляется тысячами и постоянно возрастает в соответствии с возникающими новыми и разнообразными требованиями, предъявляемыми многими отраслями промышленности.

  • Свойства металлов обусловлены их кристаллическим строением и наличием в их кристаллической решетке многочисленных не связанных с атомными ядрами подвижных электронов проводимости.
  • Металлические сплавы по свойствам имеют много общего с металлами, поэтому их нередко относят к металлам.
  • Металлы (сплавы) в промышленности разделяют на две основные группы: черные и цветные металлы.
Читайте также:  Смазочные материалы для металла

Черные металлы — сплав железа с углеродом, в котором могут содержаться в большем или меньшем количестве и другие химические элементы.

Кобальт, никель, а также близкий к ним по свойствам марганец нередко относят к черным металлам.

Черные металлы получили наибольшее распространение, что обусловлено относительно высоким содержанием железа в земной коре, его низкой стоимостью, высокими механическими и технологическими свойствами.

  1. Цветные металлы по свойствам подразделяют на следующие группы:
  2. легкие (Be, Mg, Al, Ti), обладающие сравнительно малой плотностью — до 5000 кг/м3;
  3. тугоплавкие (Ti, Сг, Zr, Nb, Mo, W, V и др.) с температурой плавления выше, чем у железа (1539°С);
  4. благородные (Ph, Pd, Ag, Os, Pt, Аи и др.), обладающие химическойинертностью:
  5. урановые (U, Th, Pa) — актиноиды, используемые в атомной технике;
  6. редкоземельные металлы (РЗМ), лантаноиды (Се, Рг, Nd, Sm и др.) и сходные с ними иттрий и скандий, применяемые как присадки к различным сплавам;
  7. щелочноземельные металлы (Li, Na, К), используемые в качестве теплоносителей в ядерных реакторах.

Классификация металлических сплавов по химическому составу, основанная на указании главного компонента сплава (железо, медь, алюминий и др.), имеет традиционный характер, и получила наибольшее распространение.

Макро-, микро- и атомную структуру металлов и сплавов изучает металлография.

Макроструктура — это строение металла, видимое невооруженным глазом или с помощью лупы в изломе или на протравленном шлифе. Микроструктура строения металла, наблюдаемое под оптическим или электронным микроскопами, позволяющими увеличить рассматриваемый участок от десяти раз до сотен тысяч раз.

Атомная структура металлов — это пространственное расположение атомов в кристаллической решетке. Этот вид структуры исследуется с помощью рентгено- графического структурного анализа.

Строение металла

Все металлы имеют кристаллическое строение. Располагаясь тем или иным способом, атомы образуют элементарную ячейку пространственной кристаллической решетки. Тип ячейки зависит от химической природы и состояния металла. Кристаллическое состояние, прежде всего, характеризуется определенным, закономерным расположением атомов в пространстве.

Это обусловливает то, что в кристалле каждый атом имеет одно и то же количество ближайших атомов — соседей, расположенных на одинаковом от него расстоянии. В процессе кристаллизации положительно заряженные ионы, располагаясь последовательно в виде элементарных кристаллических решеток, образуют кристаллы в виде зерен или дендритов.

Все металлы и сплавы имеют кристаллическое строение. Образующиеся кристаллы растут, кристаллизуются из жидкого расплава сначала свободно, не мешают один другому, потом они сталкиваются и рост кристаллов продолжается только в тех направлениях, где есть свободный доступ жидкого металла. В результате первоначальная геометрически правильная форма кристаллов нарушается.

После затвердевания зерна и дендриты имеют неправильную, геометрически искаженную форму.

Рисунок 1. Схема кристаллизации: а — в виде зерен; б — в виде дендритов.

Стремление атомов (ионов) металла расположиться, возможно, ближе друг к другу, плотнее, приводит к тому, что число встречающихся комбинаций взаимного расположения атомов металла в кристаллах невелико.

Существует ряд схем и способов описания вариантов взаимного расположения атомов в кристалле. Взаимное расположение атомов в одной из плоскостей показано на схеме размещения атомов (рисунок 2) .

