Теплопроводность металл или керамика

Содержание
  1. Коэффициент теплопроводности Лямбда. Что это такое?
  2. От чего зависит теплопроводность?
  3. Значения теплопроводности для различных материалов
  4. Применение коэффициента теплопроводности в строительстве
  5. Разница между теплопроводностью и теплопередачей
  6. Теплопроводящие материалы в радиоэлектронной промышленности
  7. Просто о сложном: сравнительная таблица теплопроводности строительных материалов
  8. Миканит или керамика: какую изоляцию выбрать для нагревателя? Heatle
  9. Сравнение миканита и керамики
  10. Работоспособность
  11. Внешняя среда как фактор влияния
  12. Теплопроводность
  13. Теплопотери
  14. Показатели прочности
  15. Соотношение веса и теплопроводности
  16. Безопасность и режим работы
  17. Максимально вырабатываемые температуры
  18. 9 теплопроводников и их характеристики — Наука — 2022
  19. Содержание:
  20. Типы проводников
  21. Теплопроводность материалов
  22. Значения теплопроводности
  23. Основные теплопроводы
  24. Алмаз
  25. Серебряный
  26. Медь
  27. Золото
  28. Литий
  29. Алюминий
  30. Бронза
  31. Цинк
  32. Железо
  33. Ссылки

Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).

Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.

Коэффициент теплопроводности Лямбда. Что это такое?

Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.

Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.

Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.

Таким образом формула расчет будет выглядеть так:

Q = λ (S ΔTt / d)

отсюда лямбда:

λ = (Q / t) · (d / S ΔT)

где:

  • λ (лямбда) — коэффициент теплопроводности;
  • ΔQ — количество тепла, протекающего через тело;
  • t — время;
  • L — длина тела;
  • S — площадь поперечного сечения корпуса;
  • ΔT — разность температур в направлении теплопроводности;
  • d — толщина перегородки.

За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.

Теплопроводность металл или керамика

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Теплопроводность металл или керамика

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Материал Теплопроводность [Вт / (м · К)]
Полиуретановая пена 0,025 — 0,045
Воздух 0,03
Минеральная вата 0,031 — 0,045
Пенополистирол 0,032 — 0,045
Войлок, маты и плиты из минеральной ваты 0,042 — 0,045
Дерево 0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)
Кирпич 0,15 – 1,31
Портландцемент 0,29
Вода 0,6
Обычный бетон 1 — 1,7
Железобетон 1,7
Стекло 0,8
Армированное стекло 1,15
Полиэфирная смола 0,19
Гипсовая штукатурка 0,4 — 0,57
Мрамор 2,07 – 2,94
Нержавеющая сталь 17
Чугун 50

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

Теплопроводность металл или керамика

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

Теплопроводность металл или керамика

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы.

Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов.

Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

Разница между теплопроводностью и теплопередачей

Теплопроводность металл или керамика

Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.

Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.

Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.

Теплопроводность металл или керамика Была ли эта статья для вас полезной? Пожалуйста, поделитесь ею в соцсетях:

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

Теплопроводящие материалы в радиоэлектронной промышленности

  • 2 августа 2017 г. в 18:03
  • 2535

Теплопроводящие материалы широко применяются в радиоэлектронной промышленности для монтажа теплоотводящих или терморегистрирующих устройств.

Это могут быть модули охлаждения, термоиндикаторы, теплоотводящие детали из фольги, радиаторы силовых приборов и микроконтроллеров, усилители шлейфовых проводов и др.

В качестве теплопроводных материалов применяются пасты и прокладки, однако сегодня на смену им приходят новые материалы.

  • В теории эффективный теплоотвод зависит от баланса двух параметров: смачиваемость и проводимость материала. Общая формула выглядит так:
  • Q = (k/t) AdT,
  • где
  • Q — теплоотдача в Вт
  • k — теплороводность Вт/м-К
  • А — площадь (100% смачиваемость) х % смачиваемости
  • t — толщина
  • dT — температура нагретой стороны — температура холодной стороны

Выбор того или иного теплопередающего материала (подложка, лента, паста.) основан на множестве факторов: мягкость, заполняемость рельефа, толщина, адгезивные свойства, смачиваемость, эффективное термосопротивление. Но при выборе теплопроводящего материала необходимо достичь баланса трех основных параметров. Во-первых, это толщина.

