Механические технологические свойства металлов сплавов

Свойства металлов и сплавов делятся на:

  1. физические;
  2. механические;
  3. технологические;
  4. химические.

Физические свойства

Цвет и блеск. Эти два свойства обусловливают в основном внешний вид металла и являются чрезвычайно существенными для художника. Этими свойствами характеризуются художественно-эстетические достоинства металлов как материалов, из которых создаются произведения искусства.

Каждый металл или сплав обладает определенным присущим ему цветом. Однако большинство из них имеет довольно однообразную гамму серовато-белых, серебристых тонов, то более теплых, то холодных.

Исключение составляют два металла: золото, имеющее насыщенный желтый цвет, и медь, отличающаяся сильным оранжево-красным цветом. Добавка этих металлов в сплавы придает им желтые и красные оттенки. В табл.

1 приведены цвета наиболее распространенных в художественной промышленности металлов и сплавов.

Таблица 1

Часто готовые художественные изделия, выполненные из одних металлов, покрывают тонким слоем других, более эффективных по цвету или блеску металлов: например, золочение серебра и бронзы, хромирование и никелирование стали, серебрение меди и латуни и т. п.

Иногда для обогащения цвета применяют не сам металл, а его окислы или другие химические соединения. Такой прием носит название оксидирования или патинирования.

Этим способом можно получить очень разнообразные по силе и яркости тона и значительно расширять цветовую палитру художника-металлиста.

Оксидирование позволяет получить различные оттенки желтых, зеленых, синих, голубых, фиолетовых, красных, коричневых, черных цветов, весьма прочных и стойких против внешних условий.

Плотность. По плотности все металлы разделяются на легкие и тяжелые. Легкими принято называть металлы с плотностью до 3, а тяжелыми — с плотностью от 6 и выше.

В табл. 2 приведены плотности металлов и сплавов, наиболее часто применяемых в художественных изделиях.

Таблица 2

Плавкость, или температура плавления. Температуры плавления металлов и их сплавов находятся в огромных пределах.

Например, некоторые легкоплавкие сплавы (сплав Вуда) плавятся уже при температуре 60°С, а наиболее тугоплавкий из металлов — вольфрам плавится только при 3380°С.

Ртуть является примером металла, который при комнатной температуре находится в жидком состоянии. Она плавится при температуре минус 39°С.

По температурам плавления все металлы разделяются на легкоплавкие (температура плавления не превышает 700°С) и тугоплавкие — свыше 900°С.

В табл. 3 приведена температура плавления некоторых металлов в градусах Цельсия.

Таблица 3

Как видно из табл. 3, к легкоплавким металлам относятся: олово, свинец, цинк, кадмий, сурьма, алюминий, магний и их сплавы.

Легкоплавкие металлы идут для приготовления легкоплавких сплавов и мягких припоев.

К тугоплавким металлам относятся: серебро, золото, платина, медь, никель, марганец, железо, хром, вольфрам и др.

Механические свойства

Механические свойства имеют большое значение при конструировании и производстве изделий художественной промышленности.

Прочность, или крепость,- это свойство металлов выдерживать различные нагрузки не разрушаясь. Прочность — одно из важных свойств металлов. При проектировании художественных изделий выбор металлов и сплавов осуществляется с учетом их прочности.

Для точного определения и измерения прочности из металла или сплава изготовляют образец и подвергают его испытанию на специальной разрывной машине, которая постепенно, но с возрастающей силой растягивает образец до полного его разрыва.

Наибольшее напряжение, которое может выдержать образец металла не разрушаясь, называется пределом прочности для данного металла или временным сопротивлением разрыву.

Упругость — свойство металла принимать свою первоначальную форму после снятия нагрузки.

При постепенном увеличении нагрузки на образец во время испытания его на разрывной машине он сначала вытягивается упруго, как резина или пружина. Если нагрузку снять, то образец снова сократится и примет свою первоначальную длину.

Наибольшее напряжение металла, после которого он возвращается к своей первоначальной длине, называется пределом упругости.