Рисунок 2. Элементарная кристаллическая ячейка (простая кубическая).

Воображаемые линии, проведенные через центры атомов, образуют решетку, в узлах которой располагаются атомы (положительно заряженные ионы); это так называемая кристаллографическая плоскость.

Многократное повторение кристаллографических плоскостей, расположенных параллельно, воспроизводит пространственную кристаллическую решетку, узлы которой являются местом расположения атомов (ионов). Расстояния между центрами соседних атомов измеряются ангстремами (1 А= 1 * 10-8 см) или в килоисках — kX (1kX = 1,00202 А).

Взаимное расположение атомов в пространстве и величину между атомных расстояний определяют рентгеноструктурным анализом. Расположение атомов в кристалле весьма удобно изображать в виде пространственных схем, в виде так называемых элементарных кристаллических ячеек.

Под элементарной кристаллической ячейкой подразумевается наименьший комплекс атомов, который при многократном повторении в пространстве позволяет воспроизвести пространственную кристаллическую решетку. Простейшим типом кристаллической ячейки является кубическая решетка.

В простой кубической решетке атомы расположены (упакованы) недостаточно плотно. Стремление атомов металла занять места, наиболее близкие друг к другу, приводит к образованию решеток других типов: кубической объемноцентрированной (рисунок 3, а), кубической гранецентрированной (рисунок 3, б) и гексагональной плотноупакованной (рисунок 3, в).

Рисунок 3. Элементарные кристаллические ячейки: а — кубическая объемноцентрированная; б — кубическая гранецентрированная; в — гексагональная плотноупакованная.

металл теплопроводность электромагнитный температурный

Кружки, отображающие атомы, располагаются в центре куба и по его вершинам (куб объемноцентрированный), или в центрах граней и по вершинам куба (куб гранецентрированный), или в виде шестигранника, внутрь которого наполовину вставлен также шестигранник, три атома верхней плоскости которого находятся внутри шестигранной призмы (гексагональная решетка).

Метод изображения кристаллической решетки, приведенный на рисунке 3, является условным (как в любой другой). Может быть, более правильно изображение атомов в кристаллической решетке в виде соприкасающихся шаров (левые схемы на рисунке 3). Однако такое изображение кристаллической решетки не всегда удобно, чем принятое (правые схемы на рисунке 3).

Размеры кристаллической решетки характеризуются параметрами, или периодами решетки. Кубическую решетку определяет один параметр — длина ребра куба а (рисунок 3, а, б). Параметры имеют величины порядка атомных размеров и измеряются в ангстремах.

Так например, параметр решетки хрома, имеющего структуру объемноцентрированного куба, равен 2,878 А, а параметр решетки алюминия, имеющего структуру гранецентрированного куба, 4,041 А.

Параметр решетки — чрезвычайно важная характеристика. Современные методы рентгеновского исследования позволяют измерить параметр с точностью до четвертого или даже пятого знака после запятой, т. е. одной десятитысячной — одной стотысячной доли ангстрема.

  • Из рассмотрения схем кристаллических решеток (рисунок 3), если считать, что атомы являются как бы упругими, касающимися друг друга шарами, вытекает, что параметр решетки а и атомный диаметр d связаны простыми геометрическими соотношениями.
  • Для объемноцентрированного куба
  • d = а v3 / 2.
  • Для гранецентрированного куба
  • d = а v2 / 3.

Принимая для атома форму шара, можно подсчитать, что в кубической объемноцентрированной решетке атомы занимают 68% объема, а в кубической гранецентрированной (как и в гексагональной плотноупакованной) 74%, т.е. во втором случае атомы располагаются более плотно, более компактно.

Для металлов распространена гексагональная решетка (рисунок 3, в).

Если слои атомов касаются друг друга, т. е. три атома, изображенные внутри решетки (рисунок 3, в), касаются атомов, расположенных на верхней и нижней плоскостях, то имеем так называемую гексагональную плотноупакованную решетку.