В большинстве случаев, чем тоньше материал, тем лучше. Однако, слишком тонкие теплопроводящие материалы имеют худшую смачиваемость, поскольку не могут должным образом заполнить все неровности поверхности. Вторым ключевым параметром является смачиваемость контактной поверхности. Чем мягче материал, тем выше смачиваемость.

И последний параметр — это теплопроводность. В общем случае, чем выше она, тем лучше. При этом следует учитывать, что с повышением теплопроводности увеличивается жесткость подложки, поскольку увеличивается количество наполнителя в ней, а это может негативно сказаться на смачиваемости поверхности.

Основная задача разработчика заключается в поиске оптимального баланса между этими параметрами в зависимости от особенностей применения.

Сегодня на рынке представлено множество решений для теплоотвода, от жидкостей до лент и подложек. Сравним их основные преимущества и недостатки.

Материал Теплопроводность (по отношению к воздуху)* Преимущества Недостатки Серии 3М
Паста 20-185Х Тонкие, недорогие Низкий импеданс Хорошая смачиваемость Тяжелые Не имеют адгезии, поэтому требуется механическое усилие монтажа TCG-2035/ TCG-2031
Жидкости 20-125Х Низкий импеданс Высокая прочность соединения Хорошая смачиваемость Тяжелые Небольшой срок хранения Требуют время отвердения и крепежной оснастки
Фазовые изменения 20-125Х Хорошая смачиваемость Легче, чем пасты Низкий импеданс Нет адгезии Требуют механического монтажа Требуют нагрева
Ленты 20-40Х Хорошая смачиваемость Не требуют крепежа Простота использования Обычно применения до 10-15 Вт 8810 8904
Подложки 35-200Х Повышенная толщина Мягкие Хорошее заполнение неровностей Малая адгезия Требуют дополнительного крепежа Стоимость
  1. 5590Н
  2. 5570
  3. 5574
  4. 5589
Жидкий металл 500-1000Х Малая толщина Высокая теплопроводность Хорошее заполнение неровностей Сложность нанесения
  • Низкая вязкость в расплавленном состоянии
  • Стоимость
  • Коэффициент теплового расширения
Теплопроводные ленты 10-1000Х Теплопроводность графита
  1. Мягкие
  2. Вырезка в любую форму
  3. Ремонтопригодные
80-90% от эффективности графитовой ленты 9876
Читайте также:  Mora companion нержавеющая сталь

*Теплопроводность воздуха 0,02Вт/м-К

Из сравнительной таблицы видно, что максимальный термоперенос обеспечивают жидкий металл и графитовые ленты. Например, жидкий металл ЖМ-6 имеет теплопроводность 34 Вт/(м•К), а оригинальный Coollaboratory Liquid Ultra в два раза выше. Но жидкий металл имеет значительные ограничения по возможностям монтажа. Во-первых, он наносится методом скальпирования, т.е.

очень тонким слоем, обеспечить равномерность которого достаточно трудно. Если металл попадает на другие поверхности, очистить их уже практически невозможно. Во-вторых, его необходимо равномерно и плотно нанести на всю площадь, иначе эффективность охлаждения значительно снизится.

Поэтому на неровных поверхностях, где возможно образование пустот, он работать не будет.

Компания 3М предлагает альтернативный вариант охлаждения кристаллов процессоров — акриловую подложку 5590Н. Она мягкая и обеспечивает дополнительные функции демпфера, ее можно удалить без последующей очистки. Теплопроводность составляет 3 Вт/(м•К).

Сегодня на российском рынке уже используются несколько теплопроводных материалов производства 3М: двусторонняя подложка 8810, клейкая лента для светодиодов 8940 и подложка «терможвачка» 5590.

Ассортимент теплопроводных лент 3М

Толщина, мм Стандартные С высокой адгезией и смачиваемостью С высокой адгезией С повышенной адгезией UL 94 V-2 Несрываемые UL 94 V-0
0,05 9882 8802
0,13 9885 8805 8708-013
0,17 8943 (без UL94)
0,19 8940
0,2 8904-02
0,25 8810 TM-670SA 8904-025
0,3 8910-03
0,38 8815 TM-671SA
0,5 8820 TM-672SA 8904-05

Рассмотрим особенности теплопроводных лент на примере 8810.

8810 — это теплопроводящая лента толщиной всего 250 мкм с акриловым адгезивом, она показывает отличные термопроводные и электроизоляционные свойства при высокой адгезии к радиатору.

