- Жидкий металл для охлаждения ноутбуков — польза или вред?
- Все игровые ноуты горячие? Да!
- Эволюция систем охлаждения в ноутбуках ROG
- Как мы «докатились» до жидкого металла?
- Жидкий металл нужно менять через год? Неправда!
- А что дальше?
- Overclockers.ru: Жидкий металл в качестве термоинтерфейса, все за и против
- Жидкий металл вместо термопасты. Есть ли смысл?
- И так, термопаста
- Подводя итог
Привет Пикабу! Мы продолжаем развенчивать мифы о различных компьютерных комплектующих, и сегодня поговорим о хладомази, она же термопаста. Как всегда — текстовая версия под видео.
Миф №1. Термопасту нужно наносить на крышку процессора обязательно крестиком, кружком или звездочкой (нужное подчеркнуть, ненужное вычеркнуть).
Цель термопасты — эффективно передать тепло от горячего процессора или видеочипа к радиатору кулера, чтобы тот его рассеял. При этом теплопроводные свойства термопасты ощутимо меньше, чем у большинства металлов, но все же гораздо выше, чем у воздуха. Отсюда вытекает простой вывод: наносить термопасту нужно тонким ровным слоем без пустот.
Очевидно, что всякие художества на крышке процессора этого могут и не обеспечить: например, банальная капля в центре может оставить края CPU неприкрытыми, потенциально уменьшая площадь, с которой может забираться тепло, и тем самым увеличивая температуру камня. Про всякие кружочки, квадратики и прочие произведения искусства и говорить нечего — могут получиться пустоты вообще в центре крышки, а вы будете долго гадать, почему ваш процессор под мощной башней с дорогой термопастой греется до 100 градусов.
Так что если вы хотите избежать проблем с этим — найдите ненужную кредитку или другую пластиковую карту, и аккуратно размажьте термопасту тонким слоем по всей крышке. Долго, скажете вы? Ну, зато точно не придется вновь разбирать ПК из-за перегрева, дабы уже нормально нанести хладомазь.
Миф №2. Дорогая термопаста позволит сэкономить на кулере
Как я уже писал, цель термопасты — это эффективно передать тепло от крышки CPU радиатору кулера. Да, разумеется дорогие термопасты с более высокой теплопроводностью будут делать это лучше, но они никак не помогут охладить горячий камень, если не справляется сам кулер, так как именно последний отвечает за охлаждение.
Поэтому увы, но Arctic MX4 не поможет боксовому кулеру охладить Core i9 — сей кусок алюминия быстро нагреется и процессор начнет троттлить. Поэтому в любом случае берите охлаждение, максимальный уровень рассеиваемого тепла которого выше TDP вашего процессора.
Миф №3. Термопасты — это мировой заговор: что у процессора, что у радиатора контактные поверхности гладкие, так что хладомазь не нужна.
Гладкие они только для наших глаз, а вот под микроскопом они будут похожи на типичную российскую дорогу, всю в колдобинах и ямах.
Поэтому если не использовать термопасту, то площадь контакта подошвы кулера и крышки процессора будет ощутимо меньше последней, а в пустотах между ними будет скапливаться воздух с очень низкой теплопроводностью.
Термопаста для того и нужна, чтобы заполнить собой эти полости, ведь она передает тепло куда лучше, чем воздух.
Разумеется, если у вас стоит какой-нибудь Celeron под мощным суперкулером, то скорее всего даже небольшой площади контакта действительно хватит, чтобы охладить процессор. Но если мы берем реальные системы, то термопаста нужна в обязательном порядке — в противном случае вы рискуете получить под 100 градусов на CPU даже на рабочем столе.
Миф №4. Дорогие термопасты не нужны, я всю жизнь мажу КПТ-8 и проблем не знаю.
Все очень сильно зависит от процессора. Если у вас простой чип с 2-4 ядрами и низкими частотами, то поток тепла через крышку будет низок, и даже различные графитовые смазки вполне справятся с поставленной задачей.
Но если мы берем различные Core i9 или Ryzen 9, которые имеют реальные TDP под нагрузкой нередко больше 200 Вт, неэффективная термопаста просто не сможет передать такой поток тепла с крышки на радиатор, из-за чего CPU будет греться больше.