Размеры гексагональной плотноупакованной решетки характеризуются постоянным значением с/а=1,633. При иных значениях с/а получается неплотлоупакованная гексагональная решетка.

Кубическая гранецентрированная и гексагональная решетки представляют самый плотный способ укладки шаров одного диаметра.

Некоторые металлы имеют тетрагональную решетку (рисунок 4); она характеризуется тем, что ребро с не равно ребру а. Отношение этих параметров характеризует так называемую степень тетрагональности.

При с/а = 1 получается кубическая решетка.

В зависимости от пространственного расположения атомов тетрагональная решетка (как и кубическая) может быть простой, объемноцентрированной и гранецентрированной.

Рисунок 4. Тетрагональная решетка

Существенное значение для свойств данного металла или сплава имеет число атомов, находящихся во взаимном контакте. Это определяется числом атомов, равноотстоящих на ближайшем расстоянии от любого атома.

Число атомов, находящихся на наиболее близком и равном расстоянии от данного атома, называется координационным числом. Так, например, атом в простой кубической решетке имеет шесть ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 6.

Центральный атом в объемноцентрированной решетке имеет восемь ближайших равноотстоящих соседей, т. е. координационное число этой решетки равно 8.

Координационное число для гранецентрированной решетки равно 12.

В случае гексагональной плотноупакованной решетки координационное число равно 12, а в случае с/а ? 1,633 каждый атом имеет шесть атомов на одном расстоянии и шесть на другом (координационное число 6).

Для краткого обозначения кристаллической решетки с указанием в этом обозначении типа кристаллической решетки и координационного числа была принята одна из следующих систем (таблица 1).

Таблица 1

Решетка Обозначение Координационное число
Простая кубическая к К6
Кубическая объемно-центрированная о. ц. к. К8
Кубическая гранецентрированная г. ц. к. К12
Гексагональная плотноупакованная 1 г. п. у. Г12
Гексагональная 2 г Г6

Строение металлов – особенности атомов в таблице (химия, 8 класс) — Помощник для школьников Спринт-Олимпик.ру

Металлы – твёрдые элементы, сплавы которых широко применяются в промышленности, строительстве и повседневной жизни. Пластичность, твёрдость, тепло- и электропроводность, а также способность к плавке и ковке обусловлены строением металлов.

Читайте также:  Как характеризуется рейсмусовый станок: классификация рейсмусов для дома и производства, нюансы выбора

Содержание

  • Строение
  • Физические свойства
  • Виды
  • Химические свойства
  • Что мы узнали?

Строение

Электронное строение атома металла включает:

  • положительно заряженное ядро;
  • отрицательно заряженные электроны.

Ядро состоит из протонов и нейтронов. Количество протонов, заряд ядра и число электронов соответствуют порядковому номеру металла в периодической таблице.

Электроны в металлических атомах расположены намного дальше от ядра, чем электроны неметаллов. Этим объясняется лёгкость отделения валентных электронов, поэтому металлы всегда являются восстановителями в химических реакциях.

Атомы всех металлов, за исключением ртути, образуют кристаллические решётки. Кристаллическая решётка состоит из повторяющихся комплексов атомов – элементарных кристаллических ячеек, которые бывают трёх видов. Их отличия описаны в таблице строения металлов.

Вид решётки Характеристика Примеры
Кубическая объёмно-центрированная (ОЦК) Восемь ионов находятся по углам условного куба, один – в середине Fe, Cr, Mo, W, V
Кубическая гранецентрированная Ионы располагаются в углах куба и в центре каждой грани. Центр куба свободен Cu, Ag, Ni, Pb, Al
Гексагональная плотноупакованная Шестигранная призма. В углах и в центре между ними находятся ионы. Посередине призмы лежат ионы, образующие треугольник Zn, Ti, Mg, Co, Zr

Рис. 1. Виды решёток металлов.

Физические свойства

Металлы отличаются от неметаллов характерными физическими свойствами:

  • имеют металлический блеск;
  • проводят электрический ток и тепло;
  • не имеют запаха;
  • обладают серебристо-серым цветом (исключение – медь и золото).

