Мягкий легкоплавкий щелочной металл серебристо белого цвета что это

Содержание
  1. актиний
  2. алюминий
  3. висмут
  4. гафний
  5. гольмий
  6. железо
  7. индий
  8. кадмий
  9. кобальт
  10. лантан
  11. лютеций
  12. магний
  13. марганец
  14. молибден
  15. нептуний
  16. никель
  17. олово
  18. плутоний
  19. полоний
  20. ртуть
  21. рубидий
  22. сурьма
  23. титан
  24. торий
  25. цезий
  26. Щелочные металлы – список и особенности взрывоопасных элементов
  27. Что представляют собой
  28. Особенности структуры
  29. Как представлены в природе
  30. Технология получения
  31. Физико-химические свойства
  32. Физические характеристики
  33. Химические параметры
  34. Где используются
  35. Техника безопасности
  36. Рубидий | это… Что такое Рубидий?
  37. История
  38. Происхождение названия
  39. Нахождение в природе
  40. Мировые ресурсы рубидия
  41. Месторождения
  42. Получение
  43. Физические свойства
  44. Химические свойства
  45. Соединения рубидия
  46. Применение
  47. Биологическая роль
  48. Изотопы
  49. Стоимость
  50. Примечания
  51. Рубидий
  52. Рубидий в природе
  53. Физические свойства
  54. Химические свойства
  55. Биологические свойства
  56. Радиоактивности рубидия
  57. Изотопы
  58. Подготовил Евгений Лавриненко (СМ)
  59. Рубидий
  60. История
  61. Получение
  62. Химические свойства

Добрый вечер! Здравствуйте, уважаемые дамы и господа! Пятница! В эфире капитал-шоу «Поле чудес»! И как обычно, под аплодисменты зрительного зала я приглашаю в студию тройку игроков. А вот и задание на этот тур:

Вопрос: Металл серебристо-белого цвета. (Слово состоит из 8 букв)

Ответ: Палладий (8 букв)

Если этот ответ не подходит, пожалуйста воспользуйтесь формой поиска. Постараемся найти среди 1 126 642 формулировок по 141 989 словам.

Всего найдено: 27

актиний

Ac, химический элемент (89), радиоактивен, серебристо-белый металл

алюминий

легкий металл серебристо-белого цвета

висмут

химический элемент, серебристо-белый металл с розоватым оттенком, делают спирали приборов для измерений напряж. магнитного поля

гафний

химический элемент, серебристо-белый металл, тугоплавкий

гольмий

Но, химический элемент, лантаноид, серебристо-белый металл

железо

химический элемент, серебристо-белый металл, главная составная часть чугуна и стали

индий

серебристо-белый тугоплавк. металл

кадмий

химический элемент, серебристо-белый мягкий металл

кобальт

(Со) химический элемент, серебристо-белый металл с красноватым оттенком

лантан

лютеций

химический элемент Lu, серебристо-белый металл

магний

  • серебристо-белый очень легкий металл
  • химический элемент, мягкий легкий серебристо-белый металл, горящий ярким белым светом

марганец

химический элемент, металл серебристо-белого цвета

молибден

  1. химический элемент, серебристо-белый тугоплавкий металл
  2. химический элемент — твердый блестящий серебристо-белый металл

нептуний

Np, химический элемент (93), актиноид; радиоактивен, серебристо-белый металл

никель

химический элемент, серебристо-белый тугоплавкий металл

олово

  • мягкий ковкий серебристо-белый металл
  • серебристо-белый металл, мягкий и пластичный
  • химический элемент, мягкий серебристо-белый металл

плутоний

Pu, химический элемент (94), актиноид, радиоактивен; серебристо-белый металл

полоний

Ро, химический элемент, радиоактивен, мягкий серебристо-белый металл

ртуть

химический элемент — жидкий металл серебристо-белого цвета

рубидий

химический элемент, серебристо-белый щелочной металл

сурьма

химический элемент, серебристо-белый металл, употребляется в различных сплавах в технике, в типографском деле

титан

Ti, химический элемент, серебристо-белый металл, легкий, тугоплавкий, прочный, пластичный

торий

  1. Th, химический элемент, 90, актиноид, радиоактивен, серебристо-белый металл
  2. U, химический элемент (92), актиноид, радиоактивен, серебристо-белый металл

цезий

  • Cs, химический элемент, 55, серебристо-белый металл из группы щелочных; легкоплавкий, мягкий, как воск
  • химический элемент, серебристо-белый металл

На планете существует большое количество разнообразных металлов, различающихся редкостью и сложностью добычи.

Специалисты данной области делят их на две группы: природные и искусственно получаемые в лабораторных условиях.

Стоимость некоторых представителей второй группы сильно отличается от стоимости природных металлов, присутствующих на мировом рынке, по причине длительного и трудоемкого процесса их изготовления.