Если при дальнейшем повышении нагрузки напряжение превышает предел упругости и удлинение сохраняется после разгрузки образца, то такое состояние называют остаточным удлинением.

Затем наступает предел текучести, при котором образец продолжает удлиняться без увеличения нагрузки — в этом случае металл «течет».

Такая способность к текучести используется в штамповочном производстве, особенно при глубокой вытяжке.

Наибольшей упругостью обладает хромоникелевая закаленная сталь. Алюминий и медь совершенно не обладают упругостью — даже при незначительной нагрузке они образуют остаточное удлинение, а не упругое.

Пластичность — свойство металла изменять свою форму под действием силы, не проявляя признаков разрушения (трещин, разрывов и т. п.), и сохранять полученную форму после снятия нагрузки. Это свойство также определяется и измеряется на разрывной машине.

Пластичность металла характеризуется удлинением образца за время испытания. Для определения степени пластичности пользуются следующим приемом: после разрыва образца складывают его части и измеряют общую их длину.

Отношение приращения длины к его первоначальной длине, выраженное в процентах, является показателем пластичности металла и называется относительным удлинением. Это свойство металлов имеет большое значение в давильном и штамповочном производстве, а также при дифовке, чеканке, прокатке и волочении.

Высокой пластичностью обладают драгоценные металлы — золото, серебро, платина и их сплавы; не менее пластичны медь и свинец. Почти совершенно отсутствует это свойство у чугуна, сурьмы и некоторых других металлов.

Твердость — свойство металлов сопротивляться проникновению в них другого тела под действием внешней нагрузки. От этого свойства зависит возможность обработки металлов тем или иным инструментом. Например, при обработке резанием на станках важно знать твердость обрабатываемого металла, чтобы подобрать соответствующий резец, сверло или фрезу.

Для определения твердости существует несколько способов и специальных приборов. Наиболее распространенные и общепринятые следующие.

Способ Бринелля. Определение твердости этим способом заключается в том, что в испытуемый металл при помощи специального пресса вдавливается определенной нагрузкой стальной закаленный шарик.

От давления шарика на металле образуется лунка, отпечаток. Чем мягче металл, тем площадь лунки больше.

Диаметр лунки определяется мерительной лупой, а затем в специальной таблице находят число твердости по Бринеллю.

В табл. 4 приведены числа твердости по Бринеллю для некоторых металлов.

Таблица 4

Способ Роквелла. Определение твердости этим способом производится тоже путем вдавливания в металл алмазной призмы или стального шарика, но отсчет ведется не по площади, а по разнице глубины отпечатка между глубиной от стандартной нагрузки, равной 10 кг, и заданной.

Измерение производят специальным прибором — индикатором, и число твердости показывает сам прибор.

Способ Шора. Измерение по этому способу производится при помощи специального прибора — склероскопа. При этом стальной боек падает на испытуемый металл с определенной высоты.

Твердость металла характеризуется высотой, на которую отскакивает боек. Чем тверже металл, тем больше высота отскока.

Этот способ удобен тем, что он не портит поверхности и может применяться к готовым изделиям художественной промышленности.

Выносливость — свойство металлов выдерживать не разрушаясь большое количество повторяющихся переменных нагрузок.

Все механические свойства значительно изменяются в зависимости от температурных условий. Так, например, прочность всех металлов при нагреве понижается, а пластичность в большинстве случаев увеличивается.

Изменение свойств металлов в условиях пониженных температур изучено еще недостаточно. Однако хорошо известно, что на холоде у некоторых металлов резко падает пластичность и они становятся хрупкими. С этой точки зрения все металлы делятся на три группы:

  1. хладоломкие — сталь некоторых марок, цинк и его сплавы;
  2. нехладоломкие — медь, алюминий;
  3. хрупкие — металлы, обладающие хрупкостью и при нормальных условиях, например серый чугун.

Технологические свойства

При выборе металла или сплава для производства художественных изделий кроме физических и механических свойств учитывают и технологические свойства, т. е. способность металлов обрабатываться различными приемами и методами без особых затруднений.