Вот и получается, что в случае с дешевыми кулерами дорогая высокоэффективная термопаста не поможет, а в случае с мощными системами охлаждения дешевая термопаста все испортит.
Насколько сильно? Разница может составлять до 4-5 градусов.
Конечно, в играх это не критично, но например в рабочих задачах процессоры нередко могут греться до 90 градусов, и тут такая разница может быть фатальной.
Так что если учесть, что разница между граммовыми шприцами с дешевой и дорогой термопастами нередко составляет всего несколько сотен рублей, при сборке дорогого ПК уж точно не стоит экономить на хладомази.
Миф №5. Термопаста — прошлый век, нужно наносить жидкий металл.
Безусловно, жидкий металл крут, Т-1000 не подвержен механическому разрушению, его повреждённые части быстро восстанавливаются… Огнестрельное оружие и взрывчатые вещества против него оказываются бесполезными, а это не от туда.
Термоинтерфейс из жидкого металла плавится при температуре ниже комнатной, из-за чего вы в прямом смысле того слова можете держать в руках расплав. И разумеется его теплопроводные свойства нередко на порядок выше, чем у лучших термопаст — получается, что и температура процессора с ним должна быть ниже?
Не совсем. Жидкий металл действительно снижает температуру там, где нужно передать большое количество тепла с маленькой площади — например, с кристалла процессора на крышку.
Поэтому скальпирование процессоров с терможвачками под крышкой и замена так называемого пластичного термоинтерфейса на жидкий металл действительно имеет смысл: площадь кристалла CPU в несколько раз меньше площади крышки, а передать нужно нередко пару сотен ватт тепла.
Поэтому в таком случае жидкий металл с крайне высокой теплопроводностью может снизить конечную температуру процессора нередко на внушительные 15-20 градусов.
А вот просто втирать жидкий металл в крышку процессора смысла нет — в сравнении с хорошей термопастой вы выиграете от силы 1-2 градуса.
Почему? Все просто — сама крышка процессора достаточно большая, и снять с нее те же пару сотен ватт гораздо проще, чем с небольшого кристалла.
И в таком случае с передачей тепла отлично справляются и термопасты, жидкий металл оказывается избыточен и даже вреден.
Почему вреден? Во-первых, жидкий металл отлично проводит ток. Так что если вы при его нанесении случайно капнете на плату, или он выдавится из-под радиатора и попадет в сокет — вы в лучшем случае пойдете за новым CPU, в худшем еще и за материнкой.
Во-вторых, жидкий металл химически активен — одна его капля всего за сутки может превратить прочный алюминиевый радиатор в труху: вы в прямом смысле слова сможете крошить его пальцами.
С медью процесс схож, но идет гораздо медленнее.
Однако в течение года вы скорее всего увидите, что температура процессора снова выросла, а сняв радиатор заметите следы черного сплава на медном основании вашего кулера.
Поэтому использовать жидкий металл можно только в прошлом, чтобы убить Джона Коннора и с кулерами, имеющими никелированное основание: никель никак не реагирует с индием и галлием в составе этого термоинтерфейса, поэтому даже через несколько лет никаких проблем с температурой и прочностью кулера у вас не будет.
Миф №6. Термопасту нужно менять раз в год.
Обычно полный совет выглядит как «раз в год нужно чистить компьютер и менять термопасту», и кочует он из блога в блог на протяжение уже второго десятилетия. И если первая часть совета действительно имеет смысл — за год компьютер может запылиться, то вторая — бессмысленна с современными термопастами.
Все дело в том, что даже дешевые хладомази нередко остаются жидкими на протяжении нескольких лет, а те же известные Arctic MX4 или Noctua NT-H1 не теряют своих свойств и по 5 лет. Поэтому, сняв радиатор спустя год после сборки ПК, вы скорее всего увидите термопасту в том же виде, что и год назад.
И совет тут прост — менять термопасту стоит только в том случае, если температура CPU или GPU выросла, а чистка радиатора не помогает. В профилактической замене хладомази каждый год смысла нет никакого.
Миф №7. Термопасты, идущие в комплекте с кулерами, плохого качества и их нужно стирать или выкидывать.
В данном случае сложно сказать, откуда идет миф.