  Какой стороной ставить диск сцепления ваз 2109

10-е место: Скандий – лёгкий и высокопрочный металл серебристого цвета с жёлтым отливом. Впервые элемент был обнаружен в 1879 году шведским химиком Ларсом Нильсоном, который назвал его в честь Скандинавии. Скандий активно применяется в мире высоких и инновационных технологий.

Его используют при конструировании роботов, ракет, самолетов, спутников и лазерной техники. Так-же сплавы данного металла используют для изготовления высококлассного спортивного инвентаря, такого как клюшки для гольфа и высокопрочные рамы для велосипедов. Самые крупные месторождения богатых скандием минералов находятся в Норвегии и на Мадагаскаре.

Стоимость одного грамма данного металла равняется 3-4 долларам США.

9-е место: Рений – серебристо-белый металл, относящийся к самым востребованным, труднодоступным и редким элементам в мире. Он очень плотный и имеет третью самую высокую температуру плавления среди всех своих «сородичей».

Обнаруженный в 1925 году металл используется в электронной и химической промышленности. Высокая плотность позволяет изготавливать из него лопатки турбин, сопла для реактивных двигателей.

Цена за грамм рения колеблется от 2,4 до 5 долларов за грамм.

8-е место: Осмий – голубовато-серебристый металл, характеризующийся высокой плотностью и хрупкостью. В чистом виде его не существует, встречается только в связках с другим металлом из платиновой группы – иридием. Был открыт в 1803 году двумя британскими химиками Смитсоном Теннантом и Уильямом Волластоном.

Свое название металл получил от греческого слова osme, что означает “запах”. Осмию действительно присущ довольно резкий и неприятный запах, напоминающий смесь чеснока и хлорки. Добывают данный металл на Урале, в Сибири, Южной Африке, Канаде, США и Колумбии. Используется в основном в химической промышленности, в качестве катализатора, а так-же в фармакологии.

Цена одного грамма осмия на мировом рынке составляет 12-15 долларов.

7-е место: Иридий – тяжёлый, твёрдый и одновременно хрупкий металл серебристо-белого цвета. Мир впервые узнал о нем в 1803 году благодаря британскому химику С. Теннанту, который так-же открыл вышеупомянутый элемент. Самостоятельно иридий практически нигде не применяется и чаще всего используется для создания сплавов.

Он обладает высокой температурой плавления, плотный и выступает в качестве наиболее коррозиестойкого металла. Ювелиры добавляют его к платине, поскольку он делает её втрое твёрже, а украшения из такого сплава практически не изнашиваются и очень красиво выглядят.

Так-же он востребован при изготовлении хирургических инструментов, электроконтактов, точных лабораторных весов. Из него делают кончики для дорогих авторучек. Иридий применяется в аэрокосмической технике, биомедицине, стоматологии, химической промышленности, свечах зажигания автомобилей.

В течение года мировая металлургия расходует приблизительно одну тонну данного металла. Основное месторождение иридия находится в ЮАР. Его стоимость 16-18 долларов за 1 грамм.

  Базовый расход топлива лада ларгус

6-е место: Палладий – лёгкий, гибкий серебристо-белый металл из платиновой группы. Он очень пластичный, легкоплавкий, хорошо полируется, не тускнеет и довольно стоек к коррозии.

Был открыт в 1803 году британским химиком Уильямом Волластоном, отделившим незнакомый металл от платиновой руды, которая прибыла из Южной Америки.

Сегодня палладий приобретает всё большую популярность среди ювелиров, поскольку невысокая цена, доступность и легковесность позволяют дизайнерам создавать из него самые смелые ювелирные творения, относящиеся к различным ценовым категориям и стилям.

Платиновый металл широко используется в очистительных устройствах и для антикоррозийных покрытий. Наибольшее количество данного элемента на мировые рынки поступает из России, но крупные месторождения так-же есть в ЮАР. Стоимость палладия составляет 25-30 долларов за один грамм.( На фото: памятная монета «Иван III» достоинством в 25 рублей, изготовлена из палладия.)

5-е место: Родий – твёрдый благородный металл из платиновой группы серебристого цвета, обладающий сильными отражающими свойствами. Он очень твёрдый, устойчив к воздействию высоких температур и окислению.

Был открыт в 1803 году в Англии химиком Уильямом Волластоном в процессе работы с самородной платиной. Родий считается редким элементом – ежегодно добывается около 30 тонн данного металла. Самые крупные месторождения находятся в России, ЮАР, Колумбии и Канаде.

Примерно 80 % родия служит катализатором в автомобильной и химической промышленности. Из него изготовляют зеркала и фары для автомобилей, а в ювелирном деле он применяется в ходе конечной обработки изделий. Главное достоинство родия – участие в производстве ядерных реакторов.