Лента 8810 имеет три слоя: слой акрилового адгезива с керамическим наполнителем и два слоя лавсанового лайнера. Акриловый состав отвечает за адгезивные свойства материалы, т.е. за качество его крепления, а керамический наполнитель обеспечивает теплоперенос.

Теплопроводность металл или керамика

Эффективность теплоотвода, в первую очередь, зависит от качества контакта с поверхностью, а она, в свою очередь, характеризуется таким свойством, как смачиваемость. Это способность адгезива растекаться по всей поверхности субстрата, чтобы между адгезивом и этой поверхностью не возникли воздушные пустоты.

Подложки серии 8810 имеют повышенную толщину, за счет чего более плотно прилегают к поверхности радиатора и заполняют неровности его микрорельефа. На рисунке приведены результаты теста на смачиваемость подложек серии 88хх и подложки конкурента.

После приложения усилия в 50 psi в течение 10 секунд подложка 8810 демонстрирует смачиваемость в 87,2% по сравнению с 16,1% конкурента.

Теплопроводность металл или керамика

Рассмотрим работу подложек 8810 в критических условиях температурной перегрузки. Как известно, пасты не восстанавливают свою теплопроводность после перегрузок, они просто засыхают.

Подложки 8810 могут кратковременно работать при температурах 125-150°С (часы и дни), стандартная рабочая температура для них составляет 90-100°С.

На рисунке показан график испытаний на ударную прочность, изменение термосопротивления при резких скачках температуры в диапазоне −55…+125оС с цикличностью 3 часа. По результатам после 10,000 часов испытаний термосопротивление подложки 8810 не изменилось.

Адгезив ленты 8810 имеет достаточную начальную адгезию, она может составлять от 20 до 50% от конечной прочности. Максимум адгезии достигается через 24 часа.

На графике показана зависимость процента смачиваемости (площадь рабочего контакта) от температуры кристалла для трех компонентов разной мощности, 2, 10 и 20 Вт. Здесь видно, что даже при 30-40% контакте с подложкой уже достигается максимальный теплоотвод для маломощных приборов, устройства с высокой теплоотдачей, до 20 Вт требуют обеспечения максимального контакта с поверхностью.

На следующем графике показана прочность на отрыв и усилие сдирания для обычной теплопроводящей ленты, ленты 3М и ленты серии VHB также от 3М. Столбики разных цветов указывают на температурные режимы.

Удобны и эффективны подложки 8810 при монтаже. Подложка имеет два защитных лайнера, удалив первый можно приклеить подложку к первой поверхности, удалив второй, сборка крепится ко второй поверхности.

Такой монтаж не требует крепежных элементов (например, винтов для транзисторов) и увеличивает скорость сборочных операций. Немаловажным является и тот факт, что подложки можно удалить (т.е. они ремонтопригодны), при этом поверхность радиатора останется чистой.

Подложки можно монтировать не только к радиаторами, но и напрямую к печатным платам и корпусам.

Кратко суммируем преимущества подложек 8810

  • Малая толщина 250 мкм
  • Высокая адгезия, отличные изоляционные свойства
  • Не имеет цикла отвержения, максимальные характеристики через 24 часа
  • Теплопроводность: 0,6 Вт/м-К
  • Мягкая подложка хорошо заполняет неровности рельефа, идеально для материалов с низкой поверхностной энергией
  • Отличная смачиваемость поверхности без «воздушных мостов»
  • Отличная стойкость на сдвиг
  • Диэлектрическая прочность 26 кВ/мм
  • Стойкость к перегрузкам: не высыхает и не теряет свойств после пикового нагрева
  • Быстрый монтаж, простота сборочных операций, не требует крепежа
  • Выпускается в листах для вырубки различных форм

Характеристики

  • Теплопроводность: 0,6 Вт/м-К
  • Диэлектрическая проницаемость: 100 МГц
  • Диэлектрическая прочность >26 кВ/мм
  • Адгезив: акриловый с керамическим наполнителем
  • Толщина: 250 мкм, защитный лайнер 50 мкм
  • Цвет: белый
  • Срок хранения: 24 месяца
  • Прочность за сдвиг (статический): 1000 г (удерживается 10,000 минут) при t 22-70°С
  • Прочность за сдвиг (динамический): 1008 г при t 22°С, 216 г при t 70°С

Источник: Пескова Светлана, компания «Платан»

Просто о сложном: сравнительная таблица теплопроводности строительных материалов

 Kdpconsulting.ruKdpconsulting.ru

Чем ниже теплопроводность строительных материалов, тем теплее в доме

Содержание статьи 1 Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

2 Основные параметры, от которых зависит величина теплопроводности

3 Коэффициент теплопроводности строительных материалов – таблицы 3.1 Таблица теплопроводности кирпича

3.2 Таблица теплопроводности металлов

3.3 Таблица теплопроводности дерева

3.4 Таблица проводимости тепла бетонов

3.5 Какой коэффициент теплопроводности у воздушной прослойки 4 Калькулятор расчёта толщины стены по теплопроводности Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы.

Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве.

Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи.

В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводности Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом. Как видите, в определении теплопроводности нет ничего сложного и непонятного.

Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы: Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом.

Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее.

По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

Влажность – злокачественный фактор, повышающий скорость прохождения тепла.

Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы. «Холодно, холодно и сыро.

Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1

Проводимость тепла материалов. Часть 2

Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4 0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно.

Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К).

Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Читайте также:  Подключение трехфазного двигателя к однофазной сети: схемы соединения обмоток и конденсаторы, емкость, реверс

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1

Теплоэффективность разных видов металлов. Часть 2

Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы.

Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств.

Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дерева

Прочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым».

В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят ответственные узлы зданий с последующим утеплением, когда же из вторых строят стены.

В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия.

У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный.

Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

Таблица проводимости тепла воздушных прослоек

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома.

Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором.

Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать.

Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций.

Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

Миканит или керамика: какую изоляцию выбрать для нагревателя? Heatle

Для высокотемпературного воздействия на отдельные узлы промышленного оборудования применяют различные электронагреватели, в состав которых может входить миканитовая или керамическая изоляция

.

И очень часто при выборе нагревателя возникает вопрос, какой же изолятор лучше? Технологи по сборке и испытанию нагревателей неоднократно проводили анализ и тестировали конструкцию, безопасность в работе, особенности установки, энергетическое потребление и затраты, а также сроки службы каждого из имеющихся видов нагревателей. В итоге было выявлено, что миканитовая (слюдопластовая) изоляция имеет некие преимущества перед керамическими изоляторами. Но, исключать керамику не приходится, ведь в ее характеристики входят некоторые универсальные возможности, которых не может достичь ни один другой вид изоляции.

Сравнение миканита и керамики

Приведенный анализ представлен специалистами HEATLE на основе 30-ти летнего опыта сборки нагревателей и проведенных испытаний над ними.

Работоспособность

Высокие температуры, которые вырабатывает резистивная проволока, образовываются за счет переработки потребляемой электрической энергии в тепловой поток.

Температуры накала нихромовой проволоки должны быть на достаточно высоком уровне, чтобы нагрев необходимого объекта был результативным.

Излишняя выработка температуры и сверхвысокая мощность нагревателя приводят к быстрой поломке устройства независимо от применяемого типа изоляции. Поэтому в данном случае что миканит, что керамика находятся на одном уровне.

Внешняя среда как фактор влияния

Электронагреватели, как с керамикой, так и с миканитом применяются для обогрева промышленного оборудования перерабатывающего различные виды сырья.

Исходя из этого, работоспособность нагревательных устройств напрямую зависит от среды, в которой проходит их эксплуатация.

Здесь работоспособность определяется даже не видом изолятора, а герметичностью самого нагревателя и наличием просветов между его изоляторами.

Теплопроводность

Кольцевые, полукольцевые и подобные по типу устройства нагрева монтируют на цилиндрические узлы промышленных машин. Из-за небольших зазоров у нагревателей с керамическими изоляционными косточками их плотный контакт с оборудованием обеспечить достаточно сложно.

В данном случае необходимо провести массу действий при установке нагревателя на объект, чтобы создать плотное его прилегание к монтажной поверхности, иначе устройство быстро выйдет из строя. А вот миканитовая изоляция имеет целостную конструкцию и при установке нагревателя просветов между поверхностью оборудования и ним не образуется.

Это позволяет обеспечить плотный контакт и высокую теплоотдачу. Здесь миканитовые электронагреватели имеют преимущество.

Теплопотери

Сборка керамических и слюдопластовых нагревателей имеет значительные отличия в своей технологии. Керамические устройства имеют воздушные зазоры между изоляционными блоками, резистивной спиралью и корпусной оболочкой. Такая особенность очень удобна в монтаже нагревателя. Миканитовые устройства нагрева характеризуются плотным креплением изолятора с корпусной основой.