Возможно, его придумали разочарованные пользователи, купившие дешевые бруски алюминия с нанесенной термопастой в пару к горячим Core i7 или Ryzen 7 и получившие в результате высокие температуры при работе.
Однако, как я уже объяснил, термопаста на крышке неспособна сильно влиять на температуру CPU, поэтому винить в данном случае стоит имеенно плохой кулер, а не некачественную хладомазь.
Что касается качества комплектных термопаст, то обычно они соответствуют уровню кулера: очевидно, что к простому народному GAMMAXX 200T никто не поставит в пару 16-ядерный Ryzen 9 5950X, а такой же народный Ryzen 3 3100 не настолько горяч и жорист, чтобы недорогая комплектная термопаста играла тут хоть какую-то роль.
Миф №8. Термопаста в шприце густая и плохо мажется? Значит, она низкокачественная или неправильно хранилась, использовать ее не стоит.
Видимо, такие советы дают люди, всю жизнь использовавшие КПТ-8, которая действительно достаточно жидкая. На деле в термопастах используются различные оксиды металлов — например, цинка или алюминия, и связующие их масла с низкой испаряемостью. И, разумеется, от концетрации входящих веществ сильно зависит получаемая вязкость термопасты.
Так что на деле густая и плохо мажущаяся хладомазь вовсе не является плохой — просто ее производитель выбрал такой состав. Причем нередко такие термопасты оказываются более энергоэффективными, чем более жидкие, потому что в них меньше плохо проводящих тепло масел. Так что главное нанести такую термопасту правильно, не бросив процесс на пол пути.
Миф №9. Зачем нужны термопасты за несколько сотен рублей, когда есть зубная паста аквафреш за полтинник?
О, эта зубная паста, о которой не говорил только ленивый. И ведь она частенько работает — даже у нас в обзоре RTX 3080 температуры с ней оказались сравнимыми с заводской термопастой на далеко не самой дешевой видеокарте линейки ASUS TUF. Так почему же зубная паста действительно работает?
Все просто потому что в ней содержится ментол! Шучу конечно — она, как и любая термопаста, заполняет собой неровности. При этом вода в ней, очевидно, проводит тепло гораздо лучше воздуха, а ее теплоемкость вообще близка к рекордной. Поэтому зубная паста действительно может показать себя на уровне неплохой термопасты — но только до тех пор, пока не испарится вода.
А произойдет это при рабочих температурах в 60-80 градусов максимум за сутки, и в результате зубная паста превратится в зубной порошок, теплопроводные свойства которого крайне сомнительны.
При этом масла в термопастах, очевидно, куда более долговечные.
Так что да, в кратковременных тестах зубная паста действительно тащит, но уже через несколько часов вы поймете, что экономить на термопасте не стоило.
Как видите, мифов о термопастах хватает, и, мы надеемся, развеяли большинство самых популярных из них. Знаете какие-либо еще? Пишите о них в х.
Мой Компьютер — специально для Пикабу
Жидкий металл для охлаждения ноутбуков — польза или вред?
Я всегда с болью в душе наблюдал за температурами центрального процессора в игровых ноутбуках, которые достигали 100 градусов по Цельсию, а повышенный нагрев в итоге приводил к снижению тактовой частоты (некоторые до сих пор называют это троттлингом, хотя на самом деле это понятие умерло вместе с выходом архитектуры Core у Intel и появлением интеллектуальных систем управления частотой процессора Turbo Boost).
Тренд на компактность в игровых ноутах ведет к уменьшению габаритов системы охлаждения.
Все игровые ноуты горячие? Да!
Почему же производители игровых ноутбуков позволяют нагреваться процессорам практически до 100 градусов по Цельсию?
Во-первых, продукт разрабатывается в несколько этапов и даже несколькими командами. Эти команды взаимодействуют друг с другом, но работая только лишь над определенной частью единого целого, всегда велик риск не увидеть фундаментальные проблемы.
Для команды, занимающейся созданием системы охлаждения, задача звучит так — как отвести N-ое количество Ватт тепла от процессора в N-габаритах корпуса, не допустив перегрева (в нашем случае значения в 100+ градусов по Цельсию).
Если на выходе система охлаждения сможет держать температуру процессора до 95 градусов по Цельсию, то будет ли задача считаться выполненной? Скорее всего, да. Но удовлетворит ли это пользователя? Скорее всего, нет.