Стоимость ценного платинового металла колеблется в пределах 30-45 долларов за 1 грамм.

4-е место: Золото – главный драгоценный металл, который в природе встречается исключительно в чистом виде. Оно очень прочно, однородно, устойчиво к коррозии и считается самым ковким.

Из-за своей долговечности и пластичности уже много лет золото носит звание самого популярного благородного металла. Широко используется в ювелирной, электронной промышленности, стоматологии. Крупнейшие страны-золотодобытчики – США, Китай, ЮАР, Австралия.

Стоимость одного грамма золота на мировом рынке составляет 35-45 долларов.

  Взрыв арсенала в ульяновске 2009

3-е место: Платина – металл серебристо-белого цвета с особенным блеском, встречающийся в природе только, как естественный сплав с другими металлами: благородными и неблагородными. Платина приобрела большую популярность благодаря присущей ей пластичности, плотности и отличному виду.

Кроме производства ювелирных изделий и монет, платина широко используется в медицинской и электронной промышленности, в аэронавтике, производстве оружия. Крупнейшие страны-добытчики платины — ЮАР, Россия, США, Зимбабве, Канада.

Цена одного грамма данного металла колеблется в пределах 40-50 долларов.

2-е место: Осмий-187 – редкий изотоп, процесс добычи которого отличается особой сложностью и занимает около девяти месяцев. Он представляет собой чёрный мелкокристаллический порошок с фиолетовым оттенком, носящий звание самого плотного вещества на планете. При этом изотоп Осмий-187 очень хрупок, его можно растолочь в обычной ступе на мелкие частички.

Читайте также:  Выполнение работ по разметке металла

Его используют как катализатор химических реакций, для изготовления измерительных приборов высокой точности и в медицинской отрасли. Казахстан — первое и единственное государство, продающее Осмий-187 на мировом рынке.

Рыночная стоимость уникального металла составляет 10 тысяч долларов за 1 грамм, а в книге рекордов Гиннесса он оценивается в 200 тысяч американских долларов.

1-е место: Калифорний-252 – один из изотопов калифорния, самый дорогой металл в мире, стоимость которого достигает 10 миллионов долларов США за 1 грамм. Его баснословная цена вполне оправдана – ежегодно производится всего 20-40 микрограммов данного элемента, а общий мировой запас составляет не более 8 граммов.

Создают калифорний-252 в лабораторных условиях с помощью двух ядерных реакторов. Такие реакторы есть в России и США. Впервые данный металл был получен в Калифорнийском Университете в Беркли в 1950 году. Уникальность калифорния кроется в его особых свойствах – энергия, вырабатываемая одним граммом изотопа, равняется мощности среднего атомного реактора.

Применение самого дорогого металла в мире распространяется на область медицины и научные исследования ядерной физики. Калифорний-252 – мощный источник нейтронов, что позволяет использовать его для обработки злокачественных опухолей.

Уникальный металл позволяет просвечивать части реакторов, детали самолетов, и обнаруживать повреждения, которые обычно тщательно скрываются от рентгеновских лучей. С его помощью удаётся находить запасы золота, серебра и месторождения нефти в недрах земли.

Щелочные металлы – список и особенности взрывоопасных элементов

Продукты на основе этих металлов стали неотъемлемой частью жизни человека. Это и поваренная соль, и пищевая сода, и марганцовка.

Щелочные металлы ценят преподаватели химии: опыты с такими субстанциями способны увлечь химией любого.

Что представляют собой

Щелочные металлы – это элементы, занимающие почти весь первый столбец таблицы Менделеева. Кроме них, там расположился только водород.

К щелочным металлам относятся:

  • литий;
  • натрий;
    Свежесрезанный натрий
  • калий.
    Калий под слоем ТГФ

Плюс:

  • рубидий;
  • цезий;
  • франций.

Названы щелочными вследствие растворимости соединений водой.

Результат воздействия воды – гидроксиды. Они также растворимы, потому называются щелочами.

Древние славяне под выщелачиванием подразумевали растворение вещества водой.

Особенности структуры

У атома щелочного металла на внешнем слое один электрон. Степень окисления у металлов группы одна – +1.

Этим обусловлена сходность характеристик элементов щелочного сегмента.

Как представлены в природе

Щелочная группа представлена на планете по-разному:

  • Самые распространенные элементы – натрий с калием.
  • Литий, рубидий, цезий причислены к редким и рассеянным.
  • Самым редкостным щелочным металлом является франций. По редкости этот радиогенный материал – второй на планете: суммарный объем в земной коре не превышает трети килограмма.

Из-за повышенной активности щелочные металлы в природе не встречаются. Лишь как соединения с прочими элементами.