Наиболее существенными являются следующие свойства.

Жидкотекучесть — свойство, обеспечивающее хорошее заполнение формы расплавленным металлом. Величина жидкотекучести зависит от атомного веса, температуры плавления, степени поверхностного натяжения и других показателей.

Металлы и сплавы, обладающие высокой жидкотекучестью, позволяют получать высокохудожественные отливки.

Они легко заполняют мельчайшие детали форм и хорошо передают все детали модели, включая и фактуру поверхности.

Хорошей жидкотекучестью обладают следующие металлы и сплавы: цинк и его сплавы, чугун, бронза, олово, силумин (сплав алюминия с кремнием), а также некоторые магниевые сплавы и литейные латуни.

Существует понятие, обратное жидкотекучести,- густоплавкость. Металлы и сплавы, обладающие густоплавкостью, даже при высоком нагреве остаются густыми и при заливке форм плохо их заполняют. К густоплавким относятся чистое серебро, красная медь, сталь.

Литейная усадка — уменьшение объема при переходе из жидкого состояния в твердое. При охлаждении металла отливка сокращается и как бы отходит от стенок формы. Отливка всегда меньше модели, по которой сделана форма. Величина усадки бывает различной. Металлы и сплавы с большой усадкой менее применимы для литья.

В табл. 5 приведены литейные усадки некоторых металлов и сплавов.

Таблица 5

Зная величину литейной усадки, можно определить, насколько больше следует изготовить форму, чтобы получить отливку нужного размера.

Читайте также:  Сломалась запорная арматура пластиковой двери

Ковкость — свойство металла изменять свою форму под действием ударов или давления не разрушаясь. Степень ковкости зависит от многих параметров. Наиболее существенными из них являются следующие: пластичность, степень нагрева, величина деформирующего усилия, наличие примесей и др.

Металлы могут коваться как в холодном состоянии, например красная медь, золото, так и в горячем, например сталь.

Это свойство широко используется при изготовлении художественных кованых изделий из малоуглеродистой стали (ранее называемой ковочным железом).

Малоуглеродистая сталь, раскаленная докрасна, становится настолько пластичной и мягкой, что из нее можно изготовлять художественные изделия самой разнообразной сложной формы.

Свариваемость — способность металла прочно соединяться путем местного нагрева и расплавления свариваемых кромок изделия. , Чистые металлы свариваются легче, а сплавы труднее.

Легко свариваются изделия из малоуглеродистой стали. Чем выше процент содержания углерода в стали, тем свариваемость ее хуже.

Наиболее затруднительной считается сварка высокоуглеродистых легированных сталей и особенно чугуна.

Спекаемость — свойство, в результате которого образуется металлокерамика.

При этом металлы, предварительно измельченные в порошок, смешиваются, запрессовываются в специальные формы и подвергаются действию высокой температуры и давления до спекания.

Различные металлы спекаются неодинаково — одни лучше, другие хуже. Способом спекания сейчас производят особо твердые стойкие сплавы, например победит, который применяется при изготовлении режущих инструментов.

Обрабатываемость резанием на различных станках (токарном, фрезерном и пр.

), а также способность шлифоваться и полироваться — это свойства, играющие существенную роль в производстве художественных изделий и особенно в отделке (полировании).

Хорошо режутся бронзы, латуни и некоторые марки сталей, алюминия и чугуна. Особенно плохо обрабатываются на станках детали из красной меди и из свинца и его сплавов.

Химические свойства

Из химических свойств металлов практически наиболее важными в производстве изделий художественной промышленности являются растворение и окисление.

Растворение, или разъедание,— это способность металлов и сплавов растворяться в сильных кислотах и едких щелочах. Наиболее часто в производстве употребляются серная, азотная и соляная кислоты, а также смесь азотной и соляной кислот, называемая «царской водкой», а из щелочей — едкий натр и едкое кали.