Во-вторых, есть «негласное» соревнование между производителями за звание самого быстрого. При прочих равных ноутбук с процессором, работающим на более высокой частоте, сможет продемонстрировать лучшую производительность.
И чаще всего в таком сравнении никто не обратит внимание на то, что эти дополнительные 100-200 МГц частоты прибавили к нагреву процессора дополнительные 5-10 градусов по Цельсию.
Получается, что за скорость надо платить повышенным тепловыделением? И да, и нет.
Чем больше тепловых трубок, тем эффективнее отвод тепла
Именно этот вопрос нас беспокоил последние несколько лет в российском представительстве ASUS. Я практически уверен на 100 процентов, что в России и русскоговорящих странах находятся самые требовательные пользователи и в то же время самые технически грамотные.
Мы на постсоветском пространстве прекрасно понимаем, что у любого продукта есть ресурс, и чем дольше он работает на пределе, тем выше вероятность его выхода из строя.
А для остального мира, это всего лишь будет RMA процедура (где не надо никому доказывать, что ты не сам его сломал) с последующей заменой или возвратом денег и дальнейшим переходом на новое устройство, ведь эта-то «игрушка» уже морально устарела (для сравнения цикл жизни персонального компьютера в России — 7 лет, а в Европе — 4 года).
Как же можно снизить температуры процессора, улучшив эффективность системы охлаждения в ноутбуке?
- зафиксировать тепловыделение процессора на пороговом значении, т.е. искусственно ограничить производительность CPU
- увеличить габариты корпуса, уместив внутри радиатор большей площади, вернувшись обратно к тяжелым ноутбукам весом от 4-5 кг
- использовать жидкостное охлаждение
- использовать другой форм-фактор для увеличения эффективности воздушных потоков
- использовать более эффективные, чем медь, материалы для радиатора
- использовать более эффективный термоинтерфейс для отвода тепла от кристалла процессора к радиатору системы охлаждения
Вариантов для улучшения не так много, но они есть. Давайте поговорим подробнее о каждом. Первые два варианта, однозначно, не подходят. Ни о каком снижении производительности речи быть не может. Ни о каком увеличении габаритов — тоже. Это уже пройденный этап, к которому производители ноутбуков не будут возвращаться.
Эволюция систем охлаждения в ноутбуках ROG
Вариант с системой жидкостного охлаждения инженеры ROG обкатывали, начиная с 2015 года, на двух моделях: GX700 и его преемнике GX800.
Использование подключаемой жидкостной системы охлаждения сделало ноутбук самым быстрым на рынке, но абсолютно непригодным для переноски. Полный комплект умещался только лишь в чемодане.
Но надо отдать должное: с точки зрения эффективности системы охлаждения и температур не было никаких вопросов. Только такие инновации были слишком дорогими: цена на ноутбук была на уровне полумиллиона рублей.
ROG GX700 с водяным охлаждением
Эксперименты с альтернативными форм-факторами привели инженеров Republic of Gamers в 2019 году к созданию ROG Mothership — гибридное решение, сочетающее в себе элементы ноутбука, моноблока и планшета. По мне, это ближе всего к моноблоку, но до конца определиться с форм-фактором я так и не смог.
Преимуществом такой конструкции стало то, что материнская плата и вся элементная база была перенесена в вертикальную плоскость, сделав воздушные потоки более эффективными, а само устройство опять стало самым производительным в игровом сегменте портативных компьютеров.
Ценник, естественно, опять добирался до полумиллиона рублей.
ROG Mothership
Еще одним вариантом развития событий мог стать переход от медных радиаторов к серебряным, что могло бы дать какую-то позитивную динамику в снижении температур центрального процессора, но думаю, что стоимость ноутбука с серебряной системой охлаждения возросла бы непропорционально выгоде, которую могли бы получить пользователи.
Система охлаждения ROG Mothership
Сразу вспоминается собственный опыт: эксперименты по замене термоинтерфейса между крышкой теплораспределителя и кристаллом процессора пришли в бытность процессоров Intel Core i7-3770K, а с приходом Intel Core i7-7700K оверклокеры пошли еще далее и начали эксперименты над самими теплораспределительными крышками.