Поставщики натрия с калием:

  • Хлорид натрия – обычная каменная соль. Ее содержит вода морей и океанов.
  • Глауберова соль.
  • Соли калия находят в почвах.

Металлы входят в структуру ряда минералов. Это в основном алюмосиликаты: альбит – натриевый; ортоклаз (полевой шпат) – калийный.

Технология получения

Щелочные металлы получают несколькими способами:

  • Электролиз. Материалом служат расплавы их хлоридов (или других галогенидов) либо гидроксиды. Растворы солей как исходник не годятся: конечным продуктом становятся водород и щелочи.
  • Восстановление из бромида, хромата либо хлорида. Восстановителями выступают магний, цирконий, кальций, кремний. Процесс получения протекает в вакууме при температурах под 1000°С, образующийся металл периодически отгоняется.

Натрий восстанавливают из карбоната. Ингредиенты: уголь, известняк, температура 990°C. Для промышленных нужд синтезируют гидроксид из крепкого раствора поваренной соли.

Физико-химические свойства

Металлы щелочного сегмента наделены общими и оригинальными физическими и химическими свойствами.

Физические характеристики

Элементы группы наделены общими физическими свойствами:

  • Мягкость. Любой (кроме лития) легко режется.
  • Легкость. Плотность лития, натрия, калия меньше единицы. Они не тонут в воде.
  • Серебристо-белый цвет. Только цезий наделен желтоватостью на серебристом фоне.
  • Металлический отблеск.

Оксиды группы обладают типичными для этого вида соединений свойствами: реагируют с водой, кислотами, их оксидами. У каждого свой цвет. Устойчивость и цветность оксидов щелочных элементов увязана с габаритами атома.

Химические параметры

Главная особенность щелочной группы – чрезмерная химическая активность:

  • Разогретые щелочные элементы реагируют с азотом, кремнием, галогенами, серой, фосфором, углеродом. Результат – соответствующие продукты (галогениды, сульфиды, карбиды, силициды, др.)
  • При нагревании с прочими металлами образуются полуметаллы (интерметаллиды).
  • На воздухе сгорают.

При взаимодействии металлов с водой выделяется водород, возможен взрыв.

Окраска пламени щелочными металлами и их соединениями:

Щелочной металл
Цвет пламени
Li Карминно-красный
Na Жёлтый
K Фиолетовый
Rb Буро-красный
Cs Фиолетово-красный

Элементы, не тонущие в воде, горят и взрываются в ней:

  • Калий создает пламя фиалковой гаммы, взрыв самый сильный.
  • У натрия пламя желтое, взрыв послабее.
  • Литий просто горит.

Взрывом заканчивается реакция с кислотами.

Все щелочные металлы бурно реагируют на воду. Процесс сопровождается водородным фонтаном, затем пламенем, взрывом.

Мирно протекают реакции со спиртами, карбоновыми кислотами, другими органическими субстанциями.

Формула кислородного соединения
Цвет
Li2O Белый
Na2O Белый
K2O Желтоватый
Rb2O Жёлтый
Cs2O Оранжевый
Na2O2 Светло-
жёлтый
KO2 Оранжевый
RbO2 Тёмно-
коричневый
CsO2 Жёлтый

Вид щелочного металла «выдает» окрас пламени:

  • Калий – фиолетовый.
  • Цезий – красновато-фиалковый.
  • Рубидий – цвет чайной розы.
  • Литий – пурпурный.

Натрий либо его соединения делают пламя охристо-желтым.

Где используются

Промышленники оценили утилитарные свойства щелочных металлов. Они легкоплавки, пластичны (раскатываются до фольги), хорошо куются, пропускают тепло и электричество.

Самый известный продукт – поваренная соль (формула NaCl). Ее дополняют кальцинированная сода с едким натром (карбонат, гидроксид натрия), марганцовка (перманганат калия).

Их производят миллионами тонн:

  • Каустическая сода (в просторечии едкий натр) – ингредиент при варке мыла, производстве алюминия, искусственных волокон.
  • Кальцинированная сода – сырье для получения мыла, стекла, заменитель хозяйственного мыла.

Каустическая и кальцинированная сода, глауберова соль несъедобны. Только столовая сода и поваренная соль.

  • Пищевая сода нашла применение как домашнее средство для устранения ангины, обязательный ингредиент выпечки, натуральный консервант.

Альбит и ортоклаз классифицируются как коллекционный и декоративно-поделочный материал.

Техника безопасности

Химически активные элементы требуют осторожности.

При самостоятельной работе соблюдают следующие правила:

  1. Перед началом работы надеть защитные перчатки и очки (маску).
  2. Кусочек отрезают скальпелем от массива, не вытаскивая из керосина.
  3. В емкости, заполненной аргоном, счищают с поверхности остатки оксидов.
  4. Очищенный образец помещают в сосуд, где будет проводиться опыт.
  5. Остатки, не затронутые реакцией, засыпают сухим спиртом.