Благодаря пластичности и плавке металлы могут образовывать сплавы – смеси химических элементов. Большую часть сплавов составляют металлы, остальное – случайные примеси и специально вводимые вещества. Сплавы отличаются высокой прочностью, упругостью, хрупкостью. Широко применяются сплавы на основе железа (чёрные металлы) и алюминия (цветные металлы).

Высокую электропроводность обуславливают свободные электроны, перемещающиеся по кристаллической решётке под действием электрических полей. При нагревании электропроводность уменьшается.

Виды

Классификация металлов приведена в таблице.

Признак Вид Пример
Температура кипения Легкоплавкие (Т1000°С) Au, Cu, Ni
Плотность Лёгкие (ρ5 г/см3) Os
Твёрдость Мягкие – режутся ножом Na, Rb, Cs
Твёрдые – используются для резки Cr

В химии по структуре орбиталей атома металла различают s-, p-, d-, f-металлы.

Химические свойства

Металлы являются восстановителями и вступают в реакцию с неметаллами, образуя оксиды, гидроксиды, соли. Самыми активными являются щелочные и щелочноземельные металлы, расположенные в I и II группах таблицы Менделеева. Благородные металлы (Au, Ag, Pt) малоактивны и не взаимодействуют с кислородом и водой.

Рис. 2. Шкала активности металлов.

Особенности химического взаимодействия металлов с другими элементами описаны в таблице.

Взаимодействие Продукты Уравнение
С кислородом Оксиды 2Mg + O2 → 2MgO
С серой Сульфиды Zn + S → ZnS
С азотом Нитриды 6Li + N2 → 2Li3N
С фосфором Фосфиды 3Ca + 2P → Ca3P2
С галогенами Галогениды 2Na + Cl2 → 2NaCl
С водой Гидроксиды 2Na + 2H2O → 2NaOH + H2
С кислотами Соли 2Al + 3H2SO4 → Al2(SO4)3 + 3H2
С солями (замещают менее активные металлы) Соль 2Fe + Cu2SO4 → Fe2SO4 + 2Cu

Золото растворяется в царской водке (смеси соляной и азотной кислот), серебро – в концентрированной азотной и горячей серной кислотах.

Рис. 3. Золото.

Что мы узнали?

Рассмотрели особенности строения атомов металлов, физические и химические свойства. Металлы состоят из элементарных кристаллических ячеек, отличающихся конфигурацией.

Элементы обладают металлическим блеском, электропроводностью, пластичностью, твёрдостью. Металлы – восстановители. Наиболее активные находятся в I и II группах таблицы Менделеева.

Металлы реагируют с кислородом, водой, кислотами, галогенами и неметаллами.

ПредыдущаяСледующая

В чем особенность строения атомов металлов и неметаллов?

Атомы большинства неметаллов имеют 4 и более электрона на внешней электронной оболочке, у атомов металлов же на внешней оболочке находится от одного до трех электронов. Поэтому атомы металлов в реакциях обычно теряют электроны и проявляют, таким образом, восстановительные свойства.

Металлы имеют металлическую кристаллическую решетку, в узлах которой расположены отдельные атомы.

Они слабо удерживают валентные электроны, которые по этой причине свободно перемещаются по всему объему металла, формируя единое электронное облако и в равной степени притягиваются всеми атомами.

В чем заключается особенность строения атомов металла?

1)Внешние электроны значительно удалены от ядра и слабо с ним связаны, поэтому они легко отрываются от атома металла. 3)Атомы элементов металлов имеют радиусы больше, чем у неметаллов … 4)Атомы элементов металлов имеют радиусы меньше, чем у неметаллов

Какие особенности строения атомов металлов определяют их восстановить?

Восстановительные свойства металлов определяются способностью отдавать электроны внешнего слоя. Чем легче атом отдает электроны внешнего слоя, тем более сильным восстановителем он является. к главе «Глава 1. … Менделеева и строение их атомов».

Что характерно для атомов металла?

Для атомов металлов характерны небольшие значения электроотрицательности (от 0,7 до 1,9) и исключительно восстановительные свойства, то есть способность отдавать электроны. Вы уже знаете, что в Периодической системе химических элементов Д.