Российские оверклокеры также активно участвовали в погоне за рекордами, и мы даже заказывали теплораспределительную крышку из серебра. Она нам обошлась примерно в 15 000 рублей (чуть дешевле стоимости самого процессора), но ничего дельного с ней у нас так и не получилось.
Хотя рекорд разгона Core i7-7700K по частоте до сих пор принадлежит России:
Рекорд разгона Intel Core i7-7700K
Получается, что самым разумным и эффективным с точки зрения финансовой целесообразности является использование более эффективных термоинтерфейсов.
Для человека, который на собственном опыте проделал путь от КПТ-8, Arctic Silver Ceramique, Gelid GC-Extreme до Thermal Grizzly Kryonaut и k|ngp|n cooling KPX, было очевидно, что термопасты бывают разными и могут оказывать очень сильное влияние на температурные показатели.
Как мы «докатились» до жидкого металла?
Локальные эксперименты в российском офисе ASUS показывали, что замена термопасты с заводской на Thermal Grizzly Kryonaut дает снижение температуры центрального процессора в диапазоне 7-10 градусов по Цельсию.
Лично для меня жидкий металл в качестве термоинтерфейса всегда стоял в стороне, поскольку при отрицательных температурах использовать его достаточно сложно.
Из-за частых заморозок-разморозок образуется ледяной нарост, который начинает отжимать стакан для жидкого азота от крышки процессора, и в какой-то момент жидкий металл «отклеивается» от основания азотного стакана и перестает передавать ему тепло с теплораспределительной крышки.
Если вовремя не обратить внимание на характерный звук и выросшую дельту температур на основании стакана (там будут отрицательные температуры) и ядрах процессора (там будут положительные температуры), то все закончится очень печально.
В лучшем случае «умрет» только процессор, а в худшем случае утащит за собой что-то еще. В случае же использования термоинтерфейса жидкого металла в домашнем компьютере или ноутбуке на каждый день тоже есть определенные риски и сложности, с которыми инженерам ROG пришлось бороться под натиском локальных офисов.
Объединившись с другими странами, мы смогли убедить штаб-квартиру начать тестирование жидкого металла в качестве термоинтерфейса в системах охлаждения ноутбуков еще в 2018 году. Правда, нам пришлось столкнуться с рядом бюрократических трудностей.
Одним из самых курьезных моментов стал ответ инженеров, что они не могут купить жидкий металл в Тайване. Но я-то прекрасно знал, что у коллег из департамента материнских плат жидкий металл есть в наличии, поэтому мы продолжили воевать «с системой».
Решив проблему «нежелания», мы столкнулись с другой проблемой. Ведь наносить жидкий металл на поверхность кристалла не так уж и просто, а в рамках массового производства это практически невозможно. В итоге жидкий металл дебютировал в 2019 году в ROG Mothership, в выпущенном ограниченным тиражом в 1000 экземпляров.
Если собрать все трудности с жидким металлом вместе, то я бы выделил следующие:
- сложность нанесения
- жидкий металл проводит ток
- коррозия металлов, контактирующих с термоинтерфейсом
- стоит дороже термопасты
На протяжении следующего года инженеры ROG решали вышеперечисленные проблемы.
Жидкий металл наносится специальным станком при помощи силиконовой кисти.
Для нанесения жидкого металла в масштабах массового производства был создан специальный станок, который позволял решить, пожалуй, самую главную и сложную задачу — равномерное нанесение термоинтерфейса по поверхности кристалла процессора.
В нашем случае используется жидкий металл от Thermal Grizzly, отличающийся от других производителей на рынке пониженной концентрацией олова в составе, что делает его более эффективным.
На начальных этапах процесс тестирования жидкого металла был настолько засекречен, что первые партии термоинтерфейса Thermal Grizzly покупались на рынке у нескольких продавцов, а не напрямую у производителя, чтобы не допустить утечек информации.
Важно помнить, что жидкий металл проводит ток, поэтому меры предосторожности очень важны. На первом этапе на заводе используется специальная пластина, которая закрывает собой все вокруг кристалла процессора и принимает на себя излишки жидкого металла.
С помощью специальной силиконовой кисти жидкий металл будет распределяться по всей поверхности кристалла.