Аналогичный порядок работы со щелочноземельными элементами. Они так же химически активны.

Щелочные и щелочноземельные металлы хранят притопленными в керосине: контакт с водой, воздухом заканчивается взрывом.

Проверить совместимость мужчины и женщины по Знаку Зодиака

Рубидий | это… Что такое Рубидий?

37 Рубидий
[Kr]5s1

Руби́дий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий (CAS-номер: 7440-17-7) — мягкий легкоплавкий щелочной металл серебристо-белого цвета.

История

В 1861 году немецкие учёные Роберт Вильгельм Бунзен и Густав Роберт Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них новый элемент, впоследствии названный рубидием по цвету наиболее сильных линий спектра.

В 1930 году совместные исследования Л. В. Мысовского с Р. А. Эйхельбергером проводили опыты с рубидием и в камере Вильсона было зарегистрировано испускание β-частиц. Позже была открыта естественная радиоактивность изотопа [3].

Происхождение названия

Название дано по цвету наиболее характерных красных линий спектра (от лат. rubidus — красный, тёмно-красный).

Нахождение в природе

Мировые ресурсы рубидия

Содержание рубидия в земной коре составляет 7,8·10−3%. Это примерно равно содержанию никеля, меди и цинка. По распространенности в земной коре рубидий находится примерно на 20-м месте, однако в природе он находится в рассеянном состоянии, рубидий — типичный рассеянный элемент. Собственные минералы рубидия неизвестны.

Читайте также:  Клей металл пластик морозостойкий

Рубидий встречается вместе с другими щелочными элементами, он всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка.

Только лепидолиты содержат несколько больше рубидия, иногда 0,2 %, а изредка и до 1—3 % (в пересчете на Rb2О).

Соли рубидия растворены в воде морей, океанов и озёр. Концентрация их и здесь очень невелика, в среднем порядка 100 мкг/л. В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море — 5700 мкг/л. Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Из морской воды рубидий перешёл в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15 %. Минерал карналлит — сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула KCl·MgCl2·6H2O.

Рубидий даёт соль аналогичного состава RbCl·MgCl2·6H2O, причём обе соли — калиевая и рубидиевая — имеют одинаковое строение и образуют непрерывный ряд твёрдых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда.

Сейчас разработаны и описаны в литературе рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Месторождения

Минералы, содержащие рубидий (лепидолит, циннвальдит, поллуцит, амазонит), находятся на территории Германии, Чехии, Словакии, Намибии, Зимбабве, Туркмении и других странах[4].

Получение

Большую часть добываемого рубидия получают как побочный продукт при производстве лития из лепидолита. После выделения лития в виде карбоната или гидроксида рубидий осаждают из маточных растворов в виде смеси алюморубидиевых, алюмокалиевых и алюмоцезиевых квасцов RbAl(SO4)2·12H2O, KAl(SO4)2·12H2O, CsAl(SO4)2·12H2O. Смесь разделяют многократной перекристаллизацией.

Рубидий также выделяют и из отработанного электролита, получающегося при получении магния из карналлита. Из него рубидий выделяют сорбцией на осадках ферроцианидов железа или никеля.

Затем ферроцианиды прокаливают и получают карбонат рубидия с примесями калия и цезия. При получении цезия из поллуцита рубидий извлекают из маточных растворов после осаждения Cs3[Sb2Cl9].

Можно извлекать рубидий и из технологических растворов, образующихся при получении глинозёма из нефелина.

Для извлечения рубидия используют методы экстракции и ионообменной хроматографии. Соединения рубидия высокой чистоты получают с использованием полигалогенидов.

Значительную часть производимого рубидия выделяют в ходе получения лития, поэтому появление большого интереса к литию для использования его в термоядерных процессах в 1950-х привело к увеличению добычи лития, а, следовательно, и рубидия. Именно поэтому соединения рубидия стали более доступными.

Физические свойства

Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твёрдость по Бринеллю 0,2 МН/м² (0,02 кгс/мм²). Кристаллическая решётка рубидия кубическая объёмно-центрированная, а=5,71 Å (при комнатной температуре). Атомный радиус 2,48 Å, радиус иона Rb+ 1,49 Å.

Плотность 1,525 г/см³ (0 °C), tпл 38,9 °C, tкип 703 °C.

Удельная теплоемкость 335,2 Дж/(кг·К) [0,08 кал/(г·°С)], термический коэффициент линейного расширения 9,0·10−5 град−1 (0-38 °C), модуль упругости 2,4 ГН/м² (240 кгс/мм²), удельное объёмное электрическое сопротивление 11,29·10−6 ом·см (20 °C); рубидий парамагнитен.