Показатели прочности

Керамика очень хрупкая и может повреждаться еще в процессе транспортировки и в условиях неправильно хранения. Даже при наличии металлического корпуса с нагревателями, у которых изолятор керамический стоит достаточно аккуратно обращаться, так как повреждения внутри конструкции не исключены. Миканит в данном случае как изолятор несет первенство.

Но, хранение миканита в складе с повышенной влажностью недопустимо. После набора излишней сырости он непригоден для эксплуатации. Нагреватели, у которых миканит не защищен металлической оболочкой, должны храниться и транспортироваться с повышенной бережностью, так как сам по себе слюдопласт очень хрупкий.

Плотное конструкторское решение миканита с металлической оболочкой исключает такой недочет.

Соотношение веса и теплопроводности

Две категории рассматриваемых элементов нагрева имеют значительную разность в габаритных размерах и весе.

Например: два нагревателя диаметр, которых составляет 95 мм, мощность 2000 Ватт, работающие с переменным током напряжением 220 Вольт будут иметь значительную разность в весе.

В соотношении керамики и слюдопласта по составу 0,93 кг и 0,2 кг, что определяет разницу более чем в 4 раза.

Безопасность и режим работы

Правила безопасности и эксплуатация нагревателей с разными изоляторами одинаковы. Разница есть только в проведении и методе монтажа. Также есть некоторые отличия в виде подключений. Длительность беспрерывной работы указывается в технической документации производителем нагревателей и зависимо от технологии производства может иметь некоторые отличия у разных компаний-производителей.

Максимально вырабатываемые температуры

Миканитовые нагреватели обычно подают температуры около 350 градусов Цельсия, а устройства с керамикой в среднем вырабатывают около 500 градусов. Удельная мощность на 1 кв. см. у миканитовых и керамических приборов соответственно составляет 4 и 9.

Надеемся, что предоставленная информация позволит Вам определиться с вариантом максимально подходящего нагревателя.

При необходимости, Вы можете связаться с консультантами HEATLE для подбора нагревателя под конкретный тип оборудования.

На основе индивидуального совместно созданного чертежа, мы изготовим самый лучший вариант электронагревателя, и обеспечим Ваше производство беспрерывным и качественным нагревом.

Заказать миканитовый или керамический нагреватель под любой тип оборудования, можно по предварительной заявке на нашем сайте или прозвонив по указанным телефонным номерам. Выполнение заказа после утверждения чертежа длится 3-5 дней. Доставка по всей России.

9 теплопроводников и их характеристики — Наука — 2022

9 теплопроводов и их характеристики — Наука

Содержание:

В проводники тепла Это те материалы, структура которых такова, что тепло может проходить через них очень легко. Следует помнить, что вся материя состоит из атомов и молекул, находящихся в постоянном колебательном движении, и что тепло приводит к еще большему возбуждению этих частиц.

Некоторые материалы проводят тепло лучше, чем другие, потому что их внутренняя конфигурация облегчает поток энергии. Например, дерево не является хорошим проводником тепла, потому что для его нагрева требуется много времени. Но с другой стороны, железо, медь и другие металлы есть, а это означает, что их частицы очень быстро приобретают кинетическую энергию.

Вот почему металлы являются фаворитом для изготовления кухонной утвари, такой как кастрюли и сковороды. Они быстро нагреваются и достигают температуры, достаточной для правильного приготовления пищи.

Однако ручки и ручки, контактирующие с руками пользователя, изготовлены из других теплоизоляционных материалов. Таким образом, с кастрюлями легко обращаться, даже если они горячие.

Читайте также:  Принцип работы оптоволоконного лазерного станка по металлу с чпу

Типы проводников

В зависимости от способа отвода тепла материалы подразделяются на:

Теплопроводники: алмаз и металлы, среди которых медь, железо, цинк и алюминий. Хорошие проводники электричества обычно также хорошо проводят тепло.

Теплоизоляция: дерево, резина, стекловолокно, пластик, бумага, шерсть, аниме, пробка, полимеры — хорошие примеры. Газы тоже не являются хорошими проводниками.

Теплопроводность материалов

Свойство, которое по сути характеризует способ, которым каждый из них проводит тепло, называется Теплопроводность. Чем выше теплопроводность вещества, тем лучше оно проводит тепло.