Свойство металлов растворяться имеет очень широкое применение в самых различных областях производства художественных изделий из металла. При этом следует различать случаи, когда растворение носит частичный характер и ограничивается только поверхностным слоем металла, а также случаи полного растворения металла и перехода его в раствор. Примерами частичного растворения с поверхности являются:

  • травление изделий в кислотах для получения чистой поверхности или узора (рис. 2); Рис. 2. Вазы из алюминия, обработанные травлением. Художник Л. Линакс
  • травление медных досок при изготовлении офорта и т. п.

Примерами полного растворения металла являются:

  • растворение цинка в соляной кислоте для приготовления хлористого цинка, употребляемого в качестве флюса при пайке;
  • растворение серебра в азотной кислоте при приготовлении азотнокислого серебра и т. п.

Окисление — способность металлов соединяться с кислородом и образовывать окислы металлов. При окислении вес металла увеличивается на вес кислорода, который с ним соединяется. Обычно почти все металлы и сплавы покрыты с поверхности тонкой оксидной (или окисной) пленкой, представляющей собой тончайший слой, состоящий из окислов.

Скорость образования такой пленки на поверхности изделия из различных металлов неодинакова. Например, магний и алюминий окисляются особенно быстро, бронза и латунь значительно медленнее, а изделия из золота и платины совсем не окисляются.

Особенно быстро окисление происходит при нагреве до высоких температур. В этом случае на поверхности металла быстро образуется более толстый слой, состоящий из окислов, который называется окалиной.

Чем выше нагрев и больше доступ воздуха к нагреваемому изделию, тем толще слой образующейся окалины.

Если металл нагревать в условиях избытка воздуха или кислорода, то весь металл может превратиться в окалину.

В одних случаях способность металлов к окислению и образование на их поверхности оксидной пленки является желательным, так как такая пленка предохраняет изделие от дальнейшего окисления металла в глубину и носит название защитной пленки. Таковы окисные пленки на изделиях из алюминиевых сплавов.

В других случаях образование окислов на поверхности металлов является нежелательным, например трудности пайки и сварки алюминиевых изделий обусловлены быстрым образованием очень прочной оксидной пленки, которая препятствует соприкосновению припоя с чистой поверхностью металла. Очень нежелательно и образование окалины на стальных изделиях в процессе их закалки, которая появляется даже при содержании кислорода в атмосфере, не превышающем 0,2%.

Механические, физические, химические и технологические свойства металлов

Механические свойства характеризуют способность материа­лов сопротивляться действию внешних сил. К основным механичес­ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

  • Прочность — это способность материала сопротивляться раз­рушающему воздействию внешних сил.
  • Твердость — это способность материала сопротивляться вне­дрению в него другого, более твердого тела под действием нагрузки.
  • Вязкостью называется свойство материала сопротивляться раз­рушению под действием динамических нагрузок.
  • Упругость — это свойство материалов восстанавливать свои раз­меры и форму после прекращения действия нагрузки.
  • Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.
  • Хрупкость — это свойство материалов разрушаться под дей­ствием внешних сил без остаточных деформаций.

При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала.

Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диа­метром d0. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения.

Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F0, МПа:

  1. σ = P/F0,
  2. Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:
  3. ε = [(l1-l0)/l0] · 100,
  4. где l1 — длина растянутого образца.
  5. Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

Предел упругости σу — это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1).

Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %.

Предел прочности (или временное сопротивление) σв — это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

  • Относительное удлинение после разрыва δ — отношение при­ращения длины образца при растяжении к начальной длине l0, %:
  • δ = [(lk-l0)/l0]·100,
  • где lк — длина образца после разрыва.

Рис. 1. Статические испытания на растяжение: а – схема испытания;

  1. б – диаграмма растяжения
  2. Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:
  3. ψ = [(F0-Fk)/F0]·100,

где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Твердость металлов измеряется путем вдавливания в испытуе­мый образец твердого наконечника различной формы.

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С).

Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно.

Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м2:

KC=A/F

Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

  • К физическим свойствам материалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.
  • Плотностью называется отношение массы однородного матери­ала к единице его объема.
  • Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые кон­струкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плав­ления, сварки и тем они дешевле.