Химические свойства

Щелочной металл, крайне неустойчив на воздухе (реагирует с воздухом в присутствии следов воды с воспламенением). Образует все виды солей — большей частью легкорастворимые.

Соединения рубидия

Гидроксид рубидия RbOH — весьма агрессивное вещество к стеклу и другим конструкционным и контейнерным материалам, а расплавленный RbOH разрушает большинство металлов.

Применение

Хотя в ряде областей применения рубидий уступает цезию, этот редкий щелочной металл играет важную роль в современных технологиях. Можно отметить следующие основные области применения рубидия: катализ, электронная промышленность, специальная оптика, атомная промышленность, медицина.

Рубидий используется не только в чистом виде, но и в виде ряда сплавов и химических соединений. Рубидий имеет хорошую сырьевую базу, более благоприятную, чем для цезия. Область применения рубидия в связи с ростом его доступности расширяется.

Изотоп рубидий-86 широко используется в гамма-дефектоскопии, измерительной технике, а также при стерилизации лекарств и пищевых продуктов.

Рубидий и его сплавы с цезием — это весьма перспективный теплоноситель и рабочая среда для высокотемпературных турбоагрегатов (в этой связи рубидий и цезий в последние годы приобрели важное значение, и чрезвычайная дороговизна металлов уходит на второй план по отношению к возможностям резко увеличить КПД турбоагрегатов, а значит и снизить расходы топлива и загрязнение окружающей среды). Применяемые наиболее широко в качестве теплоносителей системы на основе рубидия — это тройные сплавы:натрий-калий-рубидий, и натрий-рубидий-цезий.

В катализе рубидий используется как в органическом, так и неорганическом синтезе. Каталитическая активность рубидия используется в основном для переработки нефти на ряд важных продуктов.

Ацетат рубидия, например, используется для синтеза метанола и целого ряда высших спиртов из водяного газа, что актуально в связи с подземной газификацией угля и в производстве искусственного жидкого топлива для автомобилей и реактивного топлива.

Ряд сплавов рубидия с теллуром обладают более высокой чувствительностью в ультрафиолетовой области спектра, чем соединения цезия, и в связи с этим он способен в этом случае составить конкуренцию цезию как материал для фотопреобразователей.

В составе специальных смазочных композиций (сплавов), рубидий применяется как высокоэффективная смазка в вакууме (ракетная и космическая техника).

Гидроксид рубидия применяется для приготовления электролита для низкотемпературных химических источников тока, а также в качестве добавки к раствору гидроксида калия для улучшения его работоспособности при низких температурах и повышения электропроводности электролита. В гидридных топливных элементах находит применение металлический рубидий.

  • Хлорид рубидия в сплаве с хлоридом меди находит применение для измерения высоких температур (до 400 °C).
  • Пары рубидия используются как рабочее тело в лазерах, в частности, в рубидиевых атомных часах.
  • Хлорид рубидия применяется в топливных элементах в качестве электролита, то же можно сказать и о гидроксиде рубидия, который очень эффективен как электролит в топливных элементах, использующих прямое окисление угля.

Биологическая роль

Рубидий при поступлении с пищей оказывает успокаивающее, противовоспалительное и противоаллергическое действие. Недостаток рубидия в организме может приводить к психическим заболеваниям. В качестве естественного источника рубидия в некоторых клиниках используется красное сухое вино. Избыток рубидия более вреден для организма, чем его недостаток[источник не указан 284 дня].

Изотопы

В природе существуют два изотопа рубидия: стабильный период полураспада равен 4,923·1010 лет, это один из изотопов-геохронометров). Искусственным путём получены 30 радиоактивных изотопов рубидия (в диапазоне массовых чисел от 71 до 102), не считая 16 возбуждённых изомерных состояний.

Стоимость

Cтоимость рубидия весьма высока[когда?]: 2,5 доллара за 1 г.[источник не указан 299 дней]

Примечания

  • Рубидий на Webelements
  • Рубидий в Популярной библиотеке химических элементов
  • Перельман. Ф. М. Рубидий и цезий. М.: АН УССР, 1960. 140 стр. с илл.
  • Плющев В. Е., Степин Б. Д. Химия и технология соединений лития, рубидия и цезия. — М.-Л.: Химия, 1970.- 407 с
  • Рипан Р., Четяну И. Неорганическая химия. Химия металлов. — М.: Мир, 1971. — Т. 1. — 561 с.

Рубидий

Металлический рубидий по внешнему виду, мягкости и проводимости имеет сходство с металлическими калием и цезием.

Рубидий не хранят на открытом воздухе, так как будет происходить реакция с выделением большого количества тепла, иногда даже приводящая к воспламенению металла.

Рубидий является первым щелочным металлом в группе, плотность которого выше, чем у воды в отличии от лития, натрия и калия.