Какие особенности строения имеют атомы неметаллов?

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. … Благодаря высоким значениям энергии ионизации неметаллов, их атомы могут образовывать ковалентные химические связи с атомами других неметаллов и амфотерных элементов.

Почему металлы легко отдают электроны?

Атомы металла имеют меньший заряд ядра и больший радиус (размер) по сравнению с атомами неметаллов данного периода. Потому прочность связи внешних электронов с ядром в атомах металлов небольшая. Атомы металлов легко отдают валентные электроны и превращаются в положительно заряженные ионы.

Как строение металлов влияет на их свойства?

Поскольку атомы разных металлов различны, каждый металл имеет свои определенные свойства. … Эти свойства зависят от расположения атомов между собой, характера их связей, от расстояния между ними. Если изменить расстояние между атомами или порядок их расположения, изменятся и свойства металла.

Какие химические элементы относятся к металлам?

К металлам относятся все s-элементы (кроме водорода и гелия), d- и f-элементы, а также p-элементы под чертой бор-астат. Для типичных металлов характерен большой размер атомов, что способствует легкости отдачи валентных электронов.

Где металлы в таблице Менделеева?

Менделеева В Периодической системе химических элементов Д. И. … Металлы располагаются в начале периодов, к ним относятся s-элементы 1 и 2 групп, р-элементы 13 группы, все, кроме бора, 14 группы: германий, олово, свинец, 15 группы: сурьма, висмут, а также все d- и f- элементы.

Каковы особенности строения атомов металлов как в периодической системе?

Каковы особенности строения атомов металлов? Как в Периодической системе Д. … Элементы-металлы располагаются в IА и в IIА группах, кроме того, элементы-металлы А-групп расположены слева внизу от условной диагонали, проведённой от бора к астату, также к металлам относятся все элементы Б-групп.

Какая особенность строения металлов определяют их общие физические свойства?

Металлическая химическая связь и металлическая кристаллическая решётка определяют многие общие физические свойства металлов: электропроводность; • теплопроводность; • отражающая способность (металлический блеск); • пластичность; • ковкость; • твёрдость.

Какие особенности строения атома углерода позволили ему стать?

В органических соединениях углерод всегда четырехвалентен. Его атомы способны соединяться друг с другом, образуя длинные цепи и замкнутые кольца. При этом возникают прочные ковалентные связи. … Эти особенные свойства углерода позволили ему стать родоначальником разнообразных органических соединений.

Что характерно для всех металлов?

Теория: Металлы — это простые вещества, образованные металлическими химическими элементами. … За счёт наличия в кристаллах свободно движущихся электронов для большинства металлов характерны общие физические свойства: особый металлический блеск, высокие электропроводность и теплопроводность, ковкость и другие.

Как доказать что элемент металл?

Определить, является простое вещество металлом или неметаллом, можно с помощью периодической таблицы. Химические элементы металлы, образующие простые вещества с металлическими свойствами, располагаются в периодической таблице слева ниже диагонали «водород — бор — кремний — мышьяк — теллур — астат — № 118».

Какие элементы металлы и неметаллы?

Типичными металлами являются щелочные (литий, натрий, калий, рубидий, цезий) и щелочноземельные (кальций, стронций, барий, магний) металлы. Неметаллы в обычных условиях находятся в твердом (фосфор, сера, селен, углерод и др.), жидком (бром) и газообразном (кислород, водород, азот и др.) состояниях.

Интересные материалы:

Можно ли укоротить куртку? Можно ли услышать кита? Можно ли в аэропорту попросить места рядом? Можно ли в банкомате Сбербанка положить 50 рублей? Можно ли варить рис с гречкой? Можно ли восполнить дефицит йода йодной сеткой? Можно ли выходить на улицу после промывания носа? Можно ли вывести доллары с иис? Можно ли взять кредит в банке без прописки? Можно ли заказывать с Пандао в Крым?

Понравилась статья? Поделиться с друзьями:
Станок