Читайте также:  Работа с нивелиром: разновидности и использование, правила работы

Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.

Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ.

Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

  1. К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.
  2. Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.
  3. Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.
  4. Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.
  5. Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

Технологические свойства определяют способность материалов подвергаться различным видом обработки.

Литейные свойства харак­теризуются способностью металлов и сплавов в расплавленном состоя­нии хорошо заполнять полость литейной формы и точно воспроизво­дить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии.

Ковкость — это способность металлов и сплавов подвергаться различ­ным видам обработки давлением без разрушения. Свариваемость опре­деляется способностью материалов образовывать прочные сварные сое­динения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.

Теория сплавов

Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обла­дающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.

Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела.

Под структурой понимают форму размер и характер взаимного распо­ложения фаз в металлах и сплавах.

Структурными составляющими называют обособленные части сплава, имеющие одинаковое строе­ние с присущими им характерными особенностями.

Виды сплавов по структуре. По характеру взаимодействия ком­понентов все сплавы подразделяются на три основных типа: механи­ческие смеси, химические соединения и твердые растворы.

Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристалличес­кую решетку.

Структура механических смесей неоднородная, состо­ящая из отдельных зерен компонента А и компонента В.

Свойства механических смесей зависят от количественного соотношения ком­понентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.

Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химичес­кой формуле АmВn .

Химическое соединение имеет свою кристалли­ческую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структу­ру, состоящую из одинаковых по составу и свойствам зерен.

При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы заме­щения образуются в результате частичного замещения атомов крис­таллической решетки одного компонента атомами второго (рис. 6, б).

Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную струк­туру, одну кристаллическую решетку.

В отличие от химического соединения твердый раствор существует не при строго определен­ном соотношении компонентов, а в интервале концентраций. Обо­значают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.

Диаграмма состояния

Диаграмма состояния показывает строе­ние сплава в зависимости от соотношения компонентов и от темпера­туры. Она строится экспериментально по кривым охлаждения спла­вов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки.

В верхней критической точке, называемой точкой ликвидус (tл), начина­ется кристаллизация. В нижней критической точке, которая называ­ется точкой солидус (tc), кристаллизация завершается. Кривая охлаж­дения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка.

На этом участке происходит кристаллизация эвтектики.

Эвтектикой на­зывают механическую смесь двух фаз, одновременно кристаллизовав­шихся из жидкого сплава. Эвтектика имеет определенный химичес­кий состав и образуется при постоянной температуре.

Диаграмму состояния строят в координатах температура-концен­трация. Линии диаграммы разграничивают области одинаковых фазо­вых состояний. Вид диаграммы зависит от того, как взаимодейству­ют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов раз­личных концентраций.

При построении диаграммы критические точ­ки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие.

Линия диаграммы состояния на ко­торой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.

Виды диаграмм состояния

Диаграмма состояния сплавов, обра­зующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом спла­ве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В.

Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоян­ной температуре происходит кристаллизация эвтектики Э.

Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.

Сплавы, расположенные на диаграмме левее эвтектического, называ­ются доэвтектическими, их структура состоит из зерен А и эвтекти­ки. Те сплавы которые на диаграмме расположены правее эвтектичес­кого, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.

Диаграмма состояния сплавов с неограниченной растворимос­тью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твер­дого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух пре­дыдущих.

Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтек­тический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вслед­ствие уменьшения растворимости с понижением температуры).

Про­цесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.

Диаграмма состояния сплавов, образующих химическое соеди­нение (рис. 12) характеризуется наличием вертикальной линии, соот­ветствующей соотношением компонентов в химическом соединении АmВn.

Эта линия делит диаграмму на две части, которые можно рас­сматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис.

12 изоб­ражена диаграмма для случая, когда каждый из компонентов образу­ет с химическим соединением механическую смесь.