В 1861 году немецкие учёные Роберт Вильгельм Бунзен и Густав Роберт Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них новый элемент, впоследствии названный рубидием по насыщенно красному цвету наиболее сильных линий спектра.

Рубидий имел минимальную промышленную ценность до 1920-х годов. В наши дни наиболее важным применением рубидия являются исследования и разработки, главным образом в области химии и электроники.

Читайте также:  Самый активный восстановитель среди щелочноземельных металлов

В 1995 году рубидий-87 был использован для получения конденсата Бозе-Эйнштейна, научного открытия, за которое первооткрыватели Эрик Аллин Корнелл, Карл Виман и Вольфганг Кеттерле в 2001 году были удостоены Нобелевской премии по физике.

Рубидий в природе

Содержание рубидия в земной коре составляет 7,8⋅10−3%, что примерно равно суммарному содержанию никеля, меди и цинка. По распространённости в земной коре рубидий находится примерно на 23-м месте, примерно так же распространённым, как цинк, и более распространённым, чем медь. Однако, металл находится в рассеянном состоянии  — это типичный рассеянный элемент.

Собственные минералы рубидия неизвестны. Рубидий встречается вместе с другими щелочными элементами и всегда сопутствует калию. Обнаружен в очень многих горных породах и минералах, найденных, в частности, в Северной Америке, Южной Африке и России, но его концентрация там крайне низка. Только лепидолиты содержат несколько больше рубидия, иногда 0,3%, а изредка и до 3,5%.

Соли рубидия растворены в воде морей, океанов и озёр. Их концентрация и здесь очень невелика, в среднем порядка 125 мкг/л, что меньше чем значение для калия — 408 мкг/л.

В отдельных случаях содержание рубидия в воде выше: в Одесских лиманах оно оказалось равным 670 мкг/л, а в Каспийском море — 5700 мкг/л.

Повышенное содержание рубидия обнаружено и в некоторых минеральных источниках Бразилии.

Из морской воды рубидий перешёл в калийные соляные отложения, главным образом, в карналлиты. В страссфуртских и соликамских карналлитах содержание рубидия колеблется в пределах от 0,037 до 0,15%. Минерал карналлит — сложное химическое соединение, образованное хлоридами калия и магния с водой; его формула — KCl·MgCl2·6H2O.

Рубидий даёт соль аналогичного состава RbCl·MgCl2·6H2O, причём обе соли — калиевая и рубидиевая — имеют одинаковое строение и образуют непрерывный ряд твёрдых растворов, кристаллизуясь совместно. Карналлит хорошо растворим в воде, потому вскрытие минерала не составляет большого труда.

В настоящий момент уже разработаны и описаны рациональные и экономичные методы извлечения рубидия из карналлита, попутно с другими элементами.

Физические свойства

Рубидий образует серебристо-белые мягкие кристаллы, имеющие на свежем срезе металлический блеск. Твёрдость по Бринеллю 0,2 МН/м² (0,02 кгс/мм²). Кристаллическая решётка рубидия кубическая объёмно-центрированная, а = 5,71 Å (при комнатной температуре).

  • Плотность рубидия – 1,525 г/см³ (0°C), температура плавления – 38,9°C, температура кипения – 703°C.
  • Удельная теплоемкость 335,2 Дж/(кг·К) [0,08 кал/(г·°С)], термический коэффициент линейного расширения 9,0⋅10−5 K−1 (при 0—38°C), модуль упругости 2,4 ГН/м² (240 кгс/мм²), удельное объёмное электрическое сопротивление 11,29⋅10−6 ом·см (при 20°C).
  • Рубидий парамагнитен.

Химические свойства

Рубидий крайне неустойчив на воздухе, вступает в реакцию с выделением большого количества тепла. В присутствии воды реакция проходит с воспламенением. Метал образует все виды солей, большая часть из них – легкорастворимые.

Биологические свойства

Биологическая роль рубидия изучена очень мало. Металл относят к микроэлементам. Обычно рубидий рассматривают совместно с цезием, поэтому роль этих металлов в организме человека изучается параллельно.

Ежедневно в организм человека с пищей поступает до 1,5-4,0 мг рубидия. Через 60-90 минут при пероральном поступлении рубидия в организм, его можно обнаружить в крови. Средний уровень рубидия в крови составляет 2,3-2,7 мг/л.

Рубидий присутствует в тканях растений и животных. В земных растениях содержится всего около 0,000064% рубидия, а в морских — ещё меньше. Однако рубидий способен накапливаться в растениях, а также в мышцах и мягких тканях актиний, ракообразных, червей, рыб и иглокожих.

Содержание ниже 250 мкг/л рубидия в корме у подопытных животных может привести к снижению аппетита, задержкам роста и развития, преждевременным родам, выкидышам, сокращению продолжительности жизни.