Теплопроводность веществ определяется экспериментально. В Международной системе единиц SI теплопроводность измеряется в ватт / (метр x кельвин) или Вт / (м · К). Это трактуется следующим образом:

1 Вт / (м · К) эквивалентен 1 ватту мощности, передаваемой на длину, равную 1 метру, когда разница температур между двумя крайними значениями составляет 1 кельвин.

Другой единицей теплопроводности, используемой в англосаксонских странах, является BTUH / (ft.ºF), где инициалы BTUH соответствуют Британская тепловая единица в час.

Значения теплопроводности

Ниже приведены значения теплопроводности некоторых элементов и материалов, встречающихся в природе и часто используемых в промышленности.

Однако следует отметить, что есть синтетические соединения, все еще находящиеся на стадии экспериментов, чья теплопроводность намного превышает теплопроводность алмаза, который возглавляет таблицу.

Температура имеет решающее значение для теплопроводности металлов. С повышением температуры увеличивается и теплопроводность (хотя электропроводность уменьшается). Для неметаллов теплопроводность примерно постоянна в широком диапазоне температур.

Значения в таблице указаны при 25ºC и давлении 1 атмосфера.

При выборе материала по его тепловым свойствам необходимо учитывать, что он расширяется при нагревании. Эта емкость определяется Коэффициент температурного расширения.

Основные теплопроводы

Алмаз

Это лучший проводник тепла при комнатной температуре, намного лучше, чем медь и любой другой металл. В алмазе, который является электрическим изолятором, тепло течет не через электроны проводимости, а через распространение колебаний в его высокоорганизованной кристаллической структуре. Эти колебания называются фононами.

Также он имеет низкий коэффициент теплового расширения, а это значит, что его размеры при нагревании останутся близкими к исходным. Когда требуется хороший проводник тепла, который не проводит электричество, лучшим вариантом будет алмаз.

Из-за этого он широко используется для отвода тепла, выделяемого компьютерными схемами и другими электронными устройствами. Но у него есть серьезный недостаток: это очень дорого. Хотя есть синтетические алмазы, их нелегко сделать, и они также дороги.

Серебряный

Это очень ценный металл для украшения благодаря своей яркости, цвету и пластичности. Он устойчив к окислению и среди всех металлов имеет самую высокую теплопроводность, а также отличную электропроводность.

  • По этой причине он имеет множество применений в промышленности, как отдельно, так и в сплавах с другими элементами, такими как никель и палладий.
  • С помощью печатных схем из чистого серебра изготавливаются высокотемпературные сверхпроводящие кабели и покрываются проводники для использования в электронике, а также используются сплавы для создания электрических контактов.
  • Его недостаток состоит в том, что он относительно редок и поэтому дорог, но уникальное сочетание физических свойств для этих применений делает его отличной альтернативой, поскольку он очень гибкий и с его помощью можно получить проводники хорошей длины.

Медь

Это один из наиболее часто используемых металлов, когда требуется хорошая теплопроводность, потому что он не подвержен коррозии, а его температура плавления довольно высока, что означает, что он не будет плавиться легко при воздействии тепла.

Другими преимуществами, которые он имеет, является его пластичность, а также отсутствие магнитных полей. Медь пригодна для вторичной переработки и намного дешевле серебра. Однако у него высокий коэффициент теплового расширения, а это значит, что его размеры заметно изменяются при нагревании.

Благодаря хорошим тепловым свойствам он широко используется в кухонной утвари, например, в медных горшках, покрытых сталью. Также для производства теплообменников в резервуарах для горячей воды, в системах центрального отопления, автомобильных радиаторах и для отвода тепла в электронных устройствах.

Золото

Это по преимуществу драгоценный металл, занимающий ведущее место в истории человечества. Помимо этого особого значения, золото является пластичным, прочным и отличным проводником тепла и электричества.

Поскольку золото не подвержено коррозии, оно используется для переноса малых токов в твердотельные электронные компоненты. Эти токи настолько малы, что их можно легко прервать при малейшем признаке коррозии, поэтому золото гарантирует надежность электронных компонентов.

Он также используется для изготовления разъемов для наушников, контактов, реле и соединительных кабелей. Такие устройства, как смартфоны, калькуляторы, ноутбуки, настольные компьютеры и телевизоры, содержат небольшое количество золота.