Свойства металлов: химические, физические, технологические

  • Химические свойства
  • Физические свойства
  • Механические свойства
  • Технологические свойства
  • Интересные факты
  • Видео
  • Не секрет, что все вещества в природе делятся на три состояния: твердые, жидкие и газообразные.

    А твердые вещества в свою очередь делятся на металлы и неметаллы, разделение это нашло свое отображение и в таблице химических элементов великого химика Д. И. Менделеева.

    Наша сегодняшняя статья о металлах, занимающих важное место, как в химии, так и во многих других сферах нашей жизни.

    К слову лом цветных и черных металлов всегда высоко ценился на рынке вторичной переработке. Последнее время цена на него постоянно растет. Узнайте актуальные цены, по которым можно сдать металлолом: https://citylom.ru

    Химические свойства

    Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.

    Читайте также:  Правила приема металла на заводе

    Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с кислородом, металлы образуют пленку, то есть проявляют окисляемость.

    Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.

    Физические свойства

    Среди основных общих физических свойств металлов можно выделить:

    • Плавление.
    • Плотность.
    • Теплопроводность.
    • Тепловое расширение.
    • Электропроводность.

    Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала.

    Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д.

    (в целом их имеется более 40 видов).

    Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.

    Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.

    Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла).

    Способность металла проводить электрический ток называется электропроводностью.

    Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.

    Механические свойства

    Основными механическими свойствами металлов является их твердость, упругость, прочность, вязкость и пластичность.

    При соприкосновении двух металлов могут образоваться микро вмятины, но более твердый металл способен сильнее противостоять ударам. Такая сопротивляемость поверхности металла ударам извне и есть его твердость.

    Чем же твердость металла отличается от его прочности. Прочность, это способность металла противостоять разрушению под действием каких-либо других внешних сил.

    Под упругостью металла понимается его способность возвращать первоначальную форму и размер, после того как нагрузка, вызвавшая деформацию металла устранена.

    Способность металла менять форму под внешним воздействием называется пластичностью.

    Технологические свойства

    Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.

    Среди основных технологических свойств можно выделить:

    • Ковкость.
    • Текучесть.
    • Свариваемость.
    • Прокаливаемость.
    • Обработку резанием.

    Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.

    • Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.
    • Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.
    • Свойство металла закаливаться называется прокаливаемостью.

    Интересные факты

    • Самым твердым металлом на Земле является хром. Этот голубовато-белый метал был открыт в 1766 году под Екатеринбургом.
    • И наоборот, самыми мягкими металлами являются алюминий, серебро и медь. Благодаря своей мягкости они нашли широкое применение в разных областях, например, в электроаппаратостроении.
    • Золото – которое на протяжении веков было самим драгоценным металлом имеет и еще одно любопытное свойство – это самый пластичный металл на Земле, обладающий к тому же отличной тягучестью и ковкостью. Также золото не окисляется при нормальной температуре (для этого его нужно нагреть до 100С), обладает высокой теплопроводностью и влагоустойчивостью. Наверняка все эти физические характеристики делают настоящее золото таким ценным.
    • Ртуть – уникальный металл, прежде всего тем, что он единственный из металлов, имеющий жидкую форму. Причем в природных условиях ртути в твердом виде не существует, так как ее температура плавления -38С, то есть в твердом состоянии она может существовать в местах, где просто таки очень холодно. А при комнатной температуре 18С ртуть начинает испаряться.
    • Вольфрам интересен тем, что это самый тугоплавкий металл в мире, чтобы он начал плавиться нужна температура 3420С. Именно по этой причине в электрических лампочках нити накаливания, принимающие основной тепловой удар, изготовлены из вольфрама.

    Видео

    И в завершение образовательное видео по теме нашей статьи.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Механические свойства

    • К основными механическим свойствам металлов относятся:
    • ¦ твёрдость,
    • ¦ прочность,
    • ¦ пластичность,
    • ¦ вязкость.

    Твердость является одной из важнейших характеристик.

    Твёрдость — это свойство металла оказывать сопротивление пластической деформации при проникновении в него другого более твердого тела на поверхностные слои материала.