Ионы рубидия при поступлении в организм человека накапливаются в клетках, так как организм относится к ним так же, как к ионам калия. Однако рубидий не очень токсичен, в организме человека массой 70 кг содержится 0,36 грамм рубидия, и даже при увеличении этого числа в 50-100 раз негативных эффектов не наблюдается.

Элементарный рубидий опасен в обращении. Его, как правило, хранят в ампулах из стекла пирекс в атмосфере аргона или в стальных герметичных сосудах под слоем обезвоженного масла (вазелинового, парафинового). Утилизируют рубидий обработкой остатков металла пентанолом.

Радиоактивности рубидия

Природная радиоактивность рубидия была открыта Кемпбеллом и Вудом в 1906 году с помощью ионизационного метода и подтверждена с помощью фотоэмульсии В. Стронгом в 1909 году.

В 1930 году Л. В. Мысовский и Р. А. Эйхельбергер с помощью камеры Вильсона показали, что эта радиоактивность сопровождается испусканием бета-частиц. Позже было показано, что она обусловлена бета-распадом природного изотопа 87Rb.

Изотопы

В природе существуют два изотопа рубидия: стабильный 85Rb (содержание в натуральной смеси: 72,2%) и бета-радиоактивный 87Rb (27,8%). Период полураспада последнего равен 49,23 млрд лет (почти в 11 раз больше возраста Земли).

Продукт распада — стабильный изотоп стронций-87. Постепенное накопление радиогенного стронция в минералах, содержащих рубидий, позволяет определять возраст этих минералов, измеряя содержание в них рубидия и стронция.

Благодаря радиоактивности 87Rb природный рубидий обладает удельной активностью около 670 кБк/кг.

Искусственным путём получены 30 радиоактивных изотопов рубидия (в диапазоне массовых чисел от 71 до 102), не считая 16 возбуждённых изомерных состояний.

Подготовил Евгений Лавриненко (СМ)

Рубидий

Руби́дий — элемент главной подгруппы первой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 37. Обозначается символом Rb (лат. Rubidium). Простое вещество рубидий (CAS-номер: 7440-17-7) — мягкий легкоплавкий щелочной металл серебристо-белого цвета.

История

В 1861 году немецкие учёные Роберт Вильгельм Бунзен и Густав Роберт Кирхгоф, изучая с помощью спектрального анализа природные алюмосиликаты, обнаружили в них новый элемент, впоследствии названный рубидием по цвету наиболее сильных линий спектра. В 1930 году совместные исследования Л. В.

Мысовского с Р. А. Эйхельбергером проводили опыты с рубидием и в камере Вильсона было зарегистрировано испускание β-частиц. Позже была открыта естественная радиоактивность изотопа 87Rb. Название дано по цвету наиболее характерных красных линий спектра (от лат. rubidus — красный, тёмно-красный).

Получение

Большую часть добываемого рубидия получают как побочный продукт при производстве лития из лепидолита. После выделения лития в виде карбоната или гидроксида рубидий осаждают из маточных растворов в виде смеси алюморубидиевых, алюмокалиевых и алюмоцезиевых квасцов RbAl(SO4)2·12H2O, KAl(SO4)2·12H2O, CsAl(SO4)2·12H2O.

Смесь разделяют многократной перекристаллизацией. Рубидий также выделяют и из отработанного электролита, получающегося при получении магния из карналлита. Из него рубидий выделяют сорбцией на осадках ферроцианидов железа или никеля. Затем ферроцианиды прокаливают и получают карбонат рубидия с примесями калия и цезия.

При получении цезия из поллуцита рубидий извлекают из маточных растворов после осаждения Cs3[Sb2Cl9]. Можно извлекать рубидий и из технологических растворов, образующихся при получении глинозёма из нефелина. Для извлечения рубидия используют методы экстракции и ионообменной хроматографии.

Соединения рубидия высокой чистоты получают с использованием полигалогенидов.

Значительную часть производимого рубидия выделяют в ходе получения лития, поэтому появление большого интереса к литию для использования его в термоядерных процессах в 1950-х привело к увеличению добычи лития, а, следовательно, и рубидия. Именно поэтому соединения рубидия стали более доступными.

Химические свойства

Щелочной металл, крайне неустойчив на воздухе (реагирует с воздухом в присутствии следов воды с воспламенением). Образует все виды солей — большей частью легкорастворимые (хлораты и перхлораты малорастворимы).

  • Соединения рубидия
  • Источник: Википедия
  • Другие заметки по химии

Гидроксид рубидия RbOH — весьма агрессивное вещество к стеклу и другим конструкционным и контейнерным материалам, а расплавленный RbOH разрушает большинство металлов (даже золото и платину).

Понравилась статья? Поделиться с друзьями:
Станок