Надо отметить, что даже подбор материала для этой кисти был не таким простым, было испробовано около 30 различных материалов и выбор остановился на силиконе, который не деформирует нанесенный слой.
Добавляем еще немного ЖМ для создания безупречного контакта между кристаллом и радиатором СО
На следующем этапе пластина убирается и с помощью своего рода «шприца» на поверхность кристалла добавляется несколько капель жидкого металла, которые должны будут занять все свободное пространство между кристаллом и радиатором системы охлаждения для эффективного теплообмена. После этого устанавливается система охлаждения. В коротком видео можно посмотреть подробности процесса:
Жидкий металл нужно менять через год? Неправда!
Энтузиасты, кто хоть раз сталкивался с жидким металлом, знают о главном недостатке — «его на долго не хватает». Спустя год — максимум полтора, у всех людей, кто заменил термоинтерфейс на жидкий металл в своих десктопах или ноутбуках, начинается одна и та же проблема.
Температуры процессора возвращаются к прежним значениям «до перемазки», а на форумах бытует понятие, что жидкий металл «высыхает». На самом деле все не совсем так. В современных системах охлаждения крышка теплораспределителя сделана из меди, которая подвергается коррозии при контакте с жидким металлом.
Процесс этот не моментальный, поэтому пользователи замечают это примерно спустя год с момента нанесения. Из-за нарушения герметичности контакта происходит постепенный рост температуры процессора.
Успех «долголетия» жидкого металла заключается в использовании никелированного основания радиатора
В рамках массового производства и сервисного обслуживания замена термоинтерфейса каждый год просто непозволительная роскошь для производителя, поэтому радиаторы систем охлаждения под ноутбуки с жидким металлом пришлось доработать.
Медное основание радиатора заменили на никелированное, и оно коррозии не поддается. При констультации с инженерами Thermal Grizzly инженеры ROG пришли к выводу, что подобное инженерное решение будет иметь «срок годности» более 5 лет.
По итогам внутреннего тестирования инженеры ROG департамента R&D установили:
- снижение температур процессора на 13-15 градусов по Цельсию в сбалансированном режиме работы системы охлаждения и незначительный рост частот процессора в Turbo Boost
- снижение температур процессора в диапазоне от 7 до 22 грудусов по Цельсию и рост частот процессора на 300-400 МГц в зависимости от приложения
- увеличение производительности ноутбука до 10% в режиме Turbo работы системы охлаждения
А что дальше?
Если вы уже являетесь владельцем игрового ноутбука, в котором высокие температуры процессора и шумная система охлаждения не дают вам покоя, и вы грезите заменой термоинтерфейса, то мой вам совет: не используйте для этого жидкий металл.
Скорее всего при отсутствии определенного опыта и практики нанесение этого термоинтерфейса доставит вам много проблем, а вред от коррозии основания радиатора можно будет исправить лишь последующим шлифованием основания радиатора системы охлаждения. Что в конечном итоге, также не сулит ничего хорошего.
Если уж очень хочется, то используйте топовые термопасты от Thermal Grizzly и наслаждайтесь снижением температур на 5-10 градусов по Цельсию и, как следствие, снизившимся уровнем шума.
На данный момент все игровые ноутбуки Republic of Gamers с процессорами Intel Core 10-го поколения получили «с завода» жидкий металл. Будет ли жидкий металл в ноутбуках с процессорами AMD или на графических чипах NVIDIA? Пока сложно сказать.
Штаб-квартира ASUS объясняет свой выбор в пользу Intel тем, что кристалл процессора маленький, а тепло от него распределяется по поверхности равномерно, делая процессоры Intel идеальными кандидатами на операцию «жидкий металл», в которой можно по максимуму раскрыть все прелести от использования подобного термоинтерфейса. Забегая вперед, скажу, что в Intel настолько вдохновились идеей использования жидкого металла в качестве термоинтерфейса, что они стали советовать перейти на жидкий металл и другим производителям игровых ноутбуков. Попытки использовать жидкий металл на платформе AMD также предпринимались инженерами ROG в модели Zephyrus G14, но в итоге в массовое производство это решение не пошло из-за большого количества элементов, расположенных вокруг кристалла, и, как следствие, рисков, связанных с коротким замыканием. Поэтому пока от внедрения жидкого металла в продуктах на базе AMD решили воздержаться, но поиск оптимального решения уже ведется.