Специальные стекла для помещений с кондиционированием воздуха также содержат диспергированное золото таким образом, что они помогают отражать солнечное излучение наружу, сохраняя свежесть внутри, когда очень жарко. Таким же образом они помогают поддерживать внутреннее тепло в доме зимой.

Литий

Это самый легкий из всех металлов, хотя он очень реактивен, поэтому легко подвергается коррозии. С ним также нужно обращаться с большой осторожностью, поскольку он легко воспламеняется. В связи с этим, хотя его много, он находится не в свободном состоянии, а в соединениях, для которых он должен быть выделен обычно электролитическими методами.

Его теплопроводность аналогична теплопроводности золота, но намного дешевле. Карбонат лития — это соединение, используемое при производстве термостойкого стекла и керамики.

Другое широко распространенное применение лития — производство долговечных и легких батарей, в которых хлорид лития используется для извлечения металлического лития. Добавленный при обработке алюминия, он увеличивает его электрическую проводимость и снижает рабочие температуры.

Алюминий

Этот легкий, недорогой, высокопрочный и простой в эксплуатации металл является одним из основных материалов, используемых для изготовления теплообменников в оборудовании для кондиционирования воздуха, таком как кондиционеры и обогреватели.

Как внутри страны, так и в промышленности алюминиевая посуда широко используется на кухнях по всему миру.

Алюминиевая посуда, такая как кастрюли, сковороды и противни, чрезвычайно эффективна. Они не меняют вкус пищи и позволяют теплу быстро и равномерно распространяться во время приготовления.

Тем не менее, алюминиевые кастрюли и сковороды были заменены нержавеющей сталью, которая не так хорошо проводит тепло. Это связано с тем, что нержавеющая сталь не вступает в реакцию с более сильными кислотами, например, с томатным соусом.

Вот почему предпочтительно делать томатные соусы в стальной посуде, чтобы предотвратить попадание алюминия в пищу, поскольку некоторые из них связывают алюминий — присутствующий в антацидах, тальках, дезодорантах и ​​многих других продуктах — с появлением дегенеративных заболеваний, хотя большинство экспертов, а также FDA отвергают эту гипотезу.

Посуда из анодированного алюминия не имеет риска высвобождения частиц алюминия и, в принципе, может использоваться с большей безопасностью.

Бронза

Бронза — это сплав меди и олова, в меньшей степени, других металлов. Он присутствует в истории человечества с давних времен.

Это настолько важно, что период предыстории даже был назван бронзовым веком, временем, когда люди открыли и начали использовать свойства этого сплава.

Бронза устойчива к коррозии, с ней легко работать. Первоначально из него изготавливали различную утварь, инструменты, украшения, предметы искусства (например, скульптуры) и оружие, а также чеканили монеты. Сегодня он все еще используется для изготовления трубок, механических деталей и музыкальных инструментов.

Цинк

Это очень ковкий и пластичный голубовато-белый металл, с которым легко работать, хотя и с низкой температурой плавления. Он известен с древних времен, в основном используется в сплавах.

В настоящее время он используется для цинкования стали и защиты от коррозии. Также для производства батарей, пигментов и производства специальных цинковых листов для строительной индустрии.

Железо

Железо — еще один металл, имеющий большое историческое значение. Как и бронза, железо связано с периодом доисторической эпохи, когда произошел великий технический прогресс: железным веком.

Сегодня чугун по-прежнему находит широкое применение в производстве инструментов, посуды, в строительстве и в качестве материала для изготовления автомобильных деталей.

Как мы видели, железо является очень хорошим проводником тепла. Железные предметы очень хорошо распределяют тепло и сохраняют его надолго. Он также имеет высокую температуру плавления, что делает его устойчивым к высоким температурам, поэтому его можно использовать при производстве всех типов печей, как промышленных, так и бытовых.

Ссылки

  1. СК-12. Теплопроводники и изоляторы. Получено с: ck12.org.
  2. Медь: свойства и применение. Получено с: copperalliance.org.
  3. Эффунда. Свойства обычных твердых материалов. Получено с efunda.com
  4. Хилл Д. Тепловые свойства чугуна. Получено с: ehow.com.
  5. Кинг, Х. Многочисленные способы использования золота. Получено с: geology.com.
  6. Литий. Получено с: gob.mx.
  7. Рекреативная физика. Передача тепла. Получено с: fisicarecreativa.com.
  8. Википедия. Список теплопроводностей. Получено с: es.wikipedia.org.
Понравилась статья? Поделиться с друзьями:
Станок