    Измерение твёрдости имеет широкое применение для контроля качества изделий.

    В зависимости от методов испытания различают значение твердости по Бринеллю, Виккерсу, Роквеллу. Твердость по Бринеллю обозначают символом HB (твердостью менее 450 единиц) и HBW (твердостью более 450 единиц). Твердость по Виккерсу обозначают буквами HV. Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости A, B или C.

    Под деформацией (рис.1, приложение А) металла понимают изменение формы и размеров тела под действием внешних воздействий или внутренних сил. Деформация в твердых телах может быть упругой и пластической. Упругой называется деформация, полностью исчезающая после прекращения действующих на неё нагрузок, и пластической если она после снятия нагрузок не исчезает.

    Прочность — способность металла сопротивляться деформациям и разрушению. Под разрушением понимают процесс развития в металле трещин, приводящий к разделению его на части. Прочность определяют в результате статического испытания на растяжение.

    Пластичность — способность металла к пластической деформации (т.е. получению остаточных изменений формы и размеров без нарушения сплошности). Пластичность используют при обработке металлов давлением.

    Вязкость — это способность металла поглощать механическую энергию внешних сил за счёт пластической деформации.

    Технологические свойства

    Под технологическими свойствами понимают способность подвергаться различным видам обработки.

    Технологические свойства определяют при технологических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис.2, приложение Б), осматривают. Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома.

    1. Из технологических свойств наибольшее значение имеют:
    2. ¦ обрабатываемость резанием,
    3. ¦ свариваемость,
    4. ¦ ковкость,
    5. ¦ прокаливаемость
    6. ¦ литейные свойства.

    Обрабатываемость резанием — комплексное свойство металла, характеризующее способность его подвергаться обработке резанием и определяется по скорости, усилию резания и по чистоте обработки.

    Испытания по скорости и усилию резания производятся путем сравнения показателей, полученных при обработке данного металла, с показателями обрабатываемости эталонной марки стали (автоматная сталь марки А12).

    Показатель чистоты обработанной поверхности определяется измерением высоты неровностей, образующихся на поверхности металла после снятия стружки режущим инструментом.

    Свариваемость — способность металла давать доброкачественное соединение при сварке, характеризуется отсутствием трещин и других пороков в швах и прилегающих к шву зонах основного металла. Хорошей свариваемостью обладают конструкционные стали; значительно худшую свариваемость имеют чугуны, медные и алюминиевые сплавы, которые требуют специальных технологических условий при сварке.

    Ковкость — способность металлов и сплавов без разрушения изменять свою форму при обработке давлением. Многие металлы и сплавы обладают достаточно хорошей ковкостью в нагретом состоянии, а в холодном состоянии — латунь и алюминиевые сплавы; пониженной ковкостью характеризуется бронза.

    Прокаливаемость — способность стали воспринимать закалку на определенную глубину от поверхности. Она зависит от присутствия легирующих элементов в составе и размеров зерен структуры.

    Литейные свойства металлов и сплавов характеризуются жидкотекучестъю и усадкой.

    Жидкотекучесть — способность металла или сплава в расплавленном состоянии заполнять литейную форму. Для повышения жидкотекучести к ним добавляют легирующие компоненты, например, фосфор — в медные сплавы и чугун, кремний — в алюминиевые сплавы.

    Усадкой называется уменьшение объема расплавленного металла или сплава при его затвердевании. На степень усадки влияют многие факторы: химический состав расплава, скорость охлаждения и др.

    Эксплуатационные свойства

    Эксплуатационные свойства определяются в зависимости от условий работы машин и механизмов специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость.

    Износостойкость — свойство материала оказывать сопротивление износу, т.е. изменению размеров и формы вследствие разрушения поверхностного слоя изделия при трении. Испытания материалов на износ производят на образцах в лабораторных условиях, а деталей — в условиях реальной эксплуатации.

    К эксплуатационным свойствам также относятся хладностойкость, жаропрочность, антифрикционность и другие.

    Понравилась статья? Поделиться с друзьями:
    Станок