Станет ли такое решение нормой для игровых ноутбуков или останется лишь в премиальных моделях ROG, покажет лишь время.
Overclockers.ru: Жидкий металл в качестве термоинтерфейса, все за и против
Этот материал написан посетителем сайта, и за него начислено вознаграждение.
В последнее время все большую популярность приобретает применение в компьютерной технике в качестве термоинтерфейса жидкого металла.
анонсы и реклама
Пиши на наш сайт и зарабатывай
3060 Gigabyte Gaming за 50 тр
RX 6600 Gigabyte за 40 тр c началом
3 крутых RTX 3070 Ti за копейки
3070 Ti Gigabyte Gaming за 75 тр
6900XT Gigabyte Aorus за 100тр
Radeon PRO 32Gb за 200 тр — смотри
Топовейшая 48Gb Nvidia за 700 тр в продаже
3070 Ti за 80 тр Gigabyte Vision
Компьютеры за 10 тр в Ситилинке
-25% на 6750XT MSI Gaming = дешевле 70 тр
100″ TV сильно дешевле, чем ты думаешь
Но давайте разберемся, все ли так хорошо, как нас убеждает производитель этого «волшебного зелья» и его фанаты.
Да! Несомненно у жидкого металла есть большой плюс, это его теплопроводность, она выше, чем у хорошей термопасты в 7-10 раз. И на практике применение жидкого металла позволяет в некоторых случаях снизить температуру чипа до 20%.
Для наглядности показатели теплопроводности для термопаст и жидкого металла привел в таблице.
Но на этом все. Дальше одно разочарование. Все по порядку.
Жидкий металл состоит (является сплавом) из трех основных элементов: галлий-индий-олово (62, 25 и 13% соответственно), с некоторыми небольшими дополнительными присадками в зависимости от «волшебных рецептов» разных производителей с температурой плавления в районе 5 °С.
Взаимодействие с алюминием даже не будем рассматривать, так как сам производитель категорически запрещает применять жидкий металл на алюминиевых поверхностях, к слову алюминий при взаимодействии с жидким металлом разрушается прямо на глазах. А рассмотрим взаимодействие с медью, с которым производитель как раз и рекомендует использовать жидкий металл, и поверхностью кристаллов чипов.
Для начала взглянем на поверхность медного радиатора после его интенсивного использования с жидким металлом в течении полугода.
Жидкий металл перешел в твердое состояние, снятие его было произведено с усилием, так как он «прикипел» к поверхности кристалла.
Так что же произошло с жидким металлом?
Химики на этот вопрос отвечают, что жидкий металл в процессе диффузии будет впитываться в медь, образуя на границе между металлами корку интерметаллидов. Последние не являются металлами с физической точки зрения, они тугоплавки, хрупки и обладают плохой тепло — и электропроводностью, но главное — жидкий металл будет расходоваться на их образование и просто уйдет из зазора.
Все таки разрушающая химическая реакция с медью происходит, пусть и достаточно медленно, по причине которой значительно снижается теплопроводность этого термоинтерфейса и увеличиваются температуры чипов.
Химики так же говорят, что устранить подобное явление поможет никелирование меди, но не все медные радиаторы имеют никелированную поверхность.
Теперь разберемся как влияет жидкий металл на поверхность кристаллов чипов. На фото представлено фото поверхности кристалла процессора, который несколько лет эксплуатировался с жидким металлом.
Как видно и здесь происходят химические реакции, которые постепенно разрушают поверхность кристалла чипа.
Кстати разрушающее воздействие жидкого металла касается еще и паяных соединений, вступив в контакт с припоем, он сделает его хрупким, а пайку ненадежной, и в какой-то момент это сработает.
Представьте такую ситуацию: вы в ноутбуке заменили термоинтерфейс на жидкий металл, выдавили его немного больше, чем нужно было.
При установке системы охлаждения излишек выдавился из-под процессора, или графического чипа, и волшебная капелька зависла в ожидании какого ни будь резкого толчка или небольшого падения (с высоты 2 см.) вашего ноутбука. А такие случаи имели место быть. И здесь начинается путешествие это волшебной капли по вашему ноутбуку.
И что случится раньше? Замкнет SMD компоненты на подложке процессора, замкнет, какие-либо другие компоненты, или же просто прилипнет к какому-нибудь месту пайки и через некоторое время разрушит ее.
Поэтому лично я бы держал жидкий металл как можно дальше от любой электроники.
Этот материал написан посетителем сайта, и за него начислено вознаграждение.
Жидкий металл вместо термопасты. Есть ли смысл?
Всем привет, дорогие друзья. Рад вас видеть! Иногда в низкой производительности ПК винят то, что по своей природе не может прямо на нее влиять. Например — термопасту, которая может каким-то образом повлиять на температуру процессора так, что аж плавиться тот начнет. Ну, давайте разберемся.
И так, термопаста
Любой термоинтерфейс наносится с одной целью: обеспечить хороший тепловой контакт места нагрева с охладителем. Достигается это из-за замещения воздуха более теплопроводной термопастой, которая заполняет пустоты, при этом сама тепло проводит. Вот тут-то и начинается, мол «моя паста тепло проводит плохо, поменяю-ка я ее на жидкий металл.
Мажут термопасту, а не жидкий металлМажут термопасту, а не жидкий металл
Но для начала определимся вот с чем. Большинство термопаст ток не проводят, по сути являясь диэлектриками. Они достаточно пластичны, при этом если такую пролить на железо, с ним в 99% случаев ничего не случится.
Диэлектрик она по той причине, что в ее основе часто лежит силиконовое масло. То есть — что-то, что тепло проводит гораздо хуже, чем металл. В это масло добавляют разные частицы, чтобы получить в итоге теплопроводящую субстанцию.
А вот жидкий металл предназначен совсем для других целей. Он проводит тепло на порядок лучше термопасты, поскольку в его составе… Жидкий металл, удивительно.
Если точнее, это сплав металлов индия и галлия. Поодиночке они имеют довольно высокую (как для термоинтерфейса) температуру плавления — 30 градусов для галлия и 150 градусов для индия. Однако если два куска этих металлов заставить соприкоснуться, то они моментально начнут образовывать сплав с температурой плавления 8 градусов по цельсию, что уже не так плохо.
Жидкий металл под крышкой процессораЖидкий металл под крышкой процессора
При этом такой сплав имеет высокую теплопроводность, от чего его используют при скальпировании процессоров. Но надо понимать пару вещей.
- Во-первых, не всегда можно предсказать, как сплав поведет себя при тепловой нагрузке. Для достижения результата туда могут добавить различные другие металлы, что может привести к прикипанию крышки процессора к кулеру.
- Во-вторых, такой сплав проводит ток слишком хорошо. Это значит, что если вы неаккуратно выдавите капельку металла на плату, или еще хуже — намажете его слишком много, то, скорее всего, что-то сгорит, причем быстро.
- В-третьих, намазать такой на алюминиевую подошву нельзя. Жидкий металл реагирует с алюминием, значительно снижая его прочность. Рано или поздно кулер просто рассыпется.
- Ну и конечно, его цена. ЖМ гораздо дороже, нежели термопаста.
Подводя итог
Не нужно пихать жидкий металл везде, где только нужен тепловой контакт. Конкретно на крышке процессора, разница между хорошей термопастой и ЖМ не будет критичной — не более пары градусов.
Так происходит, так как под крышкой площадь кристалла гораздо меньше, чем площадь самой крышки.
Через малую площадь нужно передать много тепла, поэтому под крышкой процессора гораздо логичнее видеть ЖМ.
А вот площадь крышки уже гораздо больше, так что нужды наносить ЖМ на крышку просто нет. Также как и нет нужды наносить его на кристалл ГП, после чего оплакивать мертвую видеокарту. И да, температуры на крышке процессора снизится на пару градусов. Температура ядер — на те же пару градусов, но подумайте — оно того стоит?
На этом все. Если статья понравилась — не забудь поставить лайк, подписаться на канал (и на исторический тоже), а также на нашу группу ВК. До скорого!
- Трэш-блоки питания, которые ни в коем случае нельзя покупать, и здоровая альтернатива им
- Видеокарта с характеристиками GT1030, которая стоит 15К. Для чего она нужна?
- Необычные старые комплектующие, которые мы